34th Annual WERC Competition Task 1: Stormwater Management for Community Resilience CENE 476 December 8, 2023

ENGINEERING

Tiana Deloney, Matt Helms, Zach Lyon, Caroline Reed

AMALOTA

Project Introduction

Purpose

- Compete in WERC Environmental Design Contest: Task 1
 - Design innovative, low-cost stormwater management system
 - No typical solution

Location

Competition – New Mexico State University

Project Site – Joseph City, AZ

<u>Client</u>

New Mexico State University

Navajo County

Technical Advisor

Tom Loomis, PE

Figure 1: Tom & Sue Loomis

> Image Credit: Tom Loomis

Figure 2: Project Location Map

Project Background

Issue

Overbank flooding

- Little Colorado River
- Joseph City Wash

Joseph City Wash Little Colorado River **Project Site**

Figure 5: Project Site Map

Figure 4: Flood Visual Photo Credit: Navajo County Public Works **Task 1 Literature Review & Background Research** Task 1.1 Code and Standards Review Task 1.2 Soil Classification Review Task 1.3 Typical Pollutant Research Task 1.4 Existing Plans Research Task 1.5 Existing Topography Data Review Task 1.6 Competition Preparation Task 1.6.1 Competition Registration Task 1.6.2 Short Course Enrollment Task 1.7 NAU Civil Water Lab Access

Task 2 Site Investigation

Task 2.1 NAU Field Safety Checklist

Task 2.2 Land Survey

Task 2.2.1 Survey Preparation Task 2.2.2 Survey Fieldwork

Task 2.3 Observational Survey

Figure 6: Little Colorado River Watershed Image Credit: Navajo County Public Works

Task 3 Site Analysis

Task 3.1 Existing Topographic Map Task 3.2 Hydrologic Assessment Task 3.2.1 Define Watershed Task 3.2.2 Calculate Time of Concentration

Task 3.2.3 Determine Storm Intensity

Task 3.2.4 Calculate Runoff

Task 3.3 Hydraulic Assessment

Figure 7: 100 Year Storm Analysis Image Credit: FEMA

Task 4 Design

Task 4.1 Define Requirements and Criteria

Task 4.2 Develop Design Alternatives

Task 4.3 Analyze Alternatives and Select Best

	Land Use	\mathbf{Cost}	Green Space	Waterway Preservation	TOTAL
Option 1	0	+	0	+	+
Option 2	-	-	+	0	-
Option 3	-	-	+	+	0

Table 1: Example Decision Matrix

Task 5 Final Design

Task 5.1 Full-Scale Model Task 5.1.1 Hydraulic Design Task 5.1.2 Pollutant Treatment

Task 5.2 Develop Bench-Scale ModelTask 5.2.1 Bench-Scale Model ScalingTask 5.2.2 Model DesignTask 5.2.3 Model ConstructionTask 5.2.4 Model Testing

Task 5 Final Design

Task 5.3 Construction Drawings Plan Set

Task 5.3.1 Cover Sheet

Task 5.3.2 General Notes Sheet

Task 5.3.3 Details Sheet

Task 5.3.4 Existing Site Sheet

Task 5.3.5 New Site Sheet

Task 5.3.6 Schematic Plan Sheet

Figure 8: Example Detail Image Credit: Maricopa County of Associated Governments **Task 6 Techno-Economic Analysis**

Task 6.1 Short Course Attendance

Task 6.2 Techno Analysis

Task 6.3 Economic Analysis

Task 6.3.1 Engineers Opinion of Probable Cost Task 6.3.2 Operation and Maintenance Cost Task 6.3.3 Life-Cycle Cost

Task 7 Project Impacts

Task 8 Deliverables

Task 8.1 30% Submittal; Tasks 1-2 Task 8.2 60% Submittal; Tasks 1-4 Task 8.3 90% Submittal; Tasks 1-7 Task 8.4 Final Presentation; All Tasks Task 8.5 Final Submittal; All Tasks Task 8.6 Competition Deliverables Task 8.6.1 Experimental Safety Plan Task 8.6.2 30% Project Review Task 8.6.3 Technical Report Audits Task 8.6.4 Final Technical Report Task 8.6.5 Competition

Figure 9: 34th WERC Logo Image Credit: New Mexico State University

Task 9 Project Management Task 9.1 Project Meetings Task 9.2 Schedule Management Task 9.3 Resource Management **Exclusions** Pollutant Sampling **Community Outreach**

Figure 10: Joseph City Wash, 1998 Image Credit: National Weather Service, Navajo County

Staffing Plan

Senior Engineer (SENG):

- Reviewing and managing project
- PE, 5+ years of experience, B.S. Engineering

Engineer (ENG):

- Design, evaluation, and development of proposed solution
- FE, 3+ years of experience, B.S. Engineering

Engineer Technician (TECH):

- Data collection & processing, lab work, and model construction
- Registered land surveyor (RLS), 1-3 years of experience, associate's degree

Staffing Plan

Table 2: Staffing Hours by Task

TASK NAME	SENG (hours)	ENG (hours)	TECH (hours)	TOTAL TASK HOURS
Task 1.0: Literature Review & Background Research	2	28	21	51
Task 1.1.0: Code & Standard Review	0	8	3	11
Task 1.2.0: Soil Classification Research	0	4	4	8
Task 1.3.0: Typical Pollutant Research	0	4	4	8
Task 1.4.0: Existing Plan Research	0	9	4	13
Task 1.5.0: Existing Topography Data Review	0	3	4	7
Task 1.6.0: Competition Preparation	2	0	0	2
Task 1.6.1: Competition Registration	1	0	0	1
Task 1.6.2: Short Course Enrollment	1	0	0	1
Task 1.7.0: NAU Civil Water Lab Access	0	0	2	2
Task 2.0: Site Investigation	0	7	18	25
Task 2.1.0: NAU Field Safety Checklist	0	1	4	5
Task 2.2.0: Land Survey	0	4	12	16
Task 2.2.1: Survey Preparation	0	0	4	4
Task 2.2.2: Survey Fieldwork	0	4	8	12
Task 2.3.0: Observational Study	0	2	2	4
Task 3.0: Site Analysis		52	36	92
Task 3.1.0: Existing Topographic Map	0	1	8	9
Task 3.2.0: Hydrologic Assessment	0	24	12	36
Task 3.2.1: Define Watershed	0	6	3	9
Task 3.2.2: Determine Time of Concentration	0	6	3	9
Task 3.2.3: Determine Storm Intensity	0	6	3	9
Task 3.2.4: Calculate Runoff	0	6	3	9
Task 3.3.0: Hydraulic Assessment	4	27	16	47
Task 4.0: Design	4	55	0	59
Task 4.1.0: Define Requirements & Criteria	0	6	0	6
Task 4.2.0: Develop Design Alternatives	2	40	0	42
Task 4.3.0: Analyze Alternatives & Select Best	2	9	0	11
Task 5.0: Final Design	5	53	87	145
Task 5.1.0: Full-Scale Model	2	33	0	35
Task 5.1.1: Hydraulic Design	2	25	0	27
Task 5.1.2: Pollutant Treatment	0	8	0	8
Task 5.2.0: Bench-Scale	3	10	61	74
Task 5.2.1: Bench-Scale Model Scaling	2	8	0	10
Task 5.2.2: Model Design	1	2	6	9
Task 5.2.3: Model Construction	0	0	40	40
Task 5.2.4: Model Testing	0	0	15	15

TASK NAME (cont.)	SENG (hours)	ENG (hours)	TECH (hours)	TOTAL TASK HOURS
Cask 5.0: Final Design (cont.)	5	53	87	145
Task 5.3.0: Construction Drawings Plan Set	0	10	26	36
Task 5.3.1: Cover Sheet	0	1	3	4
Task 5.3.2: Existing Site Sheet	0	1	5	6
Task 5.3.3: New Site Sheet	0	2	5	7
Task 5.3.4: Schematic Plan Set	0	2	5	7
Task 5.3.5: Details Sheet	0	2	5	7
Task 5.3.6: General Notes Sheet	0	2	3	5
ask 6.0: Techno-Economic Analysis	7	57	0	64
Task 6.1.0: Short-Course Attendance	2	2	0	4
Task 6.2.0: Techno-Analysis	2	16	0	18
Task 6.3.0: Economic Analysis	3	39	0	42
Task 6.3.1: Engineering Opinion of Probable Cost	1	13	0	14
Task 6.3.2: Operation and Maintenance Cost	1	13	0	14
Task 6.3.3: Life-Cycle Cost	1	13	0	14
ask 7.0: Project Impacts	4	14	0	18
ask 8.0: Project Deliverables	10	135	14	159
Task 8.1.0: 30% Submittal	1	23	1	25
Task 8.2.0: 60% Submittal	1	23	1	25
Task 8.3.0: 90% Submittal	1	23	1	25
Task 8.4.0: Final Presentation	1	8	1	10
Task 8.5.0: Final Submittal	1	23	1	25
Task 8.6.0: Competition Deliverables	5	35	9	49
Task 8.6.1: Experimental Safety Plan	1	2	6	9
Task 8.6.2: 30% Project Review	1	4	0	5
Task 8.6.3: Final Technical Report Audits	1	3	0	4
Task 8.6.4: Final Technical Report	1	22	0	23
Task 8.6.5: Competition	1	4	3	8
ask 9.0: Project Management	35	55	20	110
Task 9.1.0: Project Meetings	10	25	18	53
Task 9.2.0: Schedule Management	10	15	1	26
Task 9.3.0: Resource Management	15	15	1	31
ubtotal Hours	71	456	196	723
otal Hours		7	23	

Cost of Engineering Services

Table 3: Cost of Engineering Services

Cost of Engineering Services							
1.0 Personnel	Classification	Hours	Rate (\$/time)		Cost (\$)		
	SENG	71	\$340	\$	24,140		
	ENG	456	\$140	\$	63,840		
	TECH	196	\$80	\$	15,680		
Total Cost				\$	103,660		
2.0 Travel			Cost per (\$)				
	Transportation	2 Vans 5 Days	\$65/day	\$	650		
Competition	Mileage	1,736 miles, roundtrip	\$0.36/mile	\$	625		
Competition	Hotel	3 Rooms, 4 Nights	\$98/night	\$	1,176		
	Per Diem	5 People, 4 Days	\$49/day	\$	980		
Site Visit	Transportation	1 Van, 1 Day	\$44/day	\$	44		
Site visit	Mileage	200 miles, roundtrip	\$0.23/mile	\$	46		
Total Cost				\$	3,521		
3.0 Supplies							
	NAU Computer Lab	20 Days	\$100/day	\$	2,000		
Lab Facilities	NAU Survey Lab	1 Days	\$100/day	\$	100		
	NAU Water Lab	10 Days	\$100/day	\$	1,000		
Materials	Bench-Scale Model Materials	LS		\$	1,000		
	Competition Poster	LS		\$	40		
Total Cost				\$	4,140		
4.0 TOTAL							

*

References

[1] "WERC Environmental Design Contest." Accessed: Oct. 26, 2023. [Online]. Available: <u>https://wercdesigncontest.nmsu.edu/</u>

[2] "Flood Maps | FEMA.gov," www.fema.gov. https://www.fema.gov/flood-maps

[3] "Public Works | Navajo County, AZ," *www.navajocountyaz.gov.* https://www.navajocountyaz.gov/296/Public-Works (accessed Dec. 08, 2023).

Figure 11: WERC Team Photo

Image Credit: Andres Garcia Rico