TimberStrong Design-Build

CENE 486C Friday May 3rd, 2024

Mariah Boler, Mourtice Clitso, Jenna Hays

Project Introduction

- Design and analyze a timber structure
- Create 2D and 3D models
- Construct and compete against other teams
 - American Society of Civil Engineers (ASCE)
 - Intermountain Southwest Student Symposium (ISWS)
 - April 11th, 2024
 - Logan, Utah Utah State University (USU)
- Client: Mark Lamer

Constraints

- Height ≤ 12 ft
- Framing within 6'x6' footprint
- Floor cantilever must extend 4'1"
- One floor overhang of 1'
- One opening in floor system
- One window per wall
- Door on first story front wall

Figure 2: Competition Constraints [2]

Initial Design - Timber Grade

Table 1: Timber Grade Decision Matrix

Grade Decision Matrix		Gra	nde 1	Grade 2		Grade 3		Grade 4		Grade 5	
Criteria	Weight (%)	Score	Wtd. Score	Score	Wtd. Score	Score	Wtd. Score	Score	Wtd. Score	Score	Wtd. Score
Cost *	30	1	0.3	2	0.6	3	0.9	4	1.2	5	1.5
Efficient Strength**	20	4	0.8	5	1	4	0.8	2	0.4	1	0.2
Availability **	50	4	2	5	2.5	2	1	2	1	1	0.5
Total	100		3.1		4.1		2.7		1.7		2.2
*Depled seering **Deted Seering											

*Ranked scoring **Rated Scoring

Quality

• *Cost*:

Based on research of inventory at local stores

- *Efficient Strength for Residential Construction:* Based on research of timber grades used in construction
- *Availability Within Local Lumber Stores:* Based on research of inventory at local stores

Initial Design - Timber Species

Table 2: Timber Species Decision Matrix

Species Decision Matrix		Douglas Fir (DF)		Spruce Pine (SP)		DF Larch		Hem Fir		SP Fir	
Criteria	Weight (%)	Score	Wtd. Score	Score	Wtd. Score	Score	Wtd. Score	Score	Wtd. Score	Score	Wtd. Score
Cost *	30	2	0.6	1	0.3	3	0.9	4	1.2	5	1.5
Efficient Strength**	20	5	1	2	0.4	2	0.4	4	0.8	3	0.6
Availability**	50	4	2	2	1	3	1.5	5	2.5	2	1
Total	100		3.6		1.7		2.8		4.5		3.1

*Ranked scoring **Rated Scoring

scoring Raidu

• Cost:

Based on research of inventory at local stores

- *Efficient Strength for Residential Construction:* Based on research of lumber species used in construction
- *Availability Within Local Lumber Stores:* Based on research of inventory at local stores

Figure 4: Timber Species [4]

Initial Design - Design Alternatives

Table 3: Initial Design Alternatives

Design Descriptions	Design 1	Design 2	Design 3		
Roof	Mono-pitched	Trusses	Gable		
Window Sizes	About 2' wide. Triangles	About 1.5' wide. Squares	About 1' wide. Rectangles		
Window Placement	Off-Center and Not Stacked	Off-Center and Stacked	Centered and Stacked		
Cantilever Beam Placement	Front Wall	Side Wall	Back Wall		
Floor Overhang Placement	Back Wall	Side Wall	Front Wall		
Aesthetic Theme	Mountains	Pine Tree	Log Cabin		

5

Initial Design - Design Decision Matrix

Table 4: Initial Design Decision Matrix

Design Decision Matrix		Design 1		D	esign 2	Design 3		
Criteria	Weight (%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	
Cost*	20	2	0.4	1	0.2	3	0.6	
Aesthetics ** and Creativity	20	3	0.6	2	0.4	2	0.4	
Prefabrication ^{**} Constructability	25	1	0.25	1	0.25	3	0.75	
Roof* Constructability	35	1	0.35	3	1.05	2	0.7	
Total	100		1.6		1.9		2.45	

*Ranked scoring **Rated Scoring

- *Cost:* Based on estimates of material amounts in each design
- Aesthetics and Creativity: Based on originality and cohesion in design and theme
- *Prefab. Constructability:* Based on panel construction ease: repetition in framing
- Roof Constructability: Based on roof construction ease: 90 minutes at competition

Figure 6: Chosen Framing Design

Final Design - Loads

Figure 7: Loads and Placement

Final Design – Design Components

Gravity Design:

• Framing Member Sizes

Lateral Design:

Shear Walls & Diaphragms

- Sheathing Size
- Nail Size
- Nail Spacing
- Connections
 - Straps and Anchor Bolts

Figure 8: Framing Members [11]

Figure 9: Shear Walls and Diaphragms [5]

Final Design – Factor of Safety

Factor of Safety = Capacity/Demand

Table 5: Lateral	Factor	of Safety	(FS)	Scoring	g
------------------	--------	-----------	------	---------	---

Average Lateral FS Results	Points Awarded
$1.50 \le FS \le 1.65$	Maximum
$1.65 \le FS \le 1.80$	Partial
FS < 1.50 or FS > 1.80	None

Table 6: Average Lateral Factor of Safety Results

Lateral Design Group	Average* FS
Diaphragms	1.54 🔽
Shear Walls	1.57 🗹

*Average FS for the lateral design groups was required for competition

Table 7. Oravity Factor of Safety Results						
Gravity Design Group	Lowest FS					
Roof	4.17					
Floor	1.53					
Wall Framing	17.0					

fCafat

D

No competition requirements, so $FS>1.0 = \checkmark$

Final Design – Predicted Deflection

Figure 10: Deflected Cantilever [12]

 Table 8: Deflection Results

Load Placement from Exterior Wall	Deflection (in.)
4'-0"	0.78
3'-9"	0.59
3'-6"	0.52

0.5 in.< Deflection<1.0 in.

Modeling – 2D Structural Drawings

Structural Drawings: Competition Requirements

- Shear wall connection details
- Anchorage to the foundation
- Framing plans
- Plan view, elevations, and cross-sectional details
- Sheathing type and fastening schedule

Figure 11: Floor Framing

Modeling – 2D Structural Drawings

- 22"x34" Construction Sheets:
- 1. Fastener Schedule
- 2. Anchorage to Foundation
- 3. Floor Plan
- 4. Roof Plan
- 5-6. Elevations
- 7-10. Framing and Sheathing Plans
- 11-12. Connector Placement
- 13. Details

Figure 12: Elevation Drawings

Modeling – 3D BIM Model

Final Design:

- Log cabin-style architecture and aesthetics
- Roof ridge beams with gable shape and chimney
- Centered and stacked windows
- Balanced cantilever

- Elevation Views
- Connectors

Figure 13: Revit Framing

Figure 14: Revit Model

Construction – Materials

- Lumber: \$813
- Connectors/Fasteners: \$274
- Aesthetic Materials: \$239

Total Structure Cost: \$1,326

Figure 15: Material Movement [6]

Construction – Prefabrication

Prefabrication

- > At NAU
- > Cut lumber
- Frame wall panels and floor

Figure 16: Prefabrication [7]

Competition Rehearsal ≻ At NAU

- Practice construction
- Prepare supplies and materials

Figure 17: Prefabrication [1]

Figure 18: Rehearsal Build [8]

Figure 19: Rehearsal Build [8]

- Virtual presentation in March
- Panels staged prior to competition
- 90 minutes time limit
- Restricted to 20' x 20' area until finished
- Limited to battery powered drills

Figure 20: ISWS Build Day [6]

Competition

Figure 21: Final Structure [6]

Measured deflection at 3'-9'' = 0.58''Predicted deflection at 3'-9'' = 0.59''

Figure 22: Deflection Testing [6]

Construction Lessons Learned

- Clarity on plan sets
- Dimensions that are helpful in the field
- Planning material amounts
- Working with suppliers

Figure 23: Construction Team [8]

Impacts

Figure 24: Timber House Framing [10]

Table 9: Impacts of Timber Use in Residential Houses

	Social	Economic		Environmental
•	Provides design versatility and	• Low initial material costs, labor	•	Timber is a renewable
	aesthetic appeal	costs, and construction time		resource/sustainable building
•	Vulnerable to moisture, damage, and	• High maintenance costs and		material
	insects	insurance rates for homeowners	•	Deforestation during harvesting and
				demolition waste is put in landfills

21

References

[1] J. Hays, *Construction Photos*, Flagstaff and Logan, 2024.

[2] American Society of Civil Engineers, "TIMBERSTRONG DESIGN BUILD", 2023.

- [3] "Different Grades of Commodity Lumber and Their Applications," Sherwood Lumber, 17 August 2023. [Online]. Available: https://sherwoodlumber.com/different-grades-of-commodity-lumber-and-their-applications/. [Accessed 24 April 2024].
- [4] "Have you ever wondered what timber substrates would suit a particular project?," Quantum Timber Finishes, 26 July 2019. [Online]. Available: https://qtf.com.au/blog/have-you-ever-wondered-what-timber-substrates-would-suit-a-particular-project/. [Accessed 24 April 2024].
- [5] "Figure 1," Research Gate, September 2018. [Online]. Available: https://www.researchgate.net/figure/Floor-diaphragm-A-summary-of-diaphragm-characteristics-can-be-listed-as-follows-transfer_fig3_328214443. [Accessed 12 February 2024].
- [6] Megan Alexander, Construction Photos, Flagstaff and Logan, 2024.
- [7] Mariah Boler, Construction Photos, Flagstaff, 2024.
- [8] Lukas Wisner, Construction Photos, Flagstaff, 2024.
- [9] Adam Bringhurst, Construction Timelapse, Logan, 2024.
- [10] Timber frame homes UK market to rise by £70m," PBC Today, 25 March 2022. [Online]. Available: https://www.pbctoday.co.uk/news/mmc-news/timber-frame-homes-uk/107522/. [Accessed 24 April 2024].
- [11] "Wall Plate," Wikipedia, 11 November 2021. [Online]. Available: https://en.wikipedia.org/wiki/Wall_plate. [Accessed 1 May 2024].
- [12] M. Lemonis, "Cantilever beam," Calc Resource, 1 March 2024. [Online]. Available: https://calcresource.com/statics-cantileverbeam.html. [Accessed 2 May 2024].

Questions?

Roof De	sign Res	ults				
Design Aspect		Design Result	Wall Des	ian Do	eulte	
2x4 Member Size		All Framing Members	Design Aspect	ign Ke	Design Desult	
3/8" Sheathing		All Sheathing Pieces	Design Aspect		Design Result	
6" Diaphragm Nail Spacing		All Diaphragm Edges	2x4 Member Size	-	All Framing Members	
6D Diaphragm Nail Size		All Diaphragm Nailing	3/8" Sheathing		All Sheathing Pieces	
Rafter Tie Downs		SST H2.4ASS on each Rafter		6"	1 st Story Front Wall	
Average Roof Diaphragm Factor of	Safety	1.515			2 nd Story Front Wall	
Floor Design Res		<u> </u>	Sheen Well Meil Specing		2 nd Story Sidewalls	
			Shear wall Nall Spacing	4"	1 st Story Back Wall	
		lts		- 24	2 nd Story Back Wall	
Design Aspect		Design Result			1 st Story Sidewalls	
2x4 Member Size		All Framing Members		32	1 Blory Bldewalls	
Double 2x4 Member		Cantilever Beam	6D Shear Wall Nail Size		All Shear Walls	
3/8" Sheathing		All Sheathing Pieces	Opening and Shear Wall Stra	aps	SST LSTA24	
6" Diaphragm Nail Spacing All Diap		hragm Edges and Beam along Opening	Anchor Bolts	÷	STB2-50234R25	
6D Diaphragm Nail Size		All Diaphragm Nailing			5152-502541(25	
Strap on Beam along Opening		SST LSTA24	Average Shear Wall Factor of S	afety	1.568	
Average Floor Diaphragm Factor of Safety		1.572				

Roof Framing Design

Ponderosa TimberJacks - 2024 Design - 12/03/2023

Rafter Design

Design for one interior rafter on the roof panel that includes the chimney. This design will be conservative (largest tributary and largest load), so the design of the interior rafters and the other half of the roof can be the same design.

Loads

VC163

[16.in]

Shear Design

Roof MathCAD Example

 $d := (3 V_{max}) \div (2 b \cdot f_v) = 0.372 in$ [NDS 3.4.2] if $(d \le 3.5 in, \text{``Good''}, \text{``Bad''}) = \text{``Good''}$

4

Budget

Material Cost Estimate										
Description Quantity Unit Unit Cost										
Lumber										
2x4-8ft Hem Fir	65	piece	\$ 5.87	\$	382					
2x4-10ft Hem Fir	2	piece	\$ 7.45	\$	15					
4x8ft-3/8 in OSB	14	sheet	\$ 29.73	\$	416					
		Lumbe	er Subtotal	\$	813					
Simpson Strong-Tie Co	onnectors									
LSTA18 Light Strap Tie	12	strap	\$ 1.26	\$	15					
LSTA24 Light Strap Tie	9	strap	\$ 1.68	\$	15					
LSTA36 Light Strap Tie	4	strap	\$ 3.05	\$	12					
STB2-50234R25 Anchor Bolt (Box of 25)	1	box	\$ 21.91	\$	22					
H3 Hurricane Tie	4	piece	\$ 4.49	\$	18					
	Co	onnecto	or Subtotal	\$	64					
Simpson Strong-Tie F	asteners									
Strong Drive CSV Construction Screw (Box of 240)	2	box	\$ 21.32	\$	43					
Strong Drive SDWS Framing Screw (Box of 150)	1	box	\$ 40.55	\$	41					
Strong Drive SDWS Framing Screw (Box of 250)	1	box	\$ 62.88	\$	63					
Strong Drive SD Connector Screw (Box of 100)	1	box	\$ 13.98	\$	14					
Strong Drive SD Connector Screw (Box of 500)	1	box	\$ 49.64	\$	50					
		Fastene	er Subtotal	\$	210					
Aesthetic Mater	ials									
Behr Exterior Paint	1	gallon	\$ 30.98	\$	31					
Staples	1	Pack	\$ 9.99	\$	10					
Wallpaper	4	Roll	\$ 49.50	\$	198					
	Α	estheti	c Subtotal	\$	239					
	Tota	l Cost of	Materials	\$1	,326					