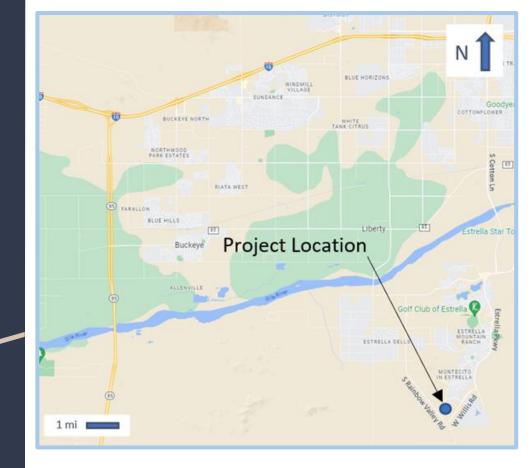


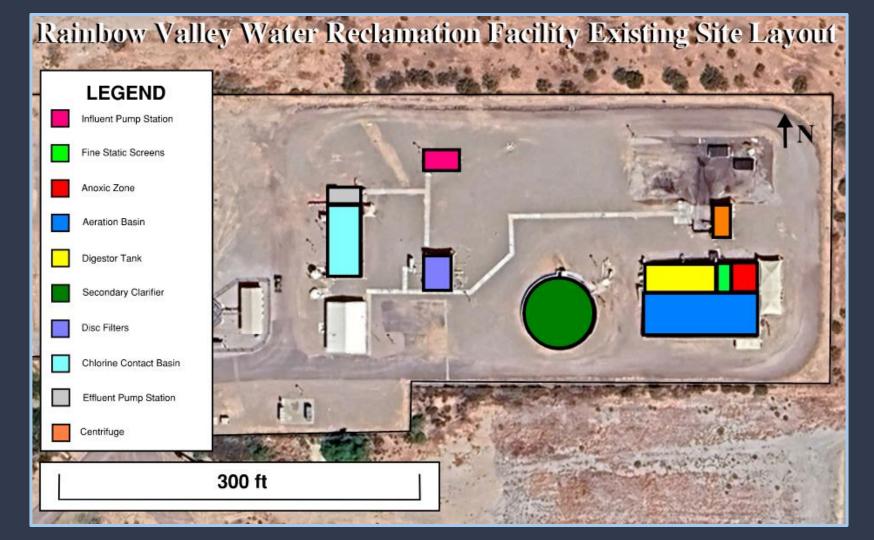
AZ Water WEF Student Design Competition Water Reclamation Facility Expansion

Clear Treatment Inc.

CENE 486 5/3/2024 Team: Gabrielle Dierking, Madysen Kambich, Chelsie Fowler, Milford Begay, Ayed Alnefaie


Project Introduction

Rainbow Valley Water Reclamation Facility


- Current Capacity = 0.75 MGD
- Design Capacity = 3 MGD

Reason for Expansion

- Population Growth
- Land Development

Figure 1: Project Vicinity [1]

Project Requirements

- Provide Redundancy
- Address Odor Control
- Produce Class A+ Effluent
- Produce Class B Biosolids
- Meet Effluent Limits

Table 1: Effluent Limits [2]

Effluent Limits		
TSS <10 mg/L		
BOD	<10 mg/L	

Preliminary Treatment (Screening) Alternatives

Fine Screen

Static Screen

Step Screen

Figure 2: Fine Screen Example [3]

Figure 3: Static Screen Example [4]

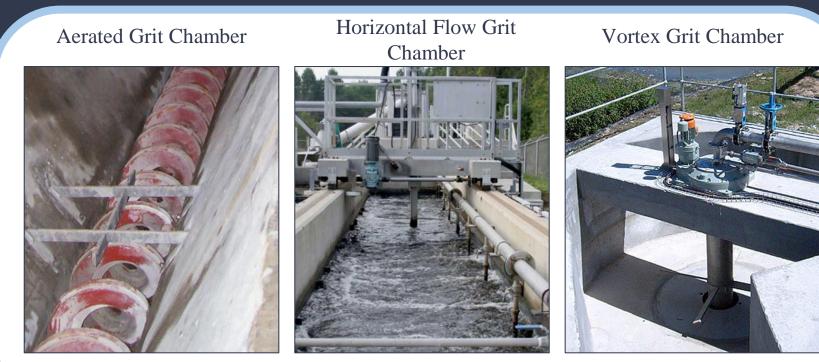
Figure 4: Step Screen Example [5]

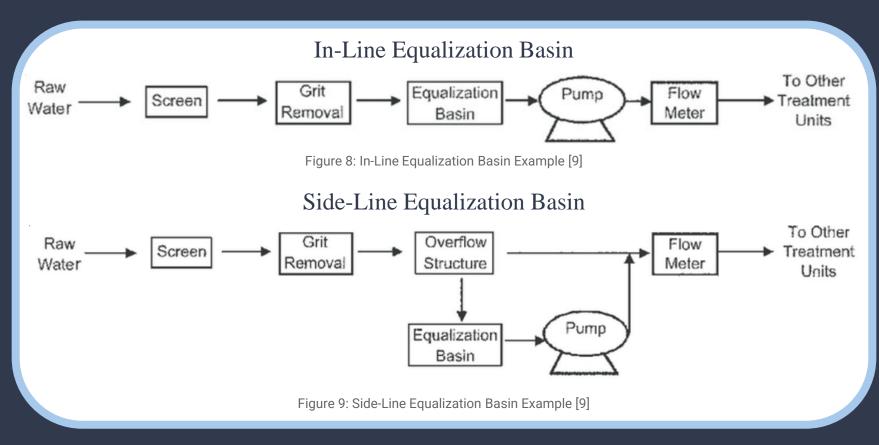
Preliminary Treatment (Screening)				
Criteria	Weight (%)	Fine Screen	Step Screen	Static Screen
Capital Cost	30	3	1	2
Maintenance & Operation	25	3	2	1
Construction Time/Constructability	15	2	1	3
Odor Control	10	2	3	1
Social & Environmental Impacts	10	2	3	1
Staffing	10	3	2	1
Weighted Average	100	2.65	1.75	1.6

Table 2: Screening Decision Matrix

Preliminary Treatment (Screening) Decision Matrix

Preliminary Treatment (Grit Chamber) Alternatives




Figure 5: Aerated Grit Chamber Example [6] Figure 6: Horizontal Flow Grit Chamber Example [7] Figure 7: Vortex Grit Chamber Example [8]

Preliminary Treatment (Grit Chamber)				
Criteria	Weight (%)	Aerated Grit Chamber	Horizontal Flow Grit Chamber	Vortex-Type Grit Chamber
Capital Cost	25	3	2	1
Removal Efficiency	20	2	3	3
Construction Time/Constructability	15	2	1	3
Maintenance & Operation	10	2	1	3
Footprint	20	2	1	3
Energy Consumption	10	1	3	2
Weighted Average	100	2.15	1.85	2.4

Table 3: Grit Chamber Decision Matrix

Preliminary Treatment (Grit Chamber) Decision Matrix

Equalization Basin Alternatives

Equalization Basin					
Criteria	Weight (%)	In-Line Basin	Side-Line Basin		
Relative Cost	40	2	1		
Maintenance and Operation	25	2	1		
Construction Time/Constructability	20	2	1		
Staffing	15	2	1		
Weighted Average	100	2	1		

Table 4: Equalization Basin Decision Matrix

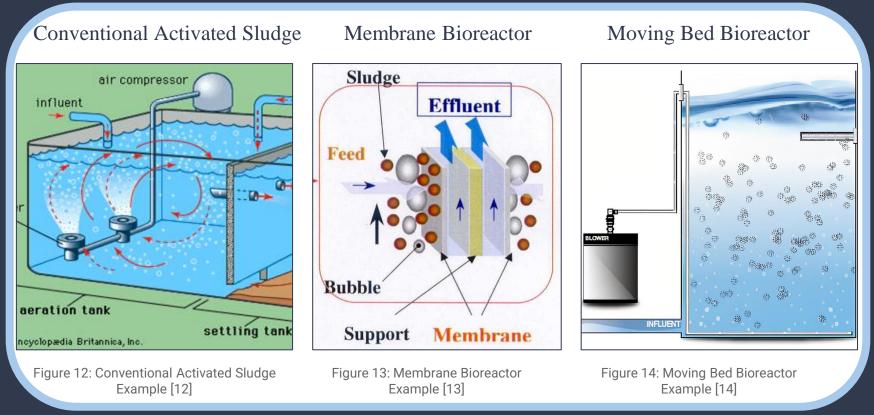
Equalization Basin Decision Matrix

Primary Treatment Alternatives

Bridge Support Clarifier

Column Support Clarifier

Figure 10: Bridge Support Clarifier Example [10]


Figure 11: Column Support Clarifier Example [11]

Primary Treatment (Primary Clarifier)				
Criteria	Weight (%)	Bridge Support Clarifier	Column Support Clarifier	
Capital Cost	40	1	2	
Surface Area Requirements	25	1	2	
Construction Time/Constructability	20	1	2	
Maintenance & Operation	15	2	1	
Weighted Average	100	1.15	1.85	

Table 5: Primary Clarifier Decision Matrix

Primary Treatment Decision Matrix

Secondary Treatment Alternatives

Secondary Treatment				
Criteria	Weight (%)	Conventional Activated Sludge	Membrane Bioreactor	Moving Bed Bioreactor
Capital Cost	20	1	3	2
Maintenance & Operation Cost	25	3	1	1
Construction Time/Constructability	25	2	1	2
Life Cycle Cost	15	3	1	1
Footprint	10	1	2	3
Removal Efficiency	5	1	2	3
Weighted Average	100	2.05	1.55	1.75

Table 6: Secondary Treatment Decision Matrix

Secondary Treatment Decision Matrix

Advanced Treatment Alternatives

Disc Filter

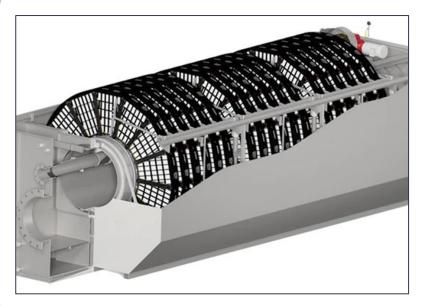


Figure 15: Disc Filter Example [15]

Sand Filter

Figure 16: Sand Filter Example [16]

Advanced Treatment				
Criteria	Weight (%)	Disc Filters	Sand filters	
Capital Cost	30	2	1	
Constructability/Construction Time	10	2	1	
Maintenance & Operation	25	2	1	
Removal Efficiency	35	2	1	
Weighted Average	100	2	1	

Table 7: Advanced Treatment Decision Matrix

Advanced Treatment Decision Matrix

Disinfection Alternatives



Figure 18: UV Disinfection Example [18]

Example [17]

Figure 19: Ozone Disinfection Example [19]

Disinfection				
Criteria	Weight (%)	Chlorination Tank	UV	Ozone
Relative Cost	30	2	3	1
Surface Area Requirements	20	1	3	2
Social & Environmental Impacts	10	1	3	2
Maintenance & Operation	15	3	2	1
Disinfection Rate	25	1	2	3
Weighted Average	100	1.6	2.6	1.8

Table 8: Disinfection Decision Matrix

Disinfection Decision Matrix

Solids Management Alternatives

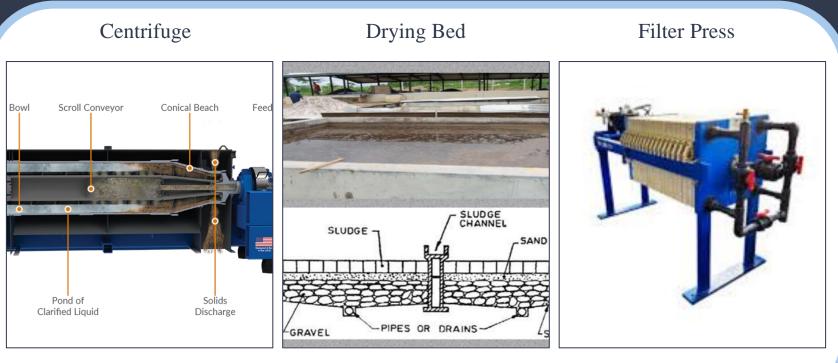


Figure 20: Centrifuge Example [20]

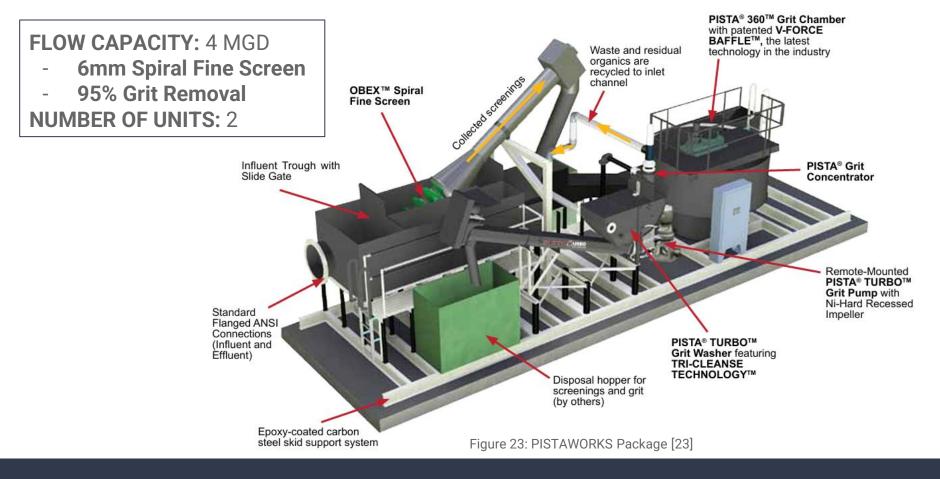

Figure 21: Drying Bed Example [21]

Figure 22: Filter Press Example [22]

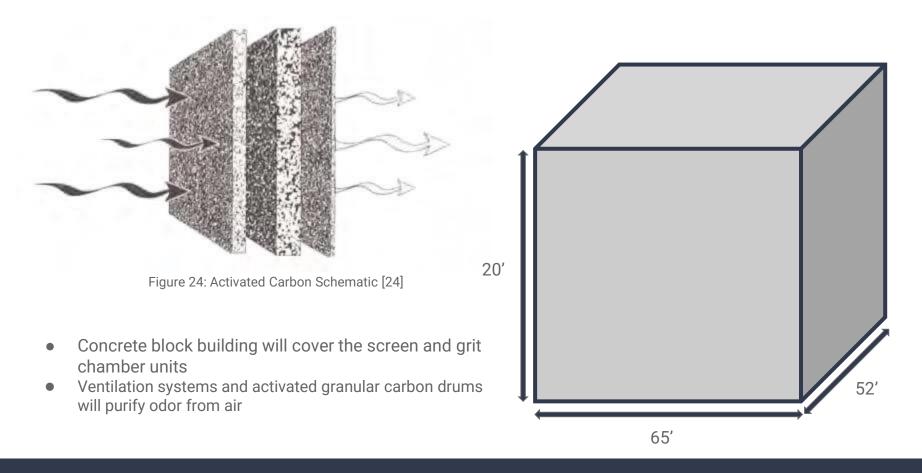

Solids Management				
Criteria	Weight (%)	Centrifuge	Drying Beds	Filter Press
Relative Cost	30	2	1	3
Environmental/Social Impacts	10	3	1	2
Drying Time	20	3	1	2
Surface Area Requirements	25	3	1	2
Maintenance & Operation	15	3	1	2
Weighted Average	100	2.7	1	2.3

Table 9: Solids Management Decision Matrix

Solids Management Decision Matrix

PISTAWORKS Screening and Grit Removal All-in-One Package

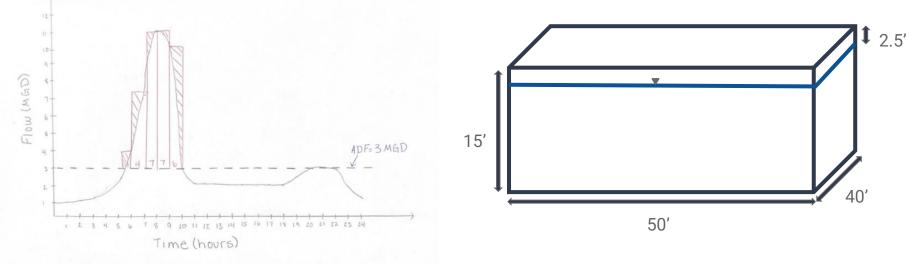
Odor Control

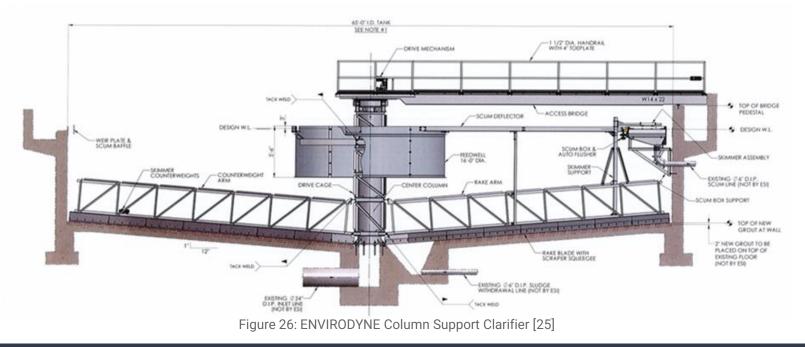
Air Requirement	512 ft^3/min
Freeboard	2.5 ft

Estimated Influent Flow for 3 MGD

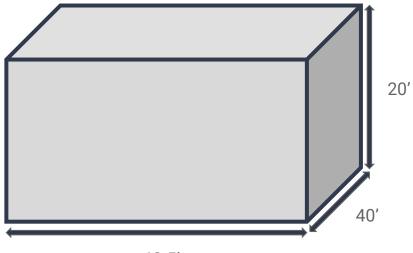
Peak Hour Flow for 0.75 MGD = 2.66 MGD

$$\frac{2.66 MGD}{0.75 MGD} = \frac{x}{3 MGD}$$
$$\frac{x}{x = 10.6 MGD}$$




Figure 25: Influent Flow Graph

Equalization Basin Design


NUMBER OF UNITS: 2 DIAMETER: 65' SIDE WATER DEPTH: 10' 2"

SETTLING VELOCITY: 0.094 FT/S DETENTION TIME: 2.13 HRS ENERGY CONSUMPTION: 13.4 kW/DAY

INFLUENT BOD: 225 mg/L EFFLUENT BOD: 169 mg/L > 10 mg/L INFLUENT TSS: 250 mg/L EFFLUENT TSS: 125 mg/L > 10 mg/L

Column Support Primary Clarifier

62.5'

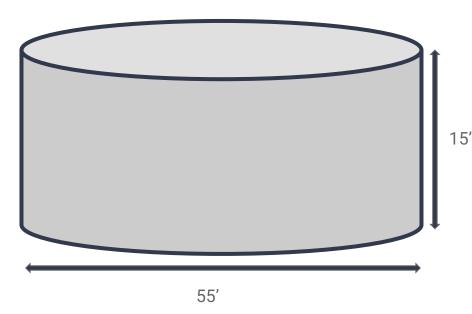

Flow Capacity	0.75 MGD
Number of Basins	5
Detention Time	9.45 HRS
Return Activated Sludge	85%
Waste Activated Sludge	15%
Influent BOD	169 mg/L
Effluent BOD	8.4 mg/L < 10 mg/L
Influent TSS	125 mg/L
Effluent TSS	12.5 mg/L > 10 mg/L

Table 10: Activated Sludge Data

Activated Sludge Design (Aeration Basin)

Flow Capacity	0.75 MGD
Number of Clarifiers	5
Detention Time	9 HRS
Energy Consumption	13.42 kW/Day
Settling Velocity	0.008 FT/S
Settling Time	31 MIN

Table 11: Secondary Clarifier Data

Activated Sludge Design (Secondary Clarifier)

26

FLOW CAPACITY: 3 MGD

NUMBER OF NEW UNITS: 2

PORE SIZE: 10 MICROMETERS

REMOVAL EFFICIENCY OF SUSPENDED SOLIDS: 98%

INFLUENT TSS: 12.8 MG/L EFFLUENT TSS: 5 MG/L < 10 mg/L

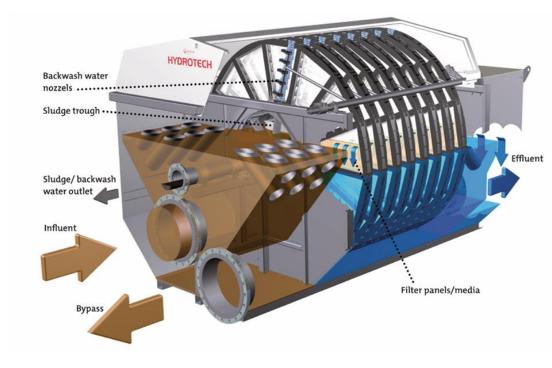


Figure 27: Hydrotech HSF2200 Disc Filter [26]

Disc Filter

FLOW CAPACITY: 0.5 MGD

NUMBER OF UNITS: 7

LENGTH: 9' 7"

WIDTH: 1' 6"

UV MODULES: 12 PER CHANNEL

LAMPS: 4 PER CHANNEL

UV TRANSMISSION: 65%

Figure 28: Single TrojanUV 3000 PTP Units [27]

Ultraviolet Disinfection System

FLOW CAPACITY: 190,000 GPD NUMBER OF NEW UNITS: 3 MINIMUM SOLID CAPTURE: 95%

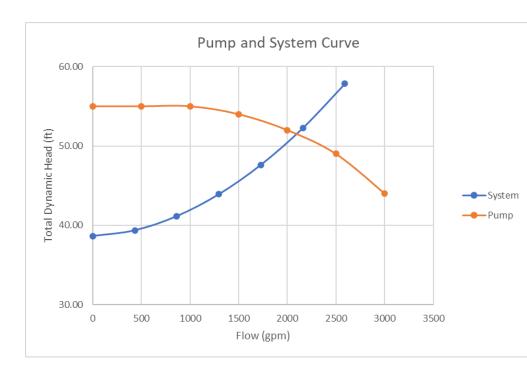
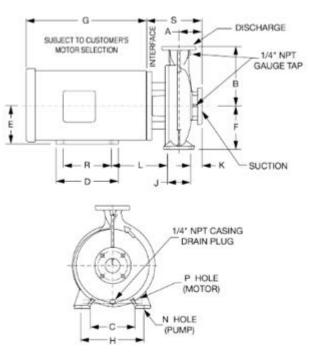
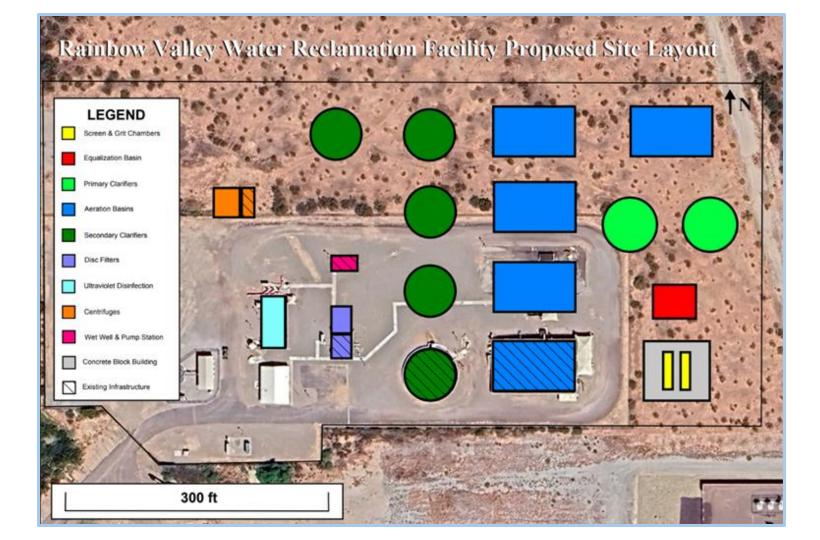
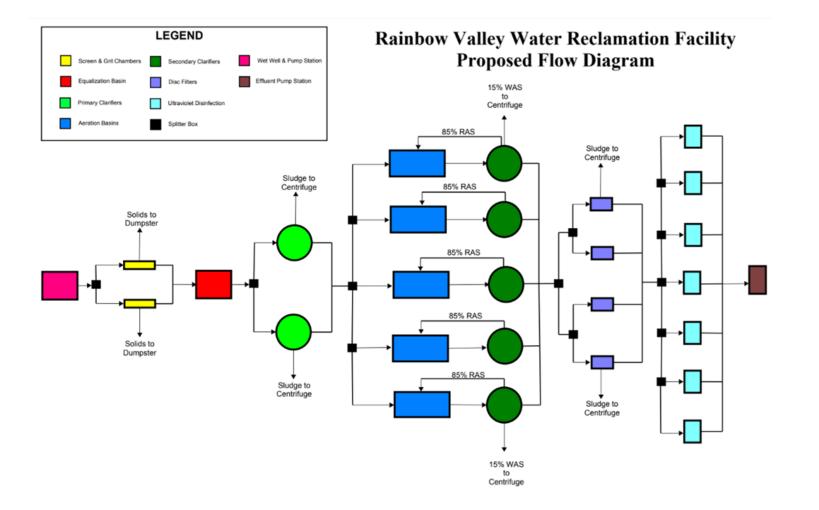


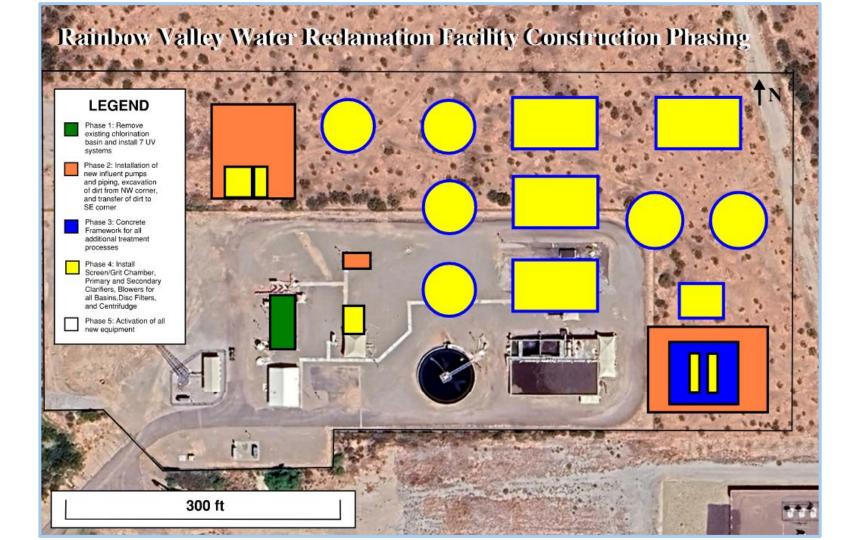
Figure 30: Rubber Conveyor Belt [29]

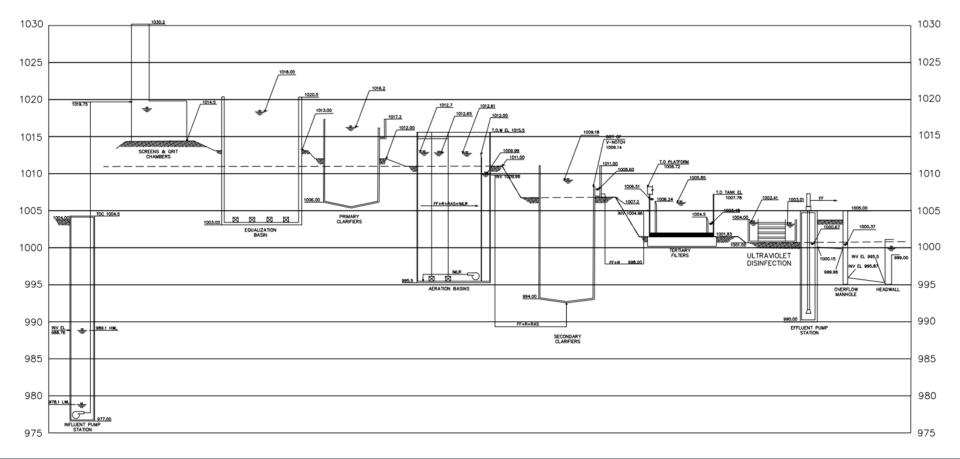
NUMBER OF CONVEYOR BELTS: 3

Figure 29: Andritz D4L Decanter Centrifuge [28]

Decanter Centrifuge


Figure 31: Pump and System Curve


Figure 32: Taco CI4009D Pump [30]

Hydraulic Analysis

Proposed Hydraulic Profile

Includes:

- Earthwork ~ \$65,000
- Concrete Excavation & Installation ~ \$265,000
- Capital & Installation Cost of Prefabricated Equipment ~ \$5,610,000
- Activated Sludge Process ~ \$22,000,000
- Pipes, Pumps, & Splitter Boxes ~ \$2,900,000
- Odor Control ~ \$40,000

Total Engineers Opinion of Probable Cost \$31,617,180

Engineers Opinion of Probable Cost

Annual Operation & Maintenance Cost

\$4,731,950

Operation:

- Energy Consumption ~ \$1,514,300
- Labor ~ \$190,000

Maintenance ~ \$2,900,000

- Inspections
- Oil Changes
- Replacements of Parts
- Cleaning of Parts

Operation and Maintenance Cost Analysis

		People (Social)		Planet (Environment	al)	Price (Economic	c)	Total	Max-Min	SI
Alternative 1: Implementation	Positive Impacts	-More residential opportunity -More jobs provided	70	-More wastewater treated -Addition of odor control	55	-More money into economy -More land development Score: 75	75	200	20	180
of the Project	Negative Impacts	-Close housing to the facility -City may grow too fast		-Construction will disrupt area -More odorous gas		-Very expensive project -Higher O&M cost				
Alternative 2:	Positive Impacts	-City would remain less crowded -City resources used elsewhere		-No disruption to the existing land -More free land around the facility		-City can use money elsewhere -Lower O&M cost remain				
Not Implementing the Project	Negative Impacts	-Less housing opportunities -Less access to additional reclaimed water.	40	-Natural water sources would be utilized more -Lack of odor control	65	-Less land development -Additional treated water needed transported to the city	65	140	30	110

Impact Analysis

Citations

[1] Google Earth . (2024, February). Retrieved from Google Earth: https://earth.google.com/web/@0,- 0.216,0a,22251752.77375655d,35y,0h,0t,0r

[2] Waters, A. (2023). Rainbow WRF Design Criteria

[3] Parkson. (2022). Schreiber Fine Screen. Retrieved from Parkson Products: https://www.parkson.com/products/schreiber-fine-screen

[4] Vortex Engineering. (2024). Static Screens. Retrieved from https://vortex-eng.com/wastewater-treatmentequipment/screening-equipment/static-screen/

[5] Pump Systems. (2020). Lackeby Step Screen. Retrieved from Pump Systems Wastewater Process: https://pumpsystems.co.nz/products/wastewater-process/lackeby-step-screen

[6] Spirac Solid Handling Solutions. (2024). Aerated Grit Chambers. Retrieved from Spirac: Aerated Grit Chambers 2 | SPIRAC Solid Handling Solutions

[7] Wastewater Digest. (2017). Grit & Grease Removal System Uses Parallel Chamber to Treat Water. Retrieved from Wastewater Digest: Grit & Grease Removal System Uses Parallel Chambers to Treat Water | Wastewater Digest (wwdmag.com)

[8] Huber Technology. (2024). Huber Vortex Grit Chamber VORMAX. Retrieved from Huber: HUBER Vortex Grit Chamber VORMAX - Huber Technology Inc. (huber-technology.com)

[9] Goel, R., Flora, J., & Chen, J. P. (2007, November). Flow Equalization and Neutralization. Research Gate.

[10] Bridge Support Clarifiers. (2024). Retrieved from Envirodyne Systems Inc: https://www.envirodynesystems.com/?products=bridge-supported-clarifiers

[11] Column Supported Clarifiers. (2024). Retrieved from Envirodyne Systems Inc: https://www.envirodynesystems.com/?products=column-supported-clarifiers

[12] Primary Treatment of Wastewater. Conventional Activated Sludge. Retrieved from: Lesson 17: Primary Treatment (mecc.edu)

[13] Mavink. (2024). Membrane Bioreactor Working Principle.

[14] Energy and Power Industry Insights. (2024). Moving Bed Bioreactor (MBBR).

[15] Evoqua. (2024). Forty X-Disc Filters. Retrieved from Evoqua Products and Services: https://www.evoqua.com/en/evoqua/products-services/filtration-systems/disc-filters/forty-x-disc-filters/

[16] Evoqua. (2024). Hydro Clear Sand Filter. Retrieved from Evoqua Products and Services: https://www.evoqua.com/en/evoqua/products-services/filtration-systems/gravity-sand-filters/hydro-clearsand-filter/

[17] Eawag. (2020). Compendium of Sanitation Systems and Technologies. Retrieved from SSWM: https://sswm.info/factsheet/disinfection-and-tertiary-filtration

Citations

[18] UV Superstore. (2024). Municipal UV Systems. Retrieved from UV Superstore: https://uvsuperstore.com/product-category/municipal-uv-systems/

[19] Mazzei Injector Company, LLC. (n.d.). Expansion and Upgrade of WWTP Ozone Disinfection System Reduces Energy Cost by 69%. Retrieved from Water Online: https://www.wateronline.com/doc/expansion-andupgrade-of-wwtp-ozone-disinfection-system-reduces-cost-by-0001

[20] A Comprehensive Guide to Decanter Centrifuge Operation, Service, Maintenance, and Repair. (2024). Retrieved from Centrisys CNP: https://www.centrisys-cnp.com/decanter-centrifuge-operations-guide

[21] Sludge Drying Beds . (2018, October 18). Retrieved from Wastewater 101: https://wastewater101.net/2018/10/study-time-treatment-plant-discussion-solids-handling-10/sludgedrying-beds-5-638/

[22] "Filter Press Manufacturer: Met-Chem Filter Press: New & Used Filter Presses." Metchem, 1 Feb. 2024, metchem.com/new-filter-presses-manufactured-by-met-chem/.

[23] Loveless, S. &. (2012). Pistaworks Package.

[24] Teqoya. "Activated Carbon Filter: Untangling the True from the False." Teqoya, www.teqoya.com/activated-carbon-filter-a-few-basic-facts-to-sort-out-the-truth/. Accessed 16 Apr. 2024.

[25] Envirodyne. (2022, August 31). Primary Clarifier Mechanism. Camp Hill, Pennsylvania.

[26] Hydrotech Discfilter. (2024). Retrieved from Veolia Water Technologies: https://www.veoliawatertechnologies.com/en/solutions/technologies/hydrotech-discfilter

[27] "3000TMPTP - Wastewater Treatment System by Trojan Technologies Inc: AgriExpo." The B2B Marketplace for Agricultural Equipment, www.agriexpo.online/prod/trojan-technologies-inc/product-184853-84973.html. Accessed 9 Apr. 2024.

[28] Separation, A. (2024). ANDRITZ . Retrieved from ANDRITZ decanter centrifuges for efficient sludge thickening and dewatering: https://www.andritz.com/products-en/separation/decanter-centrifuges/decantercentrifuges

[29] D C Graves. (2024). Horizontal - Belt Conveyors. Retrieved from D C Graves: https://www.dcgraves.com/Quick-Ship-Power-Conveyors-s/2057.htm

[30] Taco Comfort Solutions. (2020, January 27). Cl Series Pump Submittal Data. Taco Comfort Solutions.

Questions?

We competed at the AZ Water Student Design Competition on April 23rd and we won!!

Detailed Decision Matrices

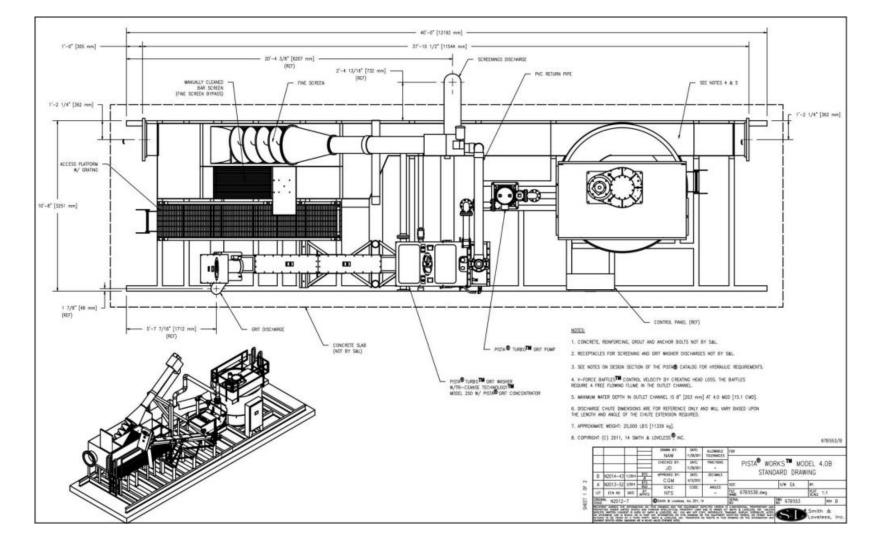
		Preliminary Treatment (Scre		
Criteria	Weight (%)	Fine Screen	Step Screen	Static Screen
Capital Cost	30	3	1	2
Capital Cost	50	\$180,000.00	\$250,000.00	\$200,000.00
		3	2	1
Maintenance & Operation	25	Regular inspections to ensure proper functioning, mechanical/self cleaning design, easy maintenance	Periodic inspection of step surfaces, no regular lubrication, adjustment of step spacing as needed, removal of accumulated debris	Frequent inspections of screens and damages/wea self cleaning design, chemic use for cleaning
		2	1	3
Construction Time/Constructability	15	Moderate construction time, prefabricated (involves welding or bolting), requires skilled labor for precise installation	Higher construction time, prefabricated (involves welding), mechanical components to install, less specialized labor	Shorter construction time du to straightforward design, prefabricated so simple installation process, minime labor skills
		2	3	1
Odor Control	10	Are mostly installed with enclosures to route fouled air through an odor control system	Installed with enclosures and includes proper ventilation system to mitigate odors	Must be uncovered to clea would need additional technologies to properly ventilate odors
		2	3	1
Social & Environmental Impacts	10	Good worker safety from minimized hazards, reduced risk of clogging downstream and has sustainable operation	Improves worker safety because of enclosed design, reduces odor efficiently, reduces wear of downstream equipment and has efficient screening operation	Enclosed system helps wor safety, limited flexibility fo adjusting screens, prevent clogging, sustainable operat
		3	2	1
Staffing	10	Minimal staffing since they are self cleaning and automated, requires little attention, operators inspect for damage while supervisors ensure proper functioning	Moderate staffing, need to monitor mechanical bars for specific spacing and maintain screens, remove accumulated debris, bars manually cleaned and inspected by maintenance staff, supervisors oversee efficient operation	Some staffing needed, regularly inspected and maintained by maintenanc personnel, clean screen surface, need supervisors oversee operation
Weighted Average	100	2.65	1.75	1.6

	P	reliminary Treatment (Grit C	hamber)	
Criteria	Weight (%)	Aerated Grit Chamber	Horizontal Flow Grit Chamber	Vortex-Type Grit Chamber
Capital Cost	25	3	2	1
	20	\$134,000.00	\$148,800.00	\$186,000.00
		2	3	3
Removal Efficiency	20	Removal of particals greater than 0.21mm	Removal of particals greater than 0.2mm	Removal of particles greater than 0.2mm
		2	1	3
Construction Time/Constructability	15	Prefabricated and has moderate construction time, flexible constructability, has mechanical components and concrete structures	Moderate to long construction time, requires concrete channel/basin, not complicated construction, flexible and straight forward design, oldest and widely used type of grit removal	Prefabricated and has short construction time, good constructability, relatively straightforward design, requires skilled labor
		2	1	3
Maintenance & Operation	10	Requires additional labor fro operation due to complexity of equiptment	Extensive maintenace reuired due to excessive wear on equitpment	Requires high-pressure agitation to loosen grit compacted in the sump
		2	1	3
Footprint	20	Relatively large duee to aeration tank needed	Large land area required for long channel/basin required	Small land area required due to small equitpment
		1	3	2
Energy Consumption	10	High energy consumption due to air being introduced at a high rate	Low energy consumption since flow is controlled to be slow to allow particles to settle	Moderate energy comsuption needed for rotating turbine
Weighted Average	100	2.15	1.85	2.4

Preli	minary Treatm	ent (Equalization Basin)	
Criteria	Weight (%)	In-Line Basin	Side-Line Basin
		2	1
Relative Cost	40	No additional equipment and piping	Additional equipment and piping
		2	1
Maintenance and Operation	25	No additional equipment and piping	Additional equipment and piping
		2	1
Construction Time/Constructability	20	No additional equipment and piping	Additional equipment and piping
		2	1
Staffing	15	No additional equipment and piping	Additional equipment and piping
Weighted Average	100	2	1

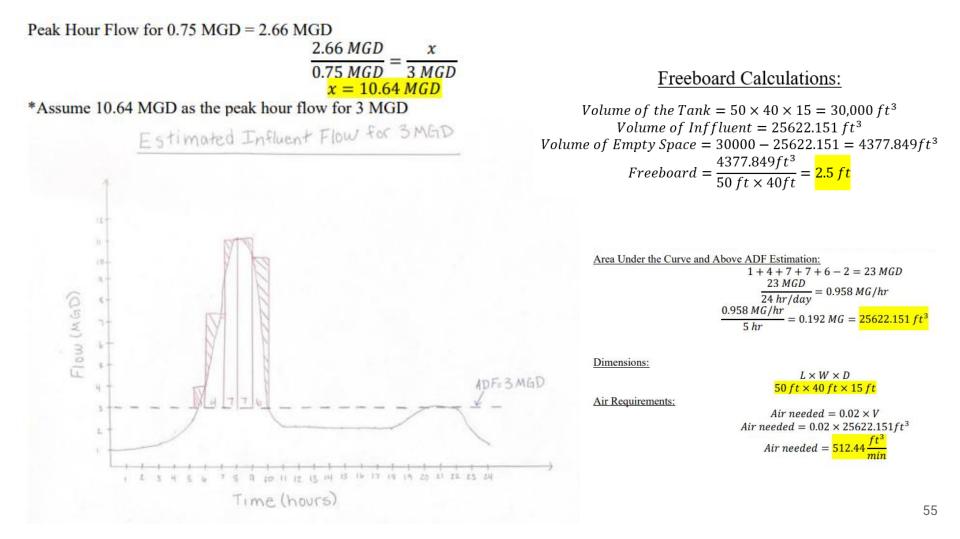
P	rimary Treatme	ent (Primary Clarifier)	
Criteria	Weight (%)	Bridge Support Clarifier	Column Support Clarifier
Capital Cost	40	1	2
Capital Cost	40	65' diameter~ \$450,000	65' diameter~ \$314,000
		1	2
Surface Area Requirements	25	Multiple clarifiers <40' diameter	One clarifier >40' diameter
Construction Time/Constructshility	20	1	2
Construction Time/Constructability	20	Full span bridge	Half span bridge
		2	1
Maintenance & Operation	15	Supports accessible by bridge	Supports submerged
Weighted Average	100	1.15	1.85

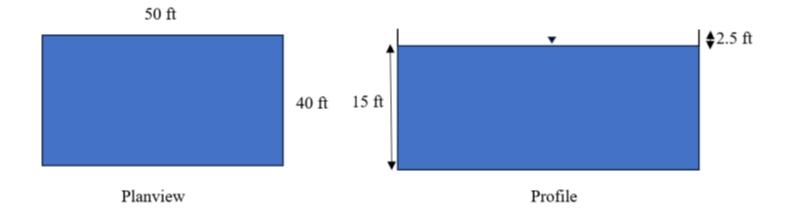
		Secondary Treatment		
Criteria	Weight (%)	Convention Activated Sludge	Membrane Bioreactor	Moving Bed Bioreactor
Capital Cost	20	1 \$11,000,000.00	3 \$4,431,818.00	2 \$6,352,500.00
		3	1	1
Maintenance & Operation Cost	25	Would require 5 treatment trains to operate. Continuous and well-timed supply of oxygen is required during operation. No media or filters to clean. Blowers may need to be inspected 1-2 times a year to ensure proper aeration is being completed. Small maintenance and operation costs.	Would require 36 small treatment trains to operate. Require in-place membrane cleaning 2-4 times per year. Air scour is also used to clean the membranes. They can be cleaned in the MLSS so does not require the basin to be drained. Continuous aeration and sludge management is required. Higher maintenance and operation costs because of the units required.	Would require 42 small units to maintain and operate. Cleaning of biofilm on the media is required frequently. Sludge removal in the system is required along with continuous aeration. Relatively higher maintenance and operation costs because of the number of units required.
		2	1	2
Construction Time/Constructability	25	5 treatment trains required (1 train exisitng, 4 new to construct). Concrete tanks must be constructed on site. Assembly units like pumps, motors, pipes, and blowers must be installed. Requires relatively large construction time. Less excavation required because the existing facility would be utilized.	36 treatment trains required. Concrete tanks must be constructed on site. Membrane unit is prefabricated and can be installed by local technicians. Requires large construction time because of the number of tanks that need to be built. Existing infrastructure will have to be demolished.	42 units are required. Prefabricated units available that can be installed by local technicians. Placement of 42 units will take a long time. Existing infrastructure would have to be demolished.


		3	1	1
Life Cycle Cost	15	Low life-cycle assessment (LCA) due to low operating and maintenance requirements.	Higher LCA as compared to CAS due to high electricity requirement and low capacity, moderate cost for maintenance, lower initial capital and operating cost compared to MBBR	Highest life cycle cost due to high electricity requirement and low capacity. Similar operating and maintenance cost to MBR, moderate membrane replacement costs but generally higher capital cost than MBR
		1	2	3
Footprint	10	Relatively large footprint. Approx 39272 additional square ft required for 3 MGD	Larger footprint than moving bed but smaller than CAS. Approx 15618 square ft required for 3 MGD. Additional square footage between units will be required	Smaller footprint but requires more facilities. Approx 10510 square ft required for 3 MGD. Additional square footage between units will be required
		1	2	3
Ability to meet permit limits	5	Meets almost all (≈90%) NPDES permit discharge limitations except for fecal coliform (requires additional disinfection). NPDES limits: BOD of 30 mg/L, meets TSS of 30-45 mg/L, achieves pH range of 6-9, meets limit residual chlorine of 0.5 mg/L, fecal coliform of 200/100 mL (30 day mean) or 400/100 mL (max daily), meets 40 mg/L TKN, achieves ammonia of 10 mg/L, achieves P limit of 5 mg/L.	Meets all (90%) NPDES permit discharge limitations: BOD of 10 mg/L, TSS of 10 mg/L, pH between 6.5 and 8.5, ammonia Nitrogen of 5 mg/L, fecal coliform of less than 200 MPN/100 mL, P range of 2-5 mg/L	Meets all (>90%) NPDES permit discharge limitations and has wide range. BOD of 20 mg/L, meets TSS of 20 mg/L, pH between 6.5 and 8.5 ammonia Nitrogen of 10 mg/L, fecal coliform of 200-1000 MPN/100 mL, P of < 1 mg/L
Weighted Average	100	2.05	1.55	1.75


	Advance	ed Treatment	
Criteria	Weight (%)	Disc Filters	Sand filters
Canital Cost	30	2	1
Capital Cost	30	\$720,000.00	\$1,080,000.00
		2	1
Constructability/Construction Time	10	Parts are prefabricated by the manufacture and assembled on site	Concrete for treatment basin will need to be cast onsite, pipes, pumps and underdrain will be installed
		2	1
Maintenance & Operation	25	Requires lubrication and replacement of parts and back washing of discs	Requires backwashing of soil media, inspections of pumps, and occasional replacement of soil
		2	1
Removal Efficiency	35	Removal of particles larger than 10 microns, removes nearly all BOD and TSS	Removes most of the TSS and BOD in the water
Weighted Average	100	2	1

		Disinfection		
Criteria	Weight (%)	Chlorination Tank	UV	Ozone
		2	3	1
Relative Cost	30	Cost for large contact tank and chemicals	Cost for equipment (less than chlorination)	The cost of treatment can be relatively high in capitol and in power intensiveness
		1	3	2
Surface Area Requirements	20	Most area required for effective disinfection	Equipment requires less space than other methods	Three tanks required for ozone treatment
		1	3	2
Social & Environmental Impacts	10	Even at low concentrations, chlorine is toxic to aquatic life. Can produce large chemical smell	Physical process, so no residual effect that can be harmful to humans or aquatic life	No harmful residuals that need to be removed
		3	2	1
Maintenance & Operation	15	More cost effective than UV or ozone when dechlorination is not required	UV is user-friendly for operators, preventative maintenance program is necessary to control fouling of tubes	Ozone is generated onsite, so there are fewer safety problems with shipping and handling, but more complex technology, very corrosive and reactive
		1	2	3
Disinfection Rate	25	Can prolong disinfection even after initial treatment and can be measured to evaluate the effectiveness	Effective at inactivating most viruses, spores, and cysts	More effective than chlorine in destroying viruses and bacteria
Weighted Average	100	1.6	2.6	1.8


		Solids Management		
Criteria	Weight (%)	Centrifuge	Drying Beds	Filter Press
		2	1	3
Relative Cost	30	Capital costs are more than a belt press but operation and maintenance costs can be less expensive. High energy consumption	No energy consumption, only need to build the beds. Relatively low capitol cost	Low energy consumption bu requires a larger footprint
		3	1	2
Environmental/Social Impacts	10	Fairly noisy, small and unnoticeable	No noise produced but may look concerning to the public, odor and insect activity may be an issue	Less noise produced than centrifuges, odor is sometime an issue
	20	3	1	2
Drying Time	20	<20 minutes	Days to weeks	>1-2 hours
		3	1	2
Surface Area Requirements	25	Smallest footprint	Large land area required	Larger than a centrifuge but smaller than drying beds
		3	1	2
Maintenance & Operation	15	Requires minimal operator attention and is easy to clean. Operations can be fully automated but starting the bowl is usually done manually.	Sludge removal is labor intensive and time consuming. Clogging of the sand and gravel bed is common which doesn't allow the liquid to drain	Can be started and stopped quickly compared to centrifuges, require more operator attention. Requires belt washing which is time consuming. Belts may need t be replaced, average belt life 2700 running hours.
Weighted Average	100	2.7	1	2.3

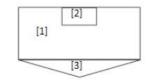

PistaWorks System Record Drawings

Equalization Basin Calculations

Freeboard Calculations:

$$Volume \ of \ the \ Tank = 50 \times 40 \times 15 = 30,000 \ ft^{3}$$

$$Volume \ of \ Inffluent = 25622.151 \ ft^{3}$$


$$Volume \ of \ Empty \ Space = 30000 - 25622.151 = 4377.849 \ ft^{3}$$

$$Freeboard = \frac{4377.849 \ ft^{3}}{50 \ ft \times 40 \ ft} = \frac{2.5 \ ft}{2.5 \ ft}$$

Primary Clarifier Calculations

[1] Cylinder = $\pi r^2 h$ Where: r = radias(ft), h = height(ft) $\pi \times (32.5ft)^2 \times 10.167ft = 33737.23 ft^3$

[2] Feedwell = $\pi r^2 h$ Where: r = radias(ft), h = height(ft) $\pi \times (8ft)^2 \times 5.5ft = 1105.84 ft^3$

[3]
$$Cone = \pi r^2 \frac{h}{3}$$

Where: $r = radias (ft), h = height(ft)$
 $\pi \times (32.5ft)^2 \times \frac{2.71ft}{3} = 2997.54 ft^3$

Total clarifier volume = $33737.33 + 2997.54 - 1105.84 = 35628.7 ft^3 = 266521.18 gallons$

$$\begin{aligned} Detention Time &= \frac{Tank \ volume}{Flow \ rate} = \frac{266521.18 \ gallons}{3 \ MGD} = 0.089 = 2.13 \ hours \\ Surface Area &= \pi r^2 \\ Where: r &= radias \ (ft) \\ \pi \times (32.5ft)^2 &= 3318.31 \ ft^2 \\ Surface \ Overflow \ Rate &= \frac{Flow \ Rate}{Surface \ Area} = \frac{3 \ MGD}{3318.31 \ ft^2} = \frac{904.07 \ gpd/ft^2}{14691.48 \ gpd/ft} \\ Weir \ Overflow \ Rate &= \frac{Flow \ Rate}{Length \ of \ Weir} = \frac{3 \ MGD}{204.2 \ ft} = \frac{14691.48 \ gpd/ft}{14691.48 \ gpd/ft} \\ Length \ of \ Weir = \pi \times d = \pi \times 65' = 204.2 \ ft \\ Where \ d &= diameter \ (ft) \end{aligned}$$

Energy Consumption

3/4 HP motor requires 0.559 kW per hour.

 $0.559 \frac{kW}{hour} \times 24 \ hours = 13.$

Settling Velocity

Particle size: Diameter= 0.2mm Specific gravity= 2.65 Average water temperature= 25 °C Water density (25 °C) = 997.049 $\frac{kg}{m^3}$ = 1000 kg/m³ Dynamic Viscosity (25 °C) = $0.890 \text{ mPa} \cdot s = 0.890 \times 10^{-3} \text{ Pa} \cdot s$

Stokes law:

$$V_{s} = \frac{g(\rho_{s} - \rho)d^{2}}{18\mu}$$
Where:

$$g = Acceleration due to gravity \left(\frac{m}{s^{2}}\right)$$

$$\rho_{s} = Density of the particle \left(\frac{kg}{m^{2}}\right)$$

$$\rho = Density of the water \left(\frac{kg}{m^{3}}\right)$$

$$d = diameter of the particle (mm)$$

$$\mu = viscosity of the water (Pa \cdot s)$$

$$V_{g} = \frac{\left(9.81\frac{m}{s^{2}}\right)\left(2650\frac{kg}{m^{2}} - 1000\frac{kg}{m^{2}}\right)(2 \times 10^{-4}m)^{2}}{18(8.00 \times 10^{-4}R_{0} + s)} = 4.04 \times 10^{-2}\frac{m}{s}$$

 $18(8.90 \times 10^{-4} Pa \cdot s)$

Check R:

$$R = \frac{d(v_s)}{v}$$
Where:
 $v = kinematic viscosity\left(\frac{m^2}{s}\right)$
 $d = diameter of particle (m)$
 $v_s = velocity of the particle $(\frac{m}{s})$
kinematic viscosity (25 °C) = 0.893 × 10⁻⁶ $\frac{m^2}{s}$$

 $(2.0 \times 10^{-4} m) \left(4.04 \times 10^{-5} \frac{1}{s} \right) = 9.05$ R = - $0.893 \times 10^{-6} \frac{m^2}{m^2}$

*R is in the transition range so Stokes law is not valid, must use Newtons equation

Check Cd:

$$C_D = \frac{24}{R} + \frac{3}{R^{\frac{1}{2}}} + 0.34$$
Where:

$$C_D = Drag \ coefficient$$

$$R = Reynolds \ number$$

$$C_D = \frac{24}{9.05} + \frac{3}{9.05^{\frac{1}{2}}} + 0.34 = 3.99$$

Newtons equation for settling velocity: $v_{s} = \left[\frac{4g(\rho_{s} - \rho)d}{3C_{D}\rho}\right]^{1/2}$ Where: $g = Acceleration due to gravity \left(\frac{m}{s^{2}}\right)$ $\rho_{s} = Density of the particle \left(\frac{kg}{m^{3}}\right)$ $\rho = Density of the water \left(\frac{kg}{m^{3}}\right)$ d = diameter of the particle (mm) $C_{D} = Drag coefficient$

Set Objective:		\$B\$35		
То: <u>М</u> ах	O Min	◯ <u>V</u> alue Of:	0	
By Changing Variab	le Cells:			
\$B\$25				
Subject to the Const	traints:			
\$B\$35 = \$B\$25				∆dd
				Change
				Delete
				<u>R</u> eset All
			*	Load/Save
🗹 Ma <u>k</u> e Unconstra	ained Variables Non-N	egative		
Select a Solving	GRG Nonlinear		~	Ogtions

Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-smooth.

A solver in excel was used to complete iterations of these calculations. The R value of 9.05 was used for the starting R value the calculate a new settling velocity. The new settling velocity is used to calculate a new R value. The process is continued until the value of R used to calculate the velocity matches the check of the Reynolds number.

Final Settling Velocity = 0.0286 m/s = 0.0938 ft/s

How long will it take this particle to settle in the primary clarifier?

Side water depth= 10'2"= 10.167'

Settling time= $\frac{10.167ft}{0.0938\frac{ft}{s}}$ = 108.39 seconds = $\frac{1 \text{ minutes 48.39 seconds}}{1 \text{ minutes 48.39 seconds}}$

Diameter	2.00E-04 m
Particle density	2650 kg/m^3
Water density	1000 kg/m^3
Temperature	25 C
Dynamic Viscosity	8.90E-04 Pa-s
Kinematic Viscosity	8.93E-07 m^2/s
Stokes' Settling Velocit	Ŷ
v(s) =	0.040416 m/s
Check Reynolds numbe	ir
R =	9.05E+00
Because R > 1 m	ust use Newtons equation and iterate
Use Solver	ust use Newtons equation and iterate ions below and enter the value of R from B18 as a first guess
Use Solver	
Use Solver Set up the equati R =	ions below and enter the value of R from B18 as a first guess
Use Solver Set up the equati R =	ons below and enter the value of R from B18 as a first guess 6.41E+00
Use Solver Set up the equati R = Calculate Newton's di	ons below and enter the value of R from B18 as a first guess 6.41E+00 rag coefficient for R between 0.5 and 10^4
Use Solver Set up the equati R = Calculate Newton's di Cd =	ions below and enter the value of R from B18 as a first guess 6.41E+00 rag coefficient for R between 0.5 and 10^4 5.27E+00 2.86E-02 m/s

Compare overflow rate to settling velocity:

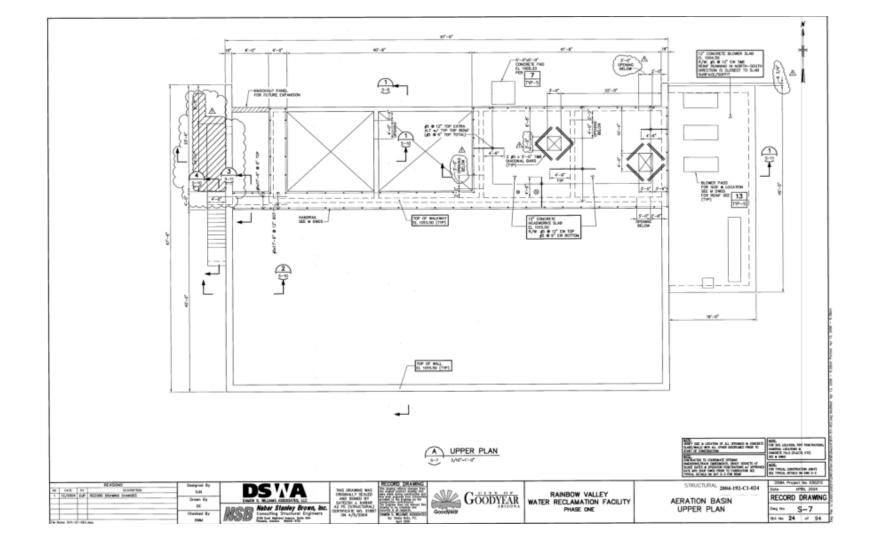
*The settling velocity must be faster than the overflow rate to ensure that the particle have time to settle in the clarifier before the water flows out of the clarifier

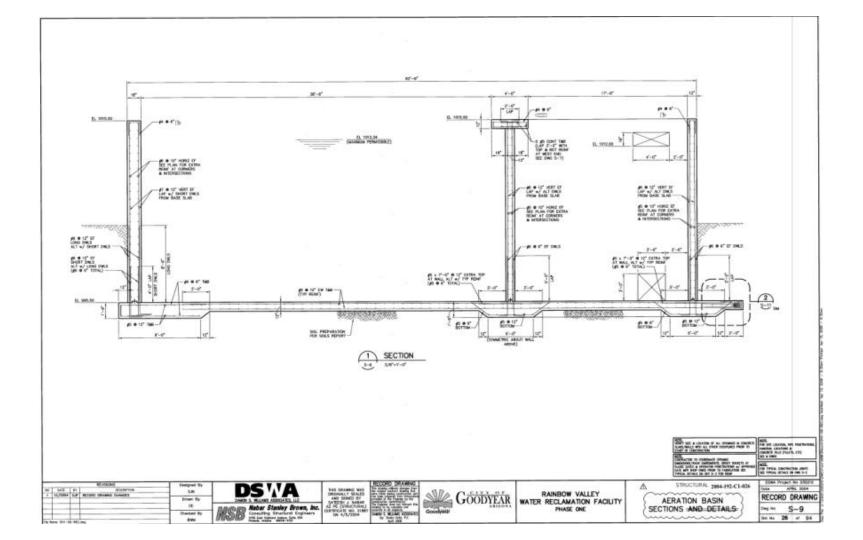
Overflow rate: 904.07 gpd/ft² Settling velocity: 0.0938 ft/s

Convert overflow rate to ft/s:

 $\frac{1 \frac{ft}{s} = 7.4805 \frac{gpd}{ft^2}}{\frac{1}{7.4805} = \frac{x}{904.07}}$ $\frac{x = 120.86 \text{ ft}/d = 0.0014 \text{ ft}/s}{x = 120.86 \text{ ft}/d = 0.0014 \text{ ft}/s}$

0.0014 ft/s < 0.0938 ft/s OK!


Removal of TSS and BOD primary clarifiers:


Approximate TSS removal in primary treatment: 50-65% Approximate BOD removal in primary treatment: 25-40%

Influent in primary clarifier: TSS= 250 mg/l BOD= 225 mg/l

Effluent from primary clarifier: $TSS=250 \frac{mg}{l} \times 0.50 = \frac{125 \frac{mg}{l}}{l}$ $BOD=225 \frac{mg}{l} \times 0.75 = \frac{168.75 \frac{mg}{l}}{l}$

Aeration Basin Record Drawings

Aeration Basin Calculations

The assumptions for Ks, µm, Kd, Y and MLVSS were taken from Table 23-4 from the Water and Wastewater Engineering Design 2nd Edition by Mackenzie Davis.

Activated Sludge					
Parameter	Value	Units			
Q (flow)	3	MGD			
So (BOD5)	168.75	mg/L			
TSS (Secondary clarifier effluent)	125	mg/L			
MLVSS (secondary clarifier effluent)	1,500	mg/L			
TSS	10	mg/L			
BOD5	10	mg/L			
Ks	25	mg/L BOD5			
μm	3	d^{-1}			
Kd	0.10	d^{-1}			
Y	0.60	mg VSS/mg BOD5			
RAS	85	%			
Was	15	%			

Existing primary effluent Q:

$$Q (flow) = 3 MGD * \frac{3785.4118 \frac{m^3}{d}}{1 MGD} = 11,356.2354 \frac{m^3}{d}$$

Allowable soluble BOD5 in effluent (S):

$$BOD \text{ of } TSS = \frac{0.85}{mg TSS} * \left(10\frac{mg}{L}\right) = 8.5\frac{mg}{L}BOD$$

$$S = BOD \text{ in effluent} - BOD \text{ of } TSS = 10\frac{mg}{L} - 8.5\frac{mg}{L} = 1.5\frac{mg}{L}$$

$$Design \text{ for } \frac{S = 1.5\frac{mg}{L}}{1.5\frac{mg}{L}} < 30\frac{mg}{L}, Good$$

Mean cell-residence time (θc):

$$\theta c = \frac{Ks + S}{(S * \mu m) - (S * Kd) - (Ks * Kd)}$$
$$\theta c = \frac{25 \frac{mg}{L} BOD + 1.5 \frac{mg}{L} BOD}{\left(1.5 \frac{mg}{L} * 3 \frac{1}{D}\right) - \left(1.5 \frac{mg}{L} * 0.10 \frac{1}{D}\right) - \left(25 \frac{mg}{L} * 0.10 \frac{1}{D}\right)} = 14.32 \ d = \theta c$$

Check Safety Factor (SF):

$$SF = \frac{\theta c}{\theta cmin} = \theta c(\mu m - Kd)$$
$$SF = 14.32 \ days * \left(3\frac{1}{D} - 0.10\frac{1}{D}\right) = \frac{41.54 = SF}{41.54 < 80, \text{ Good}}$$
Conventional loading \rightarrow implied SF range of $10 > 41.54 < 80, \text{ Good}$

Hydraulic detention time (θ) :

$$\theta = \frac{\theta c * Y(So - S)}{x(1 + Kd * \theta c)}$$

$$\theta = \frac{14.32 \, d * 0.6 \frac{mg \, VSS}{mg \, BOD} \left(168.75 \frac{mg}{L} - 1.5 \frac{mg}{L}\right)}{1500 \frac{mg}{L} VSS \left(1 + (0.10 \frac{1}{b} * 14.32 \, d)\right)} = 0.39392 \, d \, d$$

$$\theta = 0.39392 \, d * \frac{24 \, h}{1 \, d} = \frac{9.45 \, h = \theta}{9.45 \, h = \theta}$$

Volume of aeration tank (V):

The team will use the same size aeration at the facility. L= 62'-6" W = 40'H= 20' $V = 1,393.1888 m^2$

MLVSS fraction of MLSS :

$$Qr = 0.85Q$$
$$Qr = 9,652.8 \frac{m^3}{d}$$

$$X' = \frac{x}{0.85} = \frac{1.500 \frac{g}{L}}{0.85} = \frac{1.764 \frac{g}{L} MLSS}{2} = X'$$

Return sludge concentration (Xr') of maximum return sludge flow rate (Qr)

$$X'r = \frac{X'\left[Q + Qr - \left(\frac{V}{\theta c}\right)\right]}{Q}$$

$$X'r = \frac{\left(1.764\frac{g}{L}MLSS\right) * \left[\left(11,356.2354\frac{m^3}{d} + 9,652.8\frac{m^3}{d}\right) - \frac{1,393.1888}{14.32\frac{d}{d}}\right]}{11,356.2354\frac{m^3}{d}} = \frac{3.248\frac{g}{L} = X'r}{2}$$

$$Qw = \frac{V * X'}{\theta c * X'r} = \frac{1,393.1888}{14.32\frac{d}{d} * 3.248\frac{g}{L}} = \frac{52.84\frac{m^3}{d} = Qw}{14.32\frac{d}{d} * 3.248\frac{g}{L}}$$
Mass flow rate = $Qw * Xr' = \left(52.84\frac{m^3}{d} * 3.248\frac{g}{L}\right) * \frac{1000L}{m^3} * \frac{kg}{1000g} = \frac{171.6\frac{kg}{d}}{14.32\frac{d}{d} + 3.248\frac{g}{L}}$
For d to microorganism (EM)

Food to microorganism (F/M)

$$\frac{F}{M} = \frac{Q * So}{V * X} = \frac{11,356.2354 \frac{m^3}{d} * 168.75 \frac{mg}{L}}{1,393.188 * 1500 \frac{mg}{L}} = \frac{0.917 \ d = F/M}{0.917 \ d = F/M}$$

Mass of sludge to be wasted each day from new activated plant

$$Yobs = \frac{Y}{1 + (Kd * \theta c)} = \frac{0.6 \frac{Kg \, ySS}{kg \, B0D5}}{1 + \left(0.10 \frac{1}{d} * 14.32 \, d\right)} = \frac{0.246 = Yobs}{0.246 = Yobs}$$
Net wasted activated sludge produced each day (VSS)

$$Px = Yobs * Q(So - S) = 0.246 * \left(11,356.2354 \frac{m^3}{d}\right) * \left(168.75 \frac{mg}{L} - 1.5 \frac{mg}{L}\right) = 468,584.79$$

$$Px = 468,584.79 * \left(\frac{kg}{10^3 g}\right) = \frac{468.58 \frac{kg}{d} = Px}{0.246}$$

Total mass produced

Mass of solids lost in effluent

$$(Q - Qw) * Xe' = \left[11,356.2354\frac{m^3}{d} - 52.84\frac{m^3}{d}\right] * \left(10\frac{g}{m^3}\right) * \left(\frac{kg}{10^3g}\right) = \frac{113.03\frac{kg}{d}}{d}$$

Mass to be wasted

$$Mass = Px' - (Q - Qw)Xe' = 398.297\frac{kg}{d} - 113.03\frac{kg}{d} = \frac{285.267\frac{kg}{d}}{d} (dry \ solids)$$

Mass of oxygen supplied (rbsCOD to bCOD)

$$So = \frac{168.75 \frac{g}{m^3}}{0.85} = 198.53 \frac{g}{m^3}$$
$$S = \frac{1.5 \frac{g}{m^3}}{0.85} = 1.76 \frac{g}{m^3}$$

Mass of O2

$$M_{02} = Q * (So - S) - 1.42 * (Px)$$
$$M_{02} = \left(11,356.23\frac{m^3}{d}\right) * \left(198.53\frac{g}{m^3} - 1.76\frac{g}{m^3}\right) * \left(\frac{kg}{10^3g}\right) - 1.42 * \left(468.58\frac{kg}{d}\right)$$
$$= 1,569.136\frac{kg}{d} Oxgen$$

O2 is 23% of air by mass

$$Air = 1,569.136 \frac{kg}{d} \left(\frac{1}{0.23}\right) = \frac{6,822.33}{6,822.33} \frac{kg}{d} Air$$

Removal for Activated Sludge

TSS removal: 58-90% (will use 90%) BOD removal: 85-98% (will use 95%)

Influent Activated Sludge TSS= 125 mg/L BOD= 168.75 mg/L

Effluent Activated Sludge

$$TSS = 125 \frac{mg}{L} * 0.10 = \frac{12.5}{L} \frac{mg}{L}$$
$$BOD = 168.75 \frac{mg}{L} * 0.50 = \frac{8.4}{L} \frac{mg}{L}$$

Secondary Clarifier Calculations

Clarifier Volume

[1] Cylinder = $\pi r^2 h$ Where: r = radias(ft), h = height(ft) $\pi \times (27.5ft)^2 \times 15ft = 35,637.44 ft^3$ [1] [2] Cone = $\pi r^2 \frac{h}{3}$ [2] Where: r = radias(ft), h = height(ft) $\pi \times (27.5ft)^2 \times \frac{2.43ft}{3} = 1,924.42 ft^3$ Total clarifier volume = $35637.44 + 1924.42 = 37,561.86 ft^3 = 280,982.23 gallons$ $Detention Time = \frac{Tank \ volume}{Flow \ rate} = \frac{280982.23 \ gallons}{0.75 \ MGD} = 0.375 \ days = \frac{9 \ hours}{1000 \ rate}$ Surface Area = πr^2 Where: r = radias(ft) $\pi \times (27.5ft)^2 = 2375.83 ft^2$ Weir Overflow Rate = $\frac{Flow Rate}{Length of Weir} = \frac{0.75 MGD}{172.8 ft} = \frac{4340.28 gpd/ft}{4340.28 gpd/ft}$ Length of Weir = $\pi \times d = \pi \times 55' = 172.8$ ft Where d = diameter(ft)

Energy Consumption

3/4 HP motor requires 0.559 kW per hour.

 $0.559 \frac{kW}{hour} \times 24 \ hours = \frac{13.42 \frac{kW}{day}}{13.42 \frac{kW}{day}}$

Settling Velocity

Particle size: Diameter = 1 mm Specific gravity= 1.10 Average water temperature= 25 °C Water density (25 °C) = 997.049 $\frac{kg}{m^3} = 1000 kg/m^3$ Dynamic Viscosity (25 °C) = 0.890 mPa · s = 0.890 × 10⁻³ Pa · s

Stokes law:

$$V_{g} = \frac{g(\rho_{g} - \rho)d^{2}}{18\mu}$$

$$V_{g} = \frac{\left(9.81\frac{m}{s^{2}}\right)\left(1100\frac{kg}{m^{3}} - 1000\frac{kg}{m^{3}}\right)(2 \times 10^{-4}m)^{2}}{18(8.90 \times 10^{-4} Pa \cdot s)} = 2.45 \times 10^{-3}\frac{m}{s}$$
Where:

$$g = Acceleration due to gravity\left(\frac{m}{s^{2}}\right)$$

$$\rho_{g} = Density of the particle\left(\frac{kg}{m^{3}}\right)$$

$$\rho = Density of the water\left(\frac{kg}{m^{3}}\right)$$

$$d = diameter of the particle (mm)$$

$$\mu = viscosity of the water (Pa \cdot s)$$

Check R: $R = \frac{d(v_s)}{v}$ Where: $v = kinematic viscosity \left(\frac{m^2}{s}\right)$ d = diameter of particle (m) $v_s = velocity of the particle \left(\frac{m}{s}\right)$ kinematic viscosity (25 °C) = 0.893 × 10⁻⁶ $\frac{m^2}{s}$ $R = \frac{(0.001 m) \left(2.45 \times 10^{-3} \frac{m}{s}\right)}{0.893 \times 10^{-6} \frac{m^2}{s}} = 2.74$ Final Settling Velocity = 0.00245 m/s = 0.00804 ft/s

How long will it take this particle to settle in the primary clarifier?

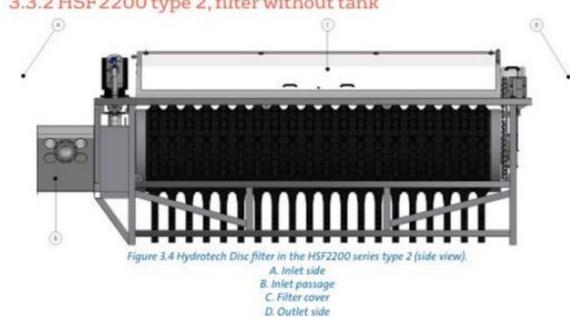
Side water depth= 15'

Settling time= $\frac{15ft}{0.00804f_{\pi}^{f_{\pi}}}$ = 1865.67 seconds = 31 minutes 5.67 seconds

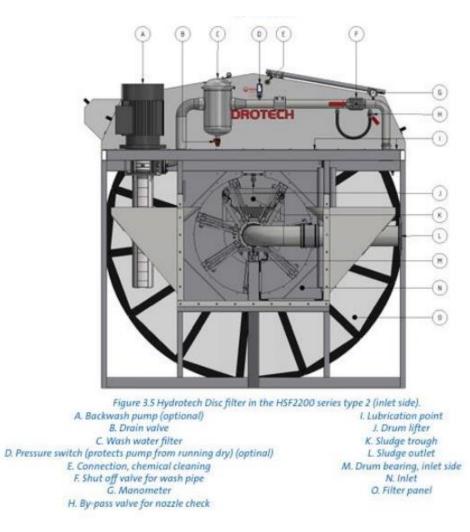
Compare overflow rate to settling velocity:

*The settling velocity must be faster than the overflow rate to ensure that the particle have time to settle in the clarifier before the water flows out of the clarifier

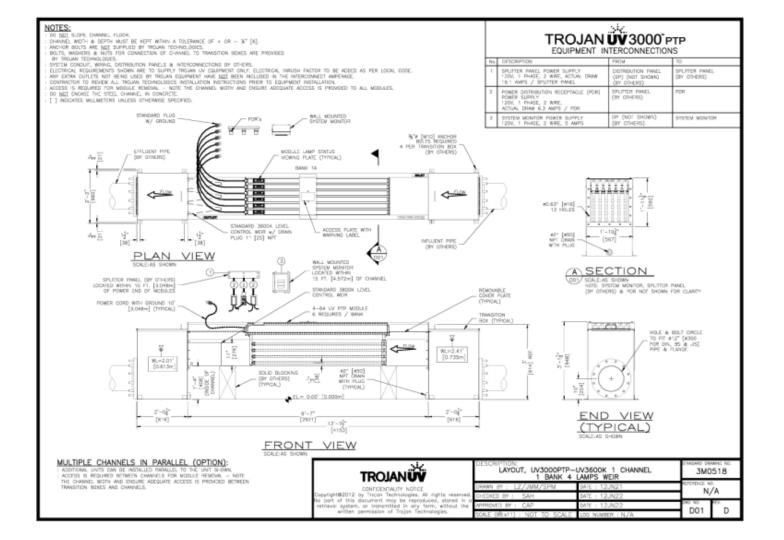
Overflow rate: 315.7 gpd/ft² Settling velocity: 0.00804 ft/s


Convert overflow rate to ft/s:

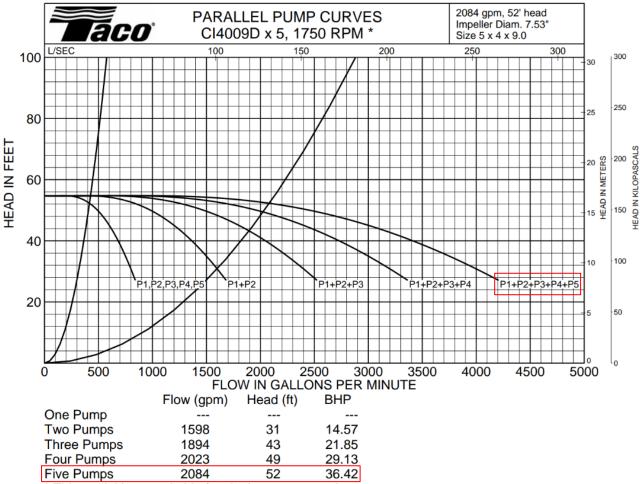
 $1\frac{ft}{s} = 7.4805\frac{gpd}{ft^2}$


 $\frac{1}{7.4805} = \frac{x}{315.7}$ x=42.2 ft/d = 0.00049 ft/s

0.00049 ft/s < 0.00804 ft/s OK!


Disc Filter Record Drawings

3.3.2 HSF2200 type 2, filter without tank



UV Record Drawings

Hydraulic Analysis

V (ft/s)	e/d	Nr	f	hf (ft)	hme (ft)	hmb (ft)	THD (ft)	Q (cfs)	Q (gpm)
0	4.29E-05	0.00	0.000	0.00	0.000000	9.98E-12	38.65	0	0
0.1	4.29E-05	20710.06	0.027	0.72	0.000078	9.98E-12	39.37	0.962113	431.7962
0.2	4.29E-05	41420.12	0.023	2.50	0.000311	9.98E-12	41.15	1.924226	863.5924
0.3	4.29E-05	62130.18	0.022	5.27	0.000699	9.98E-12	43.92	2.886338	1295.389
0.4	4.29E-05	82840.24	0.021	8.98	0.001242	9.98E-12	47.63	3.848451	1727.185
0.5	4.29E-05	103550.30	0.020	13.63	0.001941	9.98E-12	52.28	4.810564	2158.981
0.6	4.29E-05	124260.36	0.020	19.21	0.002795	9.98E-12	57.86	5.772677	2590.777
0.7	4.29E-05	144970.41	0.020	25.71	0.003804	9.98E-12	64.36	6.734789	3022.573
0.8	4.29E-05	165680.47	0.019	33.12	0.004969	9.98E-12	71.78	7.696902	3454.37
0.9	4.29E-05	186390.53	0.019	41.46	0.006289	9.98E-12	80.12	8.659015	3886.166
1	4.29E-05	207100.59	0.019	50.71	0.007764	9.98E-12	89.37	9.621128	4317.962
1.1	4.29E-05	227810.65	0.019	60.87	0.009394	9.98E-12	99.53	10.58324	4749.758
1.2	4.29E-05	248520.71	0.019	71.94	0.011180	9.98E-12	110.60	11.54535	5181.554
1.3	4.29E-05	269230.77	0.019	83.93	0.013121	9.98E-12	122.59	12.50747	5613.351
1.4	4.29E-05	289940.83	0.019	96.82	0.015217	9.98E-12	135.48	13.46958	6045.147
1.5	4.29E-05	310650.89	0.018	110.62	0.017469	9.98E-12	149.29	14.43169	6476.943
1.6	4.29E-05	331360.95	0.018	125.33	0.019876	9.98E-12	164.00	15.3938	6908.739
1.7	4.29E-05	352071.01	0.018	140.94	0.022438	9.98E-12	179.62	16.35592	7340.535
1.8	4.29E-05	372781.07	0.018	157.47	0.025155	9.98E-12	196.14	17.31803	7772.332
1.9	4.29E-05	393491.12	0.018	174.90	0.028028	9.98E-12	213.58	18.28014	8204.128
2	4.29E-05	414201.18	0.018	193.24	0.031056	9.98E-12	231.92	19.24226	8635.924

* This model is not suitable for single pump operation.

Economic Analysis

	Engineers Opinion of Probable Construction Costs						
Item #	Description	Quantity	Unit	\$/Unit	Total Cost		
1	EARTHWORK	1	LS	\$65,000.00	\$65,000.00		
2	CONCRETE EXCAVATION	520	CY	\$19.17	\$9,968.40		
3	PISTAWORKS MODEL 7.0B	2	EA	\$798,750.00	\$1,597,500.00		
4	CONCRETE SLAB FOR SCREEN/GRIT CHAMBER BUILDING	135	CY	\$1,013.00	\$136,755.00		
5	CONCRETE BLOCKS FOR SCREEN/GRIT CHAMBER BUILDING	7518	EA	\$2.51	\$18,870.18		
6	ACTIVATED CARBON DRUMS	4	EA	\$2,772.00	\$11,088.00		
7	BLOWERS FOR EQUALIZATION BASIN	4	EA	\$1,065.00	\$4,260.00		
8	CONCRETE FOR EQUALIZATION BASIN	95	CY	\$1,013.00	\$96,235.00		
9	ENVIRODYNE PRIMARY CLARFIER EQUIPEMENT	2	EA	\$244,950.00			
10	CONCRETE FOR PRIMARY CLARIFIER TANK	842	CY	\$1,013.00			
11	ACTIVATED SLUDGE CONSTRUCTION (AERATION BASINS AND SECONDARY CLARIFIERS)	1	LS	\$22,000,000.00			
12	VEOLIA HYDROTECH DISC FILTER	2	EA	\$383,400.00			
13	TROJAN UV 3000 PTP	7	EA	\$186,375.00	\$1,304,625.00		
14	ANDRITZ D4L DECANTER CENTRIFUGE	3	EA	\$441,975.00	\$1,325,925.00		
15	20' JDV EQUIPMENT CONVEYOR BELT	3	EA	\$18,105.00	\$54,315.00		
16	CI4009D TACO STANDARD CENTRIFUGE PUMP	5	EA	\$9,407.15	\$47,035.75		
17	42" COMMERCIAL STEEL PIPE	580	LF	\$817.92	\$474,393.60		
18	21" COMMERCIAL STEEL PIPE	1470	LF	\$515.46	\$757,726.20		
19	SPLITTER BOX	13	EA	\$7,987.50	\$103,837.50		
20	VALVES AND FITTINGS	1	LS	\$1,500,000.00	\$1,500,000.00		
				Total	\$31,617,180.63		

	Operation & Maintenance Co	sts			
	Item	Quantity	Unit	\$/Unit	Total Cost
	Influent Pumps				
Operation Cost	Energy Consumption	47584	kW-hr/year	\$0.13	\$6,185.9
Maintenance Cost	Inspect Pumps for Solids Blockage	24	per year	-	\$0.
				Total for 5 Pumps	\$30,929.6
	Screen/Grit Chamber				
Operation Cost	Energy Consumption	18370	kW-hr/year	\$0.13	
	Screen Gearbox, Chamber Gear, & Grit Washer Gearbox Oil Change	2	EA/year	\$790.00	
Maintenance Cost	Fill Grease Bearing on Classifier	12	EA/year	\$20.00	
Maintenance Cost	Replace Screen Brushes	1	EA/year	\$1,500.00	
	Grease Pump Motor	2	EA/year	\$45.00	
				Total for 2 Systems	\$11,596.2
	Equalization Basin		-	-	-
Operation Cost	Energy Consumption	19587	kW-hr/year	\$0.13	
Maintenance Cost	Check for Obstructions in Blowers	12	EA/year	-	\$0.0
				Total for 1 System	\$2,546.3
	Primary Clarifier		-	1	
Operation Cost	Energy Consumption	4898	kW-hr/year	\$0.13	
	Grease Winsmith Reducer	12	EA/year	\$45.00	
Maintenance Cost	Grease Cone Reducer	1	EA/year	\$45.00	\$45.0
Walkenance Cost	Primary Gear Reducer Winsmith, Secondary Gear Reducer Cone, &				
	Main Housing Oil Bath Oil Change	1	EA/year	\$260.00	
				Total for 2 Clarifiers	\$2,963.4
	Activated Sludge				
Operation & Mainten	ance Costs	1	LS	\$4,414,776.00	\$4,414,776.0
	Disc Filter				
Operation Cost	Energy Consumption	9855	kW-hr/year	\$0.13	\$1,281.1
	Grease Pump Bearings	2	EA/year	\$45.00	\$90.0
Maintenance Cost	Inspect Drum Bearings	2	EA/year	-	\$0.0
Maintenance Cost	Inspect Disc and Drum seals	2	EA/year	-	\$0.0
	Grease Drum Bearings	26	EA/year	\$45.00 tal for 4 Disc Filters	
			\$10,164.6		
	Ultraviolet Disinfection				
Operation Cost	Energy Consumption	5406	kW-hr/year	\$0.13	\$702.7
Maintenance Cost	Replace Bulbs	48	EA/year	\$127.00	\$6,096.0
Waintenance Cost	Clean Glass Sleeves	48	EA/year	\$70.00	
		Total for 7	Ultraviolet D	isinfection Systems	\$71,111.4
	Centrifuge				
Operation Cost	Energy Consumption	7683	kW-hr/year	\$0.13	
	Remove Any Accumulated Solids	12	EA/year	-	\$0.0
Maintenance Cost	Replace Filter & Filter System if Necessary	2	EA/year	\$1,020.00	
	Change Oil in Hydraulic Pump	2	EA/year	\$260.00	
	Clean the Hydraulic Drive Oil Tank	2	EA/year	-	\$0.0
	Clean the Hydraulic Drive Suction Strainer	2	EA/year	-	\$0.0
			То	tal for 4 Centrifuges	\$14,235.1
	Labor			1	
	Grade 1 Operator	1	LS	\$53,435.20	
Operation Cost	Grade 2 or 3 Operator	1	LS	\$59,612.80	
	Grade 4 Operator	1	LS	\$72,176	
				Total Labor Cost	
	Tot	al Operatio	n & Maintena	ance Costs Per Year	\$4,731,950.6