

ENGINEERING

Tiana Deloney, Matt Helms, Zach Lyon, Caroline Reed

Project Introduction

<u>Site</u>

- Joseph City, Arizona
- Joseph City Wash

Issues and Task

- Overbank flooding
- Low-cost & innovative solution

Flooding Photos – Joseph City, AZ

Figures 3-5: Historic and Current Flooding Evidence

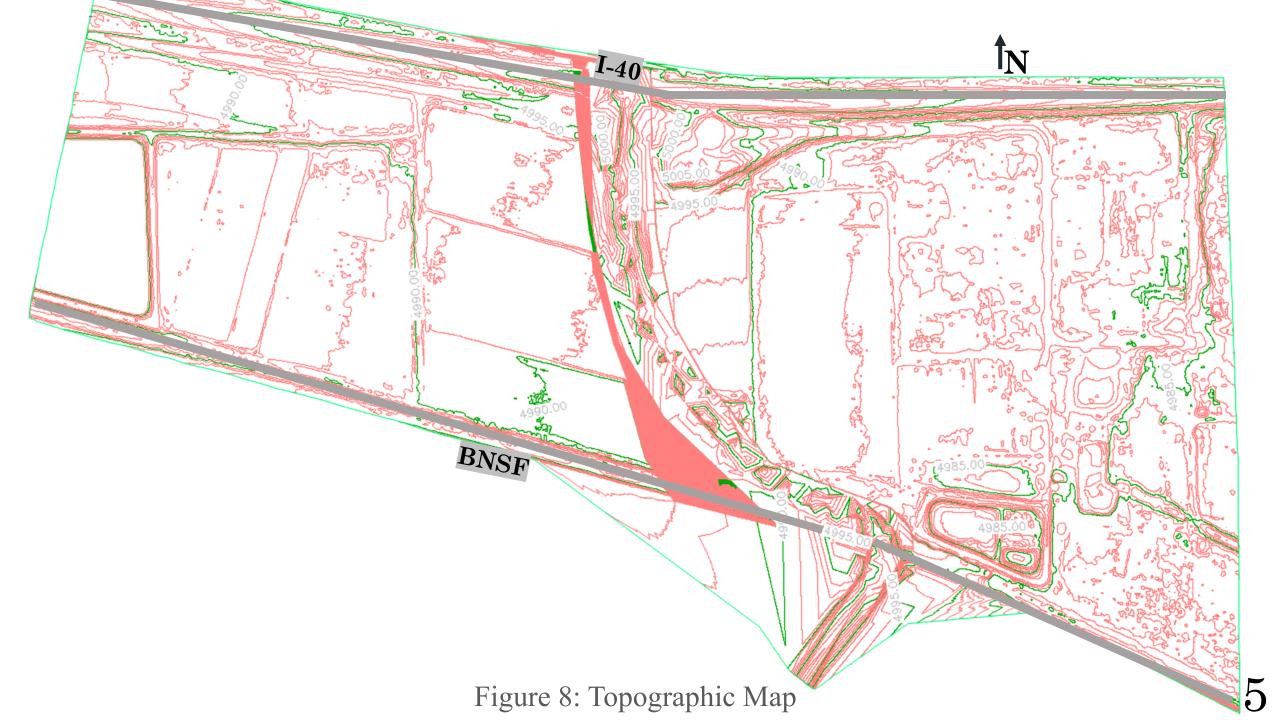

Site Visit

Figure 6: Site Visit – in wash

Figure 7: BNSF Underpass

Hydrologic Analysis

Table 1: Calculated Watershed Areas

Mesa Wash (mi ²)	Joseph City Wash (mi ²)	Confluence (mi ²)	Highway I-40 (mi ²)	Santa Fe Railroad (mi ²)
6.54	23.50	30.04	30.82	32.40

Figure 9: Watershed Delineation

Flooding Source and Rocatton	Drainage Are <u>(Square Miles</u>
MESA WASH	
At Conflurncr With Jo sep h ≺it x Wash	6.37
JOSEPH CITY WASH	
At Santa Fe Railroad	32.50
Just Downstream of Highway 40	
At Interstate Highway 40	30.64
Immediately Below Confluence	
With Mesa Wash	29.71
At Confluence With Mesa Wash	23.34

Figure 10: FEMA Firm Panel Watershed Areas Figure Credit: FEMA

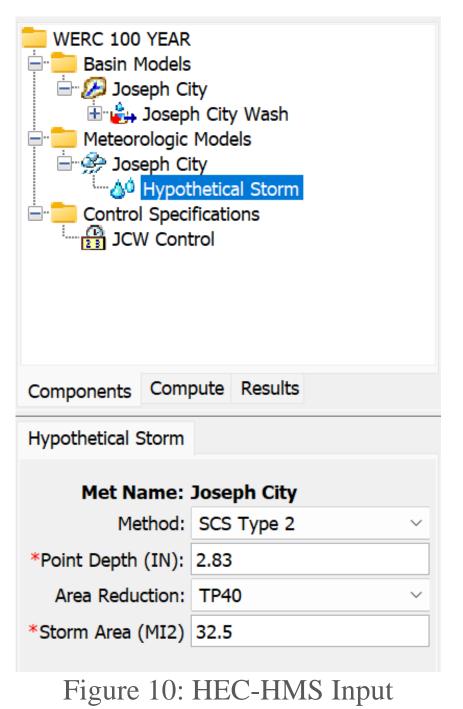
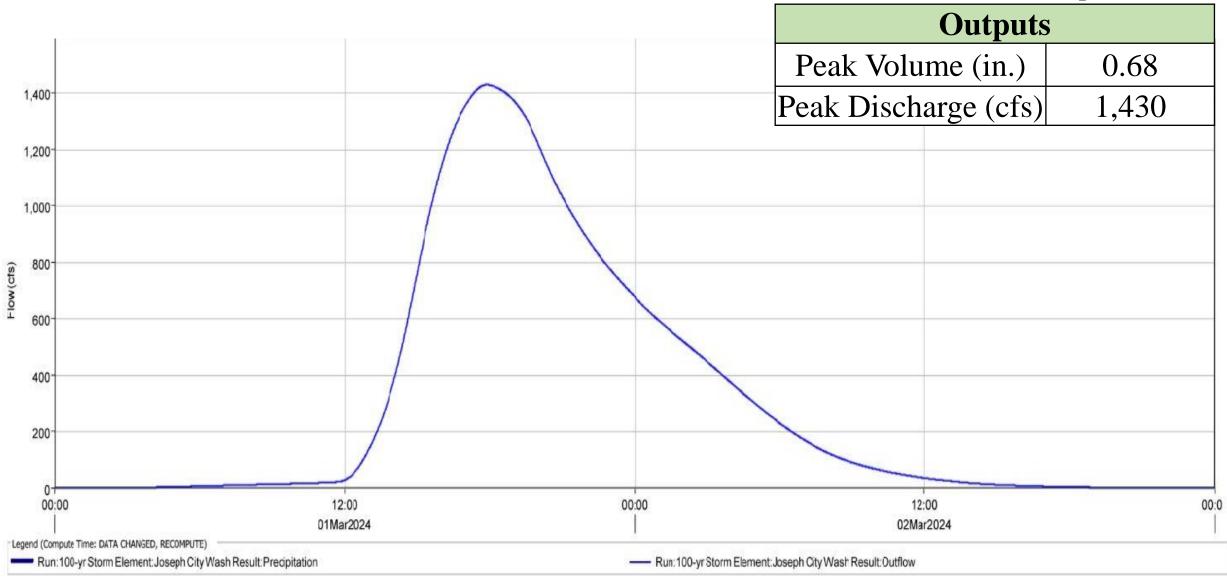

Hydrologic Analysis

Table 2: HMS Inputs

HEC-HMS Model Inputs				
Curve Number 66				
Impervious Loss (% area)	2.083			
Point Depth (in.)	2.83			
Lag Time (min.)	313			
Watershed Area (mi ²)	32.5			


Table 3: HMS Assumptions

HEC-HMS Model Assumptions				
Depth Area Reduction	TP40 of whole watershed			
Breakouts	Ignored due to lack of data			
Hydrograph	Single basin approach			
SCS Method	Type II 24-hour rainfall distribution using NOAA Atlas 14			

Hydrologic Analysis

Table 4: HMS Outputs

Figure 12: 100-yr Storm Hydrograph

Existing Hydraulic Analysis

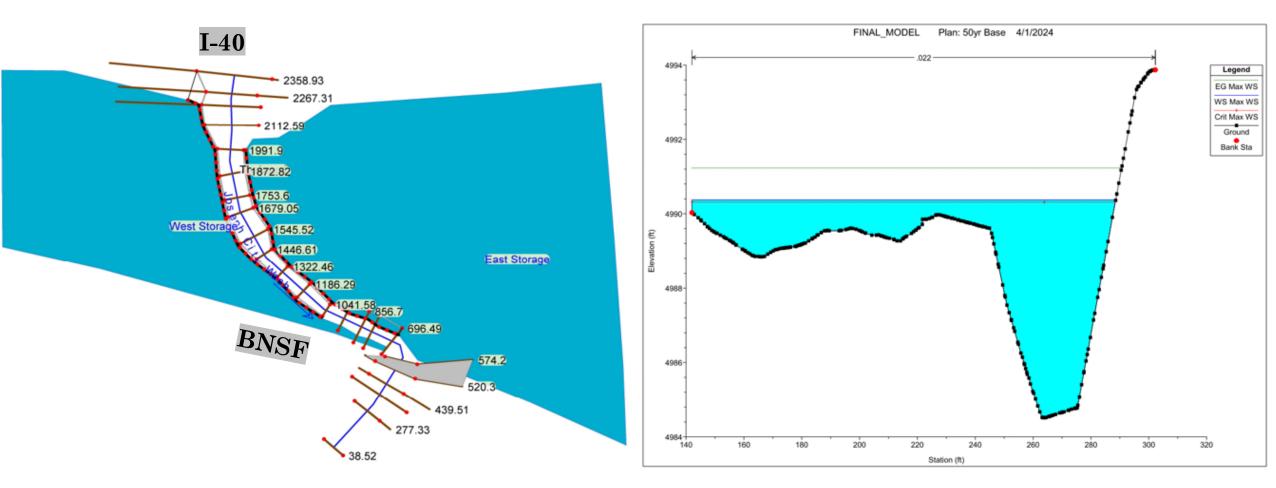


Figure 13: Joseph City River Reach

Figure 14: Average Cross-Section

Design Alternative Criteria

Stormwater Management Effectiveness

 \circ $\,$ How well an alternative manages storm flows

Cost

 \bigcirc

• Consideration of an alternatives cost effectiveness

Operation and Maintenance

 \circ $\,$ Labor and cost needed to maintain and operate the alternative

Consideration of how new and different an alternative is

Community Co-Benefit

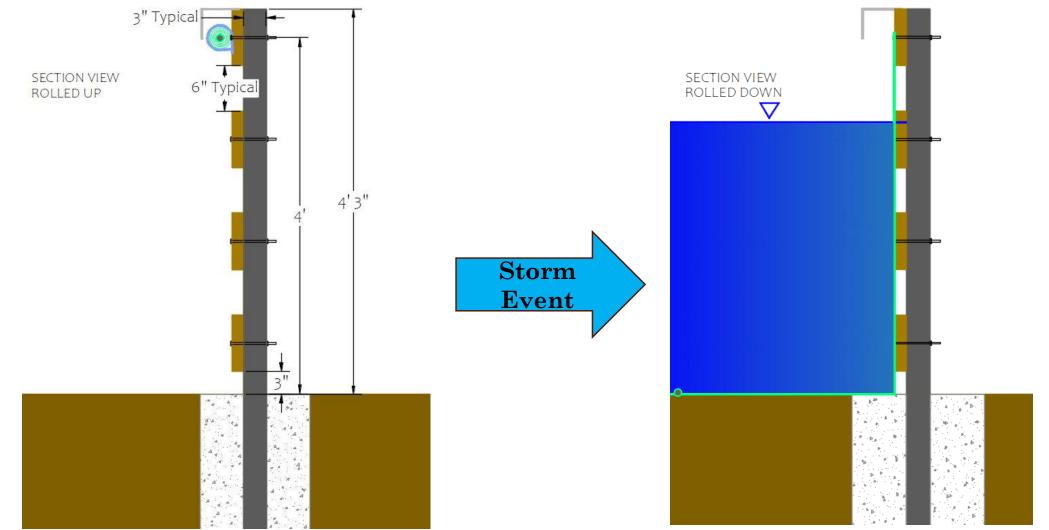
Innovativeness

 \circ $\,$ Evaluation of an alternative's impact on local community

Design Alternatives

Gabion Watershed Modifications

Cross-Vane Weir Channel Flow Control

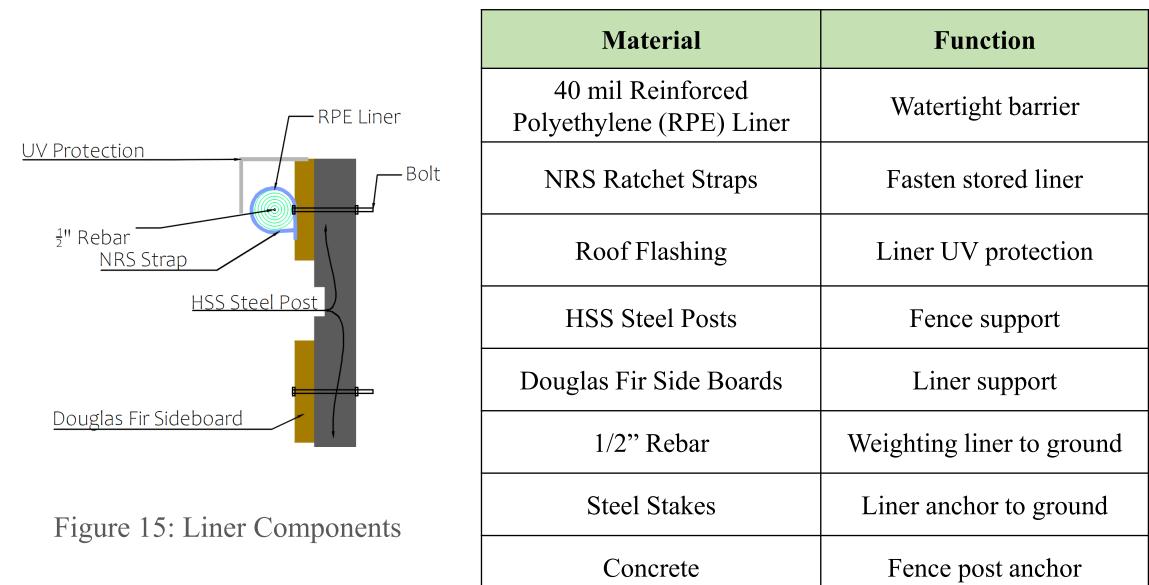


Storm Barrier

Table 5: Design Alternative Decision Matrix

Alternative	Stormwater Management Effectiveness	Cost	Innovativeness	Operation and Maintenance	Community Co-Benefits	TOTAL
Watershed Modification	+		+	+	0	+1
Storm barrier	+	+	+	-	+ +	+4
Cross Vane Weir	-	+	0	_	0	-1

LinerLogic Design


+ Cost effective+ Highly innovative

+ Readily deployable+ Considers climate scenarios

+ Efficiently manages large volume+ Highly Applicable

LinerLogic Design

Table 6: LinerLogic Materials

LinerLogic Design

Elevation View

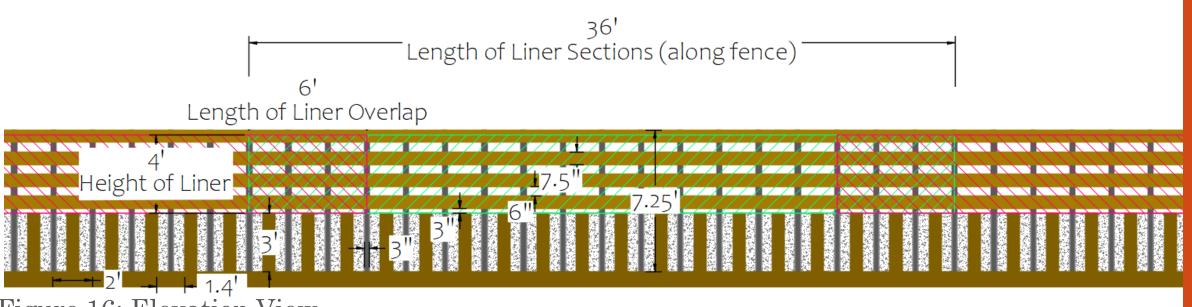
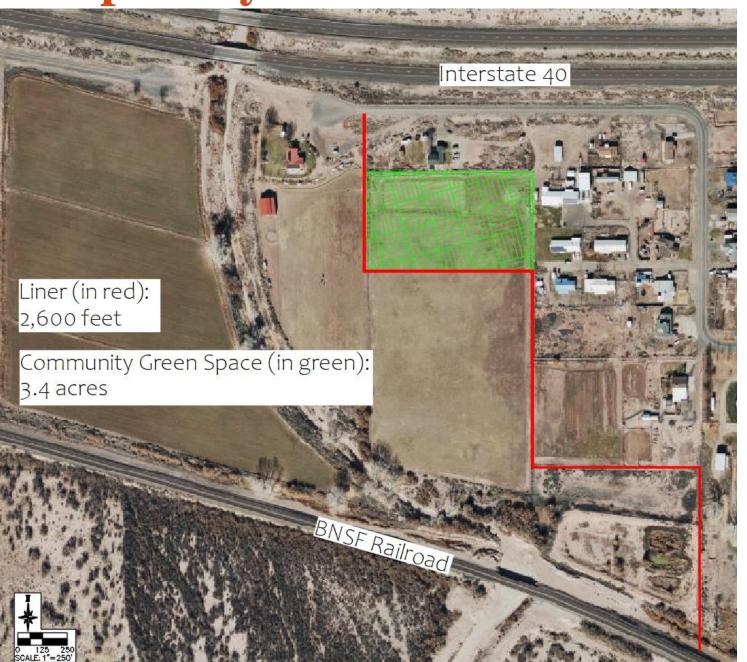
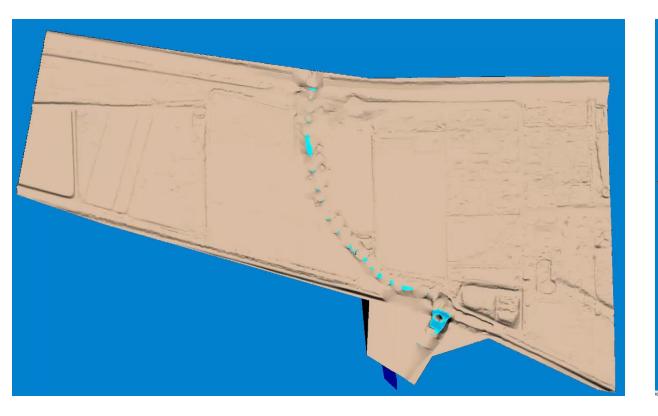



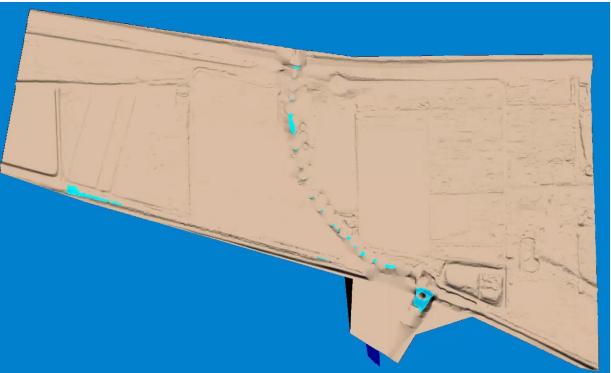
Figure 16: Elevation View

Table 7: Liner Demonstrations

Deployment Facts				
RPE Liner Section Length	36 Feet Per Section			
RPE Liner Overlap	6 Feet Per Section			
RPE Liner Rebar Weight	Along Entire Section			
RPE Ground Anchoring	6 Foot Increments			
Sectional Deployment Time	3 min (2-3 people)			

Joseph City Site Plan

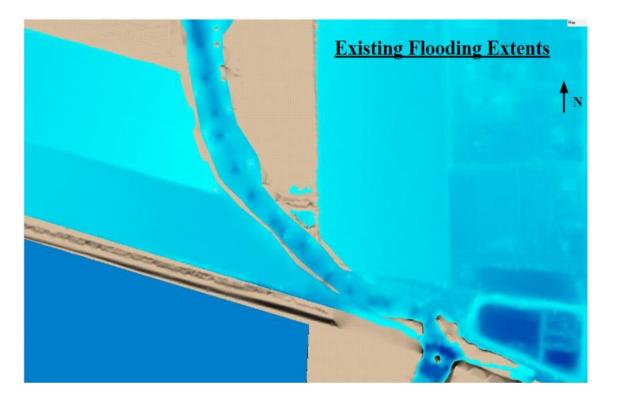

Community Garden :

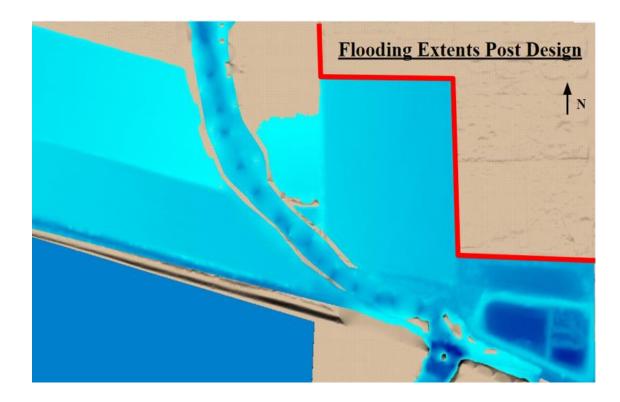

- Increased community connection
- Outdoor engagement
- Educational opportunities
- Community food
- Joseph City residents decide

LinerLogic:

- Deployment time 4.5 hours
- Flood warning system
- Prevents sediment spread

Digital Modeling – HEC-RAS





Flooding Video Without Design

Flooding Video With Design

Digital Modeling – HEC-RAS

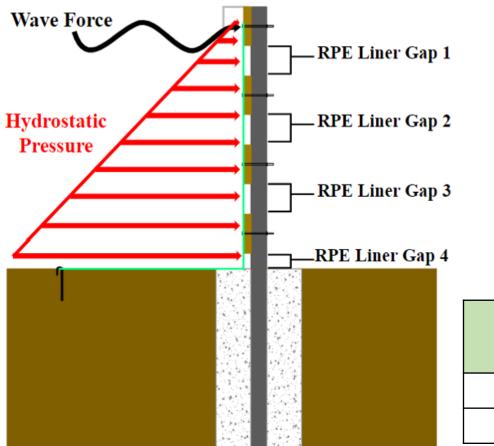


Figure 17: HEC-RAS Flooding Extents Before (Left) & After (Right)

Storm Event	Existing Flood Depth (ft)	Implemented Final design Flood Depth (ft)	
10-year	No Flooding	No Flooding	Table 8:
25-year	No Flooding	2.36	HEC-RAS
50-year	2.42	3.61	Outputs
100-year	4.26	6.03	

Structural Analysis

Hydrostatic Pressure

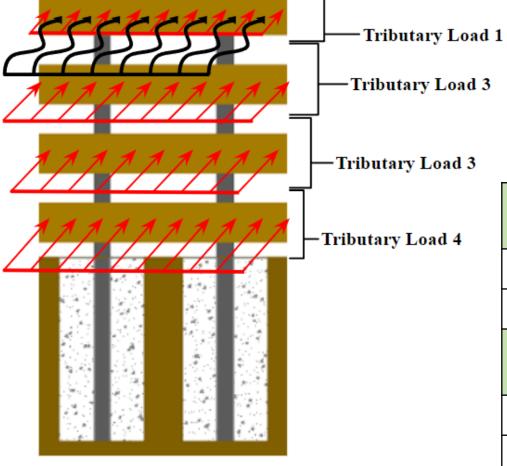

 $P = \rho g h$ Where: *P* is pressure, lbs/ft² ρ is density of water, 1.940 slugs/ft³ *g* is gravity, 32.174 lbs/ft² *h* is depth, ft

Table 9: Structural Analysis

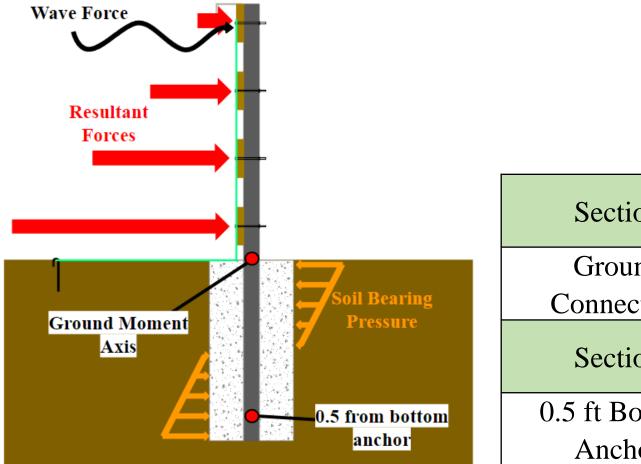
Section	Liner Stress Pressure (psi)	Liner Bursting Capacity (psi)
Gap 1 (Top)	0.3	685
Gap 4 (Bottom)	1.7	085

Structural Analysis

Lateral Distribution Loads

Equation 6 Bending Stress Load (on a board)

$$\sigma_b = \frac{M_{max}}{\frac{bd^2}{6}}$$


Where:

 g_{k} is bending stress load, psi M_{max} is max moment distributed load, lbs*ft b is nominal breadth of board, 7.5 in d is nominal depth of board. 1.5 in

Table 10: Structural Analysis

Section	Bending Stress	Douglas Fir Bending		
Section	Load (psi)	Capacity (psi)		
Tributary 1 (Top)	316	000		
Tributary 4 (Bottom)	241	900		
Section	Shear Stress (psi)	Douglas Fir Shear Capacity (psi)		
Tributary 1 (Top)	19.7	170		
Tributary 4 (Bottom)	32.2	170		

Structural Analysis

Equation 8 Bending Stress Load (on steel beam)

$$\sigma_b = \frac{M_{max} * C}{I}$$

Where:

 g_{k} is bending stress load, ksi M_{max} is max moment distributed load, lbs*in c is distance to extreme fiber, in I is moment of inertia, in

Table 11: Structural Analysis

		-		
Section	Bending Stress	HSS Steel Bending		
Section	(ksi)	Capacity (ksi)		
Ground	24.0	50		
Connection	24.9	50		
Section	Soil Bearing	Soil Bearing Capacity		
Section	Stress (psf)	(psf)		
0.5 ft Bottom	1402	1500		
Anchor	1492	1500		

Capital Costs

Table 12: Capital Expenses Economic Analysis

Item	Quantity	Units	Cost	Т	otal Cost
40mil RPE Liner (7' x 36')	87	S.F.	\$ 197	\$	17,139
87" Long Steel Posts (3 x 3 x 1/8 in.)	1300	EA	\$ 92	\$	119,464
Douglas Fir Boards (2" x 8" x 8')	5200	EA	\$ 10	\$	52,416
Concrete (0.12 cy/ fence post)	156	C.Y.	\$ 160	\$	24,960
NRS (1" x 1' - 2 pack)	217	EA	\$ 12	\$	2,604
Roof Flashing (4" x 5" x 10')	260	EA	\$ 22	\$	5,590
1/2" x 20' #4 Rebar	157	EA	\$ 12	\$	1,834
Carriage Bolt and Nut (1/4" x 7" - 100 count)	13	EA	\$ 60	\$	778
Grommets (5/8" - 50 pack)	87	EA	\$ 10	\$	870
Steel Rebar Stakes (8 pack)	55	EA	\$ 22	\$	1,210
Rainfall Gauge	1	EA	\$ 947	\$	947
Rainfall Transmitter	1	EA	\$ 1,027	\$	1,027
Land Grading	9,100	S.F.	\$ 1.4	\$	12,740
		MA	TERIALS SUBTOTAL	\$	241,578
Construction Services	1	L.S.	10% of Material Cost	\$	24,158
Engineering Design	1	L.S.	15% of Material Cost	\$	36,237
PERSONNEL SUBTOTAL					
			PROJECT TOTAL	\$	301,973

Business Plan

Table 13: Summarized Costs

CAPEX						
Project Total				\$	301,000	
		OPEX				
Annual Total \$ 6,500						
Flood Damages						
Water Depth (in.)		Damage Cost (\$/2,500 ft ² homes)	Tot	al Cos	t (24 homes)	
1	\$	26,807		\$	620,000	
6	\$	52,037		\$	1,200,000	
9	\$	62,100		\$	1,500,000	
24	\$	87,326		\$	2,100,000	
36	\$	94,538		\$	2,300,000	
48 (Design Capacity)	\$	103,355		\$	2,500,000	

Joseph City Implementation

Task Name	Responsible Party	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Jun	Jul
Community Outreach	Engineers													
Pre-Construction														
Permit & Licensure	Navajo County													
Secure Financing	Bank of Choice													
Contractor Bidding/Approval	Navajo County & Contractors													
Obtain Insurance	Insurance Company													
Construction														
Staking	Contractor													
Fencing	Contractor													
Re-Deployable Liner	Contractor													
Community Garden	Contractor													
Post-Construction														
Quality Check	Engineers and Contractors													
Open to Public	Local Public													

Figure 18: Implementation Schedule

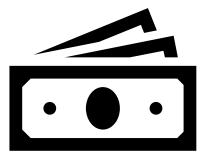
Project Impacts

Environmental:

+ Reduced flood damage+ Community green space

Possible downstream effectsConstruction

Social:


- + Community engagement
- + Environmental education
- Land acquisition
- Deployment

Economic:

+ Flood mitigation investment+ Reduced flood damages expenses

- Construction

References

[1] Joseph City CDP, Arizona - Census Bureau Profile.

 $https://data.census.gov/profile/Joseph_City_CDP,_Arizona?g=160XX00US0436430 \# income-city_CDP,_Arizona?g=160XX00US0436430 \# income-city_CDP,_Arizona?g=160XX00US0430 \# income-city_CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_ArizoNa*CDP,_Ari$

and-poverty. 2. FEMA Flood Map Service Center | Search By Address.

https://msc.fema.gov/portal/search?AddressQuery=joseph%20 city%20 arizona.

[3] Web Soil Survey - Home. https://websoilsurvey.nrcs.usda.gov/app/.

[4] HEC-HMS. https://www.hec.usace.army.mil/software/hec-hms/.

[5] 2014_adot_hydrology_manual_appendix_b.pdf.

[6] PF Data Server-PFDS/HDSC/OWP. https://hdsc.nws.noaa.gov/pfds/.

[7] Paretti, N. V., Kennedy, J. R., Turney, L. A. & Veilleux, A. G. Methods for Estimating Magnitude and Frequency of Floods in Arizona, Developed with Unregulated and Rural Peak-Flow Data through Water Year 2010. Scientific Investigations Report

https://pubs.usgs.gov/publication/sir20145211 (2014) doi:10.3133/sir20145211.

[8] HEC-RAS. https://www.hec.usace.army.mil/software/hec-ras/.

[9] Drainage-Design-Manual-for-Maricopa-County-Volume-II-Hydraulics---revised-121418-PDF.pdf.

Thank You!

