John Wesley Powell West Road Extension Final Presentation

Cristine Aguila, Elijah Begay, Logan McFarland, Steven McKimmey

- CENE 486C - 5/3/2024 -

Project Introduction

JWP West Assessment and Design

• Located between South Pulliam Dr. & Lake Mary Rd.

- \circ 1.5 miles
- Rugged and forested terrain

Design Goals

- Connect South Pulliam Dr. to Lake Mary Rd.
 - Enhance accessibility to local communities

Client

• Jeff Bauman (*PE*, *PTOE*, *Traffic Engineer with C.O.F*)

Figure 1: View from S. Pulliam Dr. (West)

Project Location

Figure 3: State map of Arizona (Google Maps)

Figure 4 Project vicinity map (Google Maps)

Traffic Counts - West Intersection

S. Pulliam Drive and JWP

- JAMAR Board
- Identified traffic volumes and turning count movements
- West intersection AM total volume: 213 vehicles
- West intersection PM total volume: 237 vehicles

Traffic Counts - East Intersection

Lake Mary Road and JWP

- East intersection AM total volume: 368
- East intersection PM total volume: 397

Figure 9: Topographic Map

Roadway Geometry

Figure 10: Roadway alignment

- Two Lane Road
- LOS B
- Bike Lane/Shoulder
- Vertical Grade from 0.66-1.17%
- Sidewalk on North End
- 40 MPH Speed Limit

Roadway Cross Section

- <u>Lane</u>
 Width: 12 ft
 Slope: 2%
- <u>Shoulder</u> Width: 5.5 ft Slope: 4%

• <u>Sidewalk</u> Width: 6 ft Thickness: 4 in

 <u>Curb</u> Width: 1.5 ft Thickness: 8 in Slope: 4%

Horizontal Alignment

Vertical Alignment

Figure 14: Profile of roadway

Decision Matrix - Pavement Design

Criteria

- <u>Cost</u>: cubic yd. construction, maintenance
- <u>Durability</u>: lifespan, withstand wear and tear
- <u>Effectiveness</u>: permeability, performance under road volume

Sc	oring Description	n for Pavement	Design
Criteria	1 (Worst)	2 (Neutral)	3 (Good)
Cost	highest upfront cost	moderate upfront cost	lowest upfront cost
Durability	shorterst lifespan, continuous maintenance necessary	moderate lifespan, moderate maintenance necessary	longest lifespan, minimal maintenance necessary
Effectiveness	not permeable, cannot withstand heavy traffic load	moderately permeable, lower ability to withstand heavy traffic load	permeable, can withstand heavy traffic load

Table 1: Scoring Description for pavement design

Material Options:

Decision Matrix Material Options: Asphaltic Concrete Concrete Avg Score Avg Score Weighted Weighted Criteria Weight (%) (1-3)Score (1-3)Score Cost 35 3 1.05 0.35 35 Durability 2 0.7 3 1.05 Effectiveness 30 0.6 0.3 Weighted Score 100 2.35 1.7

Figure 15: Concrete vs Asphalt [5]

Pavement Design: Layers

- <u>Top Layer</u> Asphaltic Concrete
- <u>Base</u>
 ³/₄" Aggregate
 Base Course
- <u>Sub-base</u> Crushed Gravel and Stone
- <u>Lower Layer</u> Native Material

Decision Matrix - Intersection Design (Lake Mary Rd.)

- Projected 2045 Data from COF
- Used Traffic Counts to Estimate Turn Volumes
- Two-Way Stop, Four-Way Stop, Roundabout, Signalized Intersection
- Used Vistro to analyze LOS, Delay, Signal Phasing, etc.

	Scoring Descript	ion for Intersectio	n		
Criteria	1 (Worst)	2 (Neutral)	3 (Good)		
Cost	Design is very costly	Design applies to categories 1 and 3	Design is not very costly	Lake Mary Road Intersect	l an ion:
Efficiency	LOS E-F	LOS C-D	LOS A-B	Criteria	We
				Cost	
	Challenging	Dequires adequate	Loss Johon 9	Efficiency	
Constructability	requires additional	construction	equipment	Constructability	
	labor & equipment			Pedestrians	
				Weighted Score	
Pedestrians	LOS E-F	LOS C-D	LOS A-B		

 Table 3: Intersection scoring descriptions

				-						
Decision Matrix										
Lake Mary Road and JWP Intersection:		Signalized		2-Way Stop		4-Way Stop		Roundabout		
Criteria	Weight (%)	ht (%) Avg Score Weig (1-3) Sco		Avg Score (1-3)	Weighted Score	Avg Score (1-3)	Weighted Score	Avg Score Weighted (1-3) Score		
Cost	20	2	0.40	3	0.60	3	0.60	1	0.20	
Efficiency	45	2	0.90	1	0.45	1	0.45	2	0.90	
Constructability	15	2	0.30	3	0.45	3	0.45	1	0.15	
Pedestrians	20	3	0.60	1	0.20	2	0.40	1	0.20	
Weighted Score	100		2.20		1.70		1.90		1.45	

Table 4: JWP and Lake Mary Intersection Decision Matrix

JWP & Lake Mary - East Intersection

• LOS C

- Added right turn lane on JWP
 Eastbound
- Fixed Timing
- 100 Second Cycle Lengths
- Delay of 23.8 s/veh

Decision Matrix - Intersection Design (S Pulliam Dr.)

Table 5: JWP and Pulliam intersection decision matrix

Decision Matrix											
S Pulliam an	nd JWP	Signa	alized	2-Way Stop		4-Way Stop		Roundabout			
Criteria	Weight (%)	Avg Score (1-3)	Weighted Score								
Cost	20	2	0.40	3	0.60	3	0.60	1	0.20		
Efficiency	45	3	1.35	2	0.90	1	0.45	3	1.35		
Constructability	15	2	0.30	3	0.45	3	0.45	2	0.30		
Pedestrians	20	3	0.60	2	0.40	2	0.40	1	0.20		
Weighted Score	100		2.65		2.35		1.90		2.05		

JWP & Pulliam Intersection

Figure 18: JWP and Pulliam intersection signal warrant

JWP & Pulliam - West Intersection

- LOS B
- Semi-Actuated
- Full Cycle Length of
 60 Seconds
- Delay of 12.1 s/veh

Signage and Striping

- Designed according to the Manual on Uniform Traffic Control Devices (MUTCD)
- White lines for right side of road, indicating shoulder and bike lane
- Yellow lines for left side of the road, median
- Speed limit signs after intersection and along road
- "Do Not Pass" signs along the road
- Turning arrows, stopping lines, and crosswalks at intersections

Figure 20: Left turn arrow [3]

Figure 21: Do Not Pass sign [2]

Figure 22: Continental crosswalk [4]

Geotechnical Analysis

• 19

- Rocky sandy soil
- Occurs on hills

• 19A

- Soil series combination
- Steep hillslope soil

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	3889600
8	Paymaster family	8.2	7.1%	
	fine sandy loam, 0			
	to 3 percent slopes			38803
19	Telephone gravelly	32.8	28.60%	
	sandy loam, 0 to 15			
	percent slopes			669100
19A	Telephone-Daze	73.8	64.30%	
	complex, 0 to 8			
	percent slopes			008
Totals for Area of Interest		114.8	100.0%	88

Figure 24: Site soil map from USDA Web Soil Survey [6]

Figure 23: Site soil type description

Site Investigation

Land Surveying

- Auto Level
- Profile: 6 shots upstream, 10 shots down stream, 10 ft intervals
- Cross section: Flood plain, left bank, bottom bank, thalweg, bottom bank, right bank, flood plain, 30 ft intervals

Figure 26: Plan view of stationing & channel cross sections

Figure 25: Channel profile

Figure 27: Auto level

Figure 28: Image of channel looking downstream

Figure 29: Downstream typical cross section

Hydrologic Analysis

Watershed Delineation

- StreamStats uses a Digital Elevation Model (DEM) grid
- Automatically creates GIS layers through basins

Time of Concentration

USDA TR-55 Method [4]

Table 6: Travel time for sheet flow

USDA TR-55: Travel Time, Sheet Flow

0.15

292

2.13

0.0103

0.616

Manning's roughness, n

Flow length, L(ft)

Rainfall, P2 (2-yr)

Land slope, s (ft/ft)

Travel time, Tt (hr)

- Sheet flow, a thin uniform flow of water across a surface
- Shallow concentrated flow, a flow of water in defined channels across uneven terrain

Table 7: Travel time for shallow concentrated

flow

USDA TR-55: Travel Time, Shallow

Concentrated Flow

Surface Description

Average velocity, V (ft/s)

Flow length, L(ft)

Travel time, Tt (hr)

Slope, s (ft/ft)

• *Channel flow*, a flow of water in hydraulically made channels

Т	_	$0.007(nL)^{0.8}$
¹ t	_	$P_2^{0.5}s^{0.4}$

Equation 1: Sheet flow [4]

Equation 2: Shallow concentrated flow [4]

Equation 3: Channel flow [4]

$$T_t = \frac{L}{3600 \, V}$$

∑= 1.96 hours

Unpaved

292

2.13

0.0083

1.34

Table 8: Travel time for channel flow

USDA TR-55: Travel Time, Channel Flow

0.025

320

16.5

0.0125

0.00539

Surface Description

Average velocity, V (ft/s)

Flow length, L (ft)

Travel time, Tt (hr)

Slope, s (ft/ft)

Peak Discharge

Storm Intensity

- "Roadway classifications shall be designed for the 50-yr storm event."-SWMDM [5]
- **Calculate Peak Flow**
 - Used for future hydraulic design

Figure 32: NOAA Atlas 14 PDS-DDF curves [6]

Equation 4: Peak discharge formula [6]

$$q_p = q_u A_m Q F_p$$

Table 9: Peak flow rate

	USDA TR-55 Method					
Storm Event (yr)	10	50	100			
Rainfall, P (24-hr)	3.08	4.12	4.60			
Runoff, Q (in)	1.58	2.48	2.91			
Drainage Area, Am (mi^2)	0.18	0.18	0.18			
Peak Discharge, qp (cfs)	65.4	103	121			

Existing Channel

Figure 33: Aerial image of existing channel

Figure 34: Looking upstream of existing channel

Existing Channel Analysis

Purpose

- Evaluated current state of the channel
- Flow rates, velocities, & water surface elevations
 Understood hydraulic behavior near east intersection
 - Currently overtopping designed road

Work

- **Developed 1-D HEC-RAS model**
- Evaluated cross-sectional data, flow characteristics, and compliance with CoF's SWMDM

Table 10: General overview of compliance

Existing Conditions of Cross-Sections HEC-RAS					
Variables	Compliance				
Flow rate (cfs)	Yes				
Velocity (ft/s)	Yes				
Water surface elevation (ft)	No				
Freeboard (ft)	No				
Flow regime	Yes				

Figure 35: Profile view of existing channel

Decision Matrix - Hydraulic

Criteria

- <u>Cost</u>: initial expenses and long-term maintenance
- Efficiency: maximizing hydraulic efficiency
- <u>Constructability</u>: ease of construction/installation
- <u>Aesthetics</u>: enhance visual appeal

Table 11: Culvert scoring description

	Scoring Description for Culvert												
Criteria	1 (Worst)	2 (Neutral)	3 (Good)		Decision Matrix								
	Structure is very		Structure is				ete Box	Corrugated	Metal Pipe	Concet	te Arch	Ellipse	
Cast	costly & not	Is costly nor	economical, very										
Cost	economical	economical	sufficient			30000	11				- Cal		
	(>\$70,000)		(<\$30,000)	Culvert Entran	ce Design:								0
	Does not meet	Able to either	Able to channel										
Efficiency	conveyance &	convey or have	design flow & has			~ \$6 600	costion v10	~ \$960 per 2	dia alaa v16	~ \$270	fact 21 dia	~ \$1 010	faat 21 die
Ejjiciency	allowable	resonable	adequate amount			(Total:	\$66,370)	(Total:	\$13,800)	(Total: S	\$79,000)	(Total:	576,800)
	freeboard	freeboard	of freeboard	Q		Avg Score	Weighted	Avg Score	Weighted	Avg Score	Weighted	Avg Score	Weighte
	Challenging	Structure requires		Criteria	Weight (%)	(1-3)	Score	(1-3)	Score	(1-3)	Score	(1-3)	Score
Constructability	requires additional	adequate	Less labor &	Cost	35	2	0.70	3	0.89	1	0.35	1	0.35
	labor & equipment	construction	equipment	Efficiency	35	3	0.95	1	0.35	2	0.79	1	0.47
	Not eve-appealing:			Constructability	20	2	0.40	3	0.60	1	0.27	1	0.21
	does not fit into		Ctrusture ennears	Aesthetics	10	2	0.24	1	0.10	3	0.30	2	0.20
Aesthetics	surrounding	Has normal appeal	to fit into terrain	Weighted Score	100		2.29		1.94		1.71		1.23
	background												

Table 12: Culvert-shape decision matrix

Proposed Hydraulic Design

• 2 Barrel 8' x 3' Box Culvert

- Concrete Material
- Typical run length of 7'- 8"
- Beveled corners
- 10 sections needed (total length of 76' 8") to connect upstream and downstream
- Structure will be sloped at 0.5%
- A headwall and wingwalls will be installed at both ends

Figure 36: Typical culvert & wingwall dimensions

Figure 37: Upstream cross sections

Post-Improvement Hydraulic Analysis

Table 13: Evaluation of proposed culvert

Culvert Conditions HEC-RAS									
Culvert 8x3 (2)	Inlet	Comuliance	Outlet	Constitution					
Variables	50 years	Compliance	50 years	Compliance					
Flow rate (cfs)	103	Yes	103	Yes					
Velocity (ft/s)	5.9	Yes	4.5	Yes					
Water surface elevation (ft)	6927.5	Yes	6927.0	N/A					
HW/D ≤ 1.2	0.47	Yes	N/A	N/A					
Freeboard (ft)	1.4	Yes	1.6	Yes					
Flow Regime	Supercritical	Yes	Supercritical	Yes					

Figure 39: Profile view of proposed channel

Final Hydraulic Design

Figure 40: Plan view of final hydraulic design

Figure 42: Cross-section view of culvert

Construction Cost Estimate

Table 14: General material cost of project

Roadway and Hydraulic Structure										
ITEM	Quantity	Unit	Unit Price	Cost						
Roadway:										
6" Asphatic Concrete over 10" MSLABC Layer	30800	SY	\$65	\$2,002,000						
Traffic Signal Installation	2	EA	\$442,345	\$884,690						
Concrete Sidewalk	47520	SF	\$16	\$760,320						
Streetlight	52	EA	\$6,850	\$356,200						
Vertical Curb and Gutter	7920	LF	\$25	\$198,000						
Remove Existing Tree	120	EA	\$610	\$73,200						
White Bike Lane Striping	15840	LF	\$2	\$31,680						
6" Double Yellow Stripe Marking	7920	LF	\$4	\$31,680						
Roadway Earthwork (Cut & Fill)	1212	CY	\$21	\$25,452						
40 MPH Speed Limit Sign	2	EA	\$750	\$1,500						
Do Not Pass Sign	2	EA	\$550	\$1,100						
Pavement Arrow Marking	4	EA	\$125	\$500						
Crosswalk Marking	6	LF	\$2	\$12						
Hydraulic Structure:										
Precast Concrete Box Culvert	1	EA	\$66,375	\$66,375						
Flared Wingwalls	4	EA	\$3,750	\$15,000						
Outlet Protection (RipRap)	121.5	CY	\$75	\$9,113						
Inlet/Outlet Headwall	2	EA	\$2,500	\$5,000						
Hydraulic Earthwork (Cut & Fill)	200	CY	\$21	\$4,200						
TOTAL				\$4,466,022						

Roadway Cost:

• \$4,366,334

Hydraulic Structure Cost:

• \$99,688

Project Impacts

Social

- Enhanced accessibility for local residents and businesses
- Initial disruption in traffic pattern within the immediate project vicinity

Economic

- Increase in property values and business traffic in adjacent area
- Heightened noise pollution

Environmental

- Reduced erosion along roadside
- Runoff from road surface during and after construction

Figure 43: Impacts Icon [7]

References

[1] "PTV VISTRO." *Traffic Engineering Software PTV Vistro | PTV Group*, www.ptvgroup.com/en-us/products/traffic-engineering-software-ptv-vistro. Accessed 17 Mar. 2024.

[2] "R4-1 Do Not Pass Sign." MD Solutions, md-signs.com/r4-1-do-not-pass-sign.html. Accessed 17 Mar. 2024.

[3] "Left Turn Arrow Pavement Marking (Pack of 2)." *InSite Solutions LLC*, stop-painting.com/left-turn-arrow-pavement-marking/. Accessed 17 Mar. 2024.

[4] "UrbanReview: Saint Louis." – *St. Louis Fails At Crosswalks, Part 2UrbanReview | ST LOUIS,* www.urbanreviewstl.com/2016/02/st-louis-fails-at-crosswalks-part-2/. Accessed 17 Mar. 2024.

[5] "Concrete vs Asphalt." Tarworks Construction. https://www.tarworksconstruction.co.za/concrete-vs-asphalt-driveways-which-one-is-better/. Accessed 17 Mar. 2024

[6] United States Department of Agriculture , "Web Soil Survey," 31 July 2019. [Online]. Available: https://websoilsurvey.nrcs.usda.gov/app/. [Accessed 20 January 2024].

[7] "Impacts Icon." *Master Recycler Program,* https://www.masterrecycler.org/news/2019/11/6/triple-bottom-line-applied-in-portland . Accessed 17 Mar. 2024

See the following slides for additional information

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Worksheet 2: Runoff curve number and runoff						Worksheet 3: Time of Concentration (T _c) or travel time (T _t) Worksheet 4: Graphical Peak Disch	Worksheet 4: Graphical Peak Discharge method			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Project TIM/P	b) \N/e c.L	Logan N	L.Farlan	L Date -	2/7/24	Project TWP West By Logan McFarland Date Z/7/24 Project JWP West By	McFarlan	L	2/7/24	
Outcome Once one	Location	Chi Chi	Logan /	AcFarl	Date	2/8/24	Location Flagstaff, Az Checked Logan McFarland 2/8/24 Flagstaff, Az Logan	McFarla	nd Date	2/8/24	
1. Remote Cover description $0^{1/2}$ $0^{1/$	Check one: Pres	ent Developed					Check one: Present Developed Check one: Present Developed				
Bit Rame Core designs OI A m Product Bit Rame Core designs India and end of the upper design of the sign of the upper design of the upp	1. Runoff curve	number	a start and a start			nol San	Check one: ⊠ T _c □ T _t through subarea				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Soil name	Cover description		CN 1/	Area	Product	Notes: Space for as many as two segments per flow type can be used for each worksheet. 1. Data Include a map, schematic, or description of flow segments.				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	hydrologic					CN x area	Sheet flow (Applicable to To only)	(acres/640)			
$\frac{\log n \ln n}{\ln \log n \ln \log 1} = \frac{1}{2} \frac{\log n}{2} $	group	(cover type, treatment, and hydrologic condition; p	percent of	ure 2-3			Runotf curve numberCN = <u>84</u> (Fre	m worksheet 2)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(appendix A)	impervious; unconnected/connected impervious a	irea ratio)	6	2 0%		Segment ID Segment ID $Communities$ Time of concentration	From worksheet	3)		
$\frac{1}{10} \begin{bmatrix} \log_{n} & \log_{10} \log_$	D	Paymaster family fire s	andy 81		8.2	705	Manning Rundhoss conficient a (table 8-1) Alamina Rundhoss Rundhoss Conficient a (table 8-1) Alamina Rundhoss Rundho	.000			
$\frac{1}{p_{\text{partial}}} = \frac{1}{p_{\text{partial}}} = \frac{1}{p_{\text{partial}}}$,D	loam, O to 3 percent Slo	Pes los				3. Flow length, L (total L + 300 t)	of A. C. O.D.	o acres o	or mi ² covered)	
$\frac{1}{10^{2}} \frac{1}{10^{2}} 1$	D	Oto 15 percent slopes	100m, 84		32.8	2755	4. Two-year 24-hour rainfall, P2in Z	01 AM (2_0000000		
$\frac{1}{10^{\circ} \text{ for } 9, \text{ preceded Stress}} = \frac{84}{10^{\circ} \text{ for } 00^{\circ}} = \frac{84}{10^{\circ}} = \frac{10^{\circ} \text{ for } 10^{\circ}}{10^{\circ}} = 10^$	10	Telephone - Daze complex	41 01		73.8	1100	5. Land slope, s	Storm #1	Storm #2	Storm #3	
$\frac{1}{12} \frac{1}{12} \frac$,D	O to & Percent Slopes	84		1 2.0	6117	6. T ₁ = 0.007 (nL) ^{0.8} Compute T ₁ hr 0.4015% += 0.615%		T.C.	100	
$\frac{1}{2} \frac{1}{2} \frac{1}$		and the second se					P ₂ us gol. 2. Frequency	70	50	100	
$\frac{1}{12} \frac{1}{12} \frac$					-		Sitaliov concentrated new 3. Rainfall, P (24-hour)in	5.08	4.12	4.60	
Image: sector of the secto							Segment ID Commands				
u' Us endy one Of issues per file9. Watercourse sighe, s							Source description (paved) Source description (paved)	0.381	0.381	0.381	
$\frac{1}{2} \text{ Use ery one ON source per like}$ $\frac{1}{2} \text{ Compute } \frac{1}{14 + 3} \text{ Compute } $							9. Watercourse slope, s				
$\frac{1}{3600} \text{ V}$ $\frac{1}{3600} $							10. Average velocity, V (figure 3-1)	0,124	0.092	0.083	
$\frac{1}{143} = \frac{9}{143} + \frac{9}$	J/ Use only one CN source	oer line		Totala B			11. T ₁ = Compute T ₁		0.20	0.00	
$\begin{array}{c} \text{Channel flow}\\ \text{Channel flow}\\$	and only one of the			lotais	11,22	9659	6. Unit poak discharge, q _u	230	250	2.50	
$\begin{array}{c} \text{N}(\text{weighted}) = \underbrace{\text{total area}}_{\text{II} 4 \cdot 3} \text{II} 4 \cdot 3 \text{II} 4 $		GLEG QUI	14			_	Channel flow				
Indiced 2. Runoff 2. Runoff Stom #1 Stom #2 Stom #3 Stom #1 Stom #2 Stom #3 I Wetted perimeter, p_W If I Hydraulic radius, $r= \frac{a}{a}$ Compute r I I Stom #2 Stom #3 Frequency yr I O S O I O O O <tho< th=""> O<!--</td--><td>CN (weighted) = total</td><td>product = <u>1001</u> = <u>011</u></td><td>La ; Us</td><td>e CN 🖈</td><td>84</td><td></td><td>Segment ID Commission 2.6 Intervention 2.6</td><td>1.5%</td><td>2,43</td><td>2,91</td></tho<>	CN (weighted) = total	product = <u>1001</u> = <u>011</u>	La ; Us	e CN 🖈	84		Segment ID Commission 2.6 Intervention 2.6	1.5%	2,43	2,91	
2. Runoff Proquency yr Rainfall, P (24-hour) in Runoff Q in the base 1, figure 2-1, or equations 23 and 2-4) $S = \frac{1000}{1.58} = 2.448$ $Z.+Q1$ $V = \frac{1000}{1.58} = 2.448$ $Z.+Q1$ $V = \frac{1000}{1.58} = \frac{1000}{1.58}$	1015		the state of the second		And in case of the local division of the loc	and the second se	12. Cross sectional flow area, a		1		
Storm #1 Storm #2 Storm #2 Storm #3 14. Hydraulic radius, r= $\frac{a}{b}$ Compute r 3, 59.9 with table 4-2, Factor is 1.0 for zero percent poind and swamp area.) Prequency yr 0 50 100 16. Manning's roughness coefficient, n 0, 012.5 0, 012.5 with table 4-2, Factor is 1.0 for zero percent poind and swamp area.) Rainfall, P (24-hour) in 3, 078 4, 12. 4, 600 16. Manning's roughness coefficient, n 0, 02.5 0, 012.5 0, 012.5 0, 012.5 0, 012.5 0, 012.5 0, 012.5 0, 02	2. Runoff		CONTRACTOR OF	AN UE P	College S	and the second	13. Weted perimeter, pw	1.0	1.0	1.0	
Frequency yr 0 50 100 16 Channel slope, s $\frac{m}{m}$ $\frac{10}{m}$ <			Storm #1	Storm #2	2	Storm #3	14. Hydraulic radius, rs a Compute r				
Rainfall, P (24-hour) in $3 \cdot 0^{-8}$ $4 \cdot 12$ $4 \cdot 60^{-1}$ 10^{-1} Manungs rougniess coemicent, n $0 \cdot 025^{-1}$ 10^{-1} Manungs rougniess coemicent, n 10^{-1} Manungs roughest coemicent, n	Frequency		10	50		100	15 Channel slope, s	654	102:	2 120 -	
Runoff, Q in I 5 2 4 2 9 1 Flow length, L n 1 32.0 (Where $a_p = a_u A_m OF_p$) (Use Part/CN with table 21, figure 24, or equators 23 and 24) 5 = $\frac{1000}{-000} - (0 = 1, 9)$ 18. Flow length, L Compute T ₁ n 0.0053/9 + = 0.0053/9 + = 0.0053/9 + = 0.0053/9 + = 0.0053/9 + = 0.0053/9 + = 0.0053/9 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + 1.9.75 + + + <	Rainfall, P (24-hour) in	3.08	4.1	2.	4.60	10. mannings rouginess connection, n	5 <u>9 9 1 1 1</u>	19 68	1.76.913	
$(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$ $(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$ $(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$ $(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$ $(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$ $(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$ $(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$ $(Use P and CN with table 21, figure 21, or equators 23 and 24) S = \frac{1000}{1000} - (0 = 1, 9)$	Runoff, Q	in	1 50	2.4	8	2 91	18. Flow/length, L ⁿ (Where $q_p = q_a A_m OF_p$) (Where $q_p = q_a A_m OF_p$)				
$\frac{1}{20}$ (20. Watershed or subarea T _c or T _t (add T _t in steps 6, 11, and 19)	(Use P and	CN with table 2-1, figure 2-1, or	1100	6.1	0	C+11	19. Tt = L Compute Tt				
10	equations 2	$S = \frac{1000}{54} - 10 =$	= 1,9				20. Watershed or subarea T _C or T _t (add T _t in steps 6, 11, and 19) Hr				

Existing Co	onditions vs. Proposed Impr	ovements of C	ross-Sections HEC-RAS				
Variables	Existing Conditions	Compliance	Proposed Improvements	Compliance			
STA	1+82		1+82				
Flow rate (cfs)	103	Yes	103	Yes			
Velocity (ft/s)	2.5	Yes	2.5	Yes			
Water surface elevation (ft)	6929.1	N/A	6927.6	N/A			
Freeboard (ft)	0.0	No	0.3	No			
Flow Regime	Subcritical	Yes	Subcritical	Yes			
STA	1+32		1+57				
Flow rate (cfs)	103	Yes	103	Yes	r		
Velocity (ft/s)	4.0	Yes	2.4	Yes		Channel Requirements	Section
Water surface elevation (ft)	6928.7	N/A	6927.5	N/A			SWMD
Freeboard (ft)	0.0	No	0.4	No	Flow Rate	Shall be designed for the 25-year design storm at a minimum	4.3
Flow Regime	Subcritical	Yes	Subcritical	Yes	Water Surface	Shall be consistent with maintaining a minimum freeboard of 1-foot	434
STA	0+90		0+66.5		Elevation	throughout the channel	4.3.4
Flow rate (cfs)	103	Yes	103	Yes	Velocity	Maximum velocity of 18 ft/s	4.3.3
Velocity (ft/s)	4.3	Yes	2.67	Yes	Freeboard	Minimum freeboard of 1-foot	4.3.4
Water surface elevation (ft)	6927.5	N/A	6927.0	N/A	Flow Regime	Earth lined channels should not be operating at supercritical flow	4.3.3
Freeboard (ft)	0.0	No	0.7	No			
Flow Regime	Supercritical	No	Subcritical	Yes	Culvert Beguirements		Section o
STA	0+60		0+60		Cuivert Requirements		SWMDM
Flow rate (cfs)	103	Yes	103	Yes	Elow Pato	Culverts near a collector/arterial street should convey a 50-year storm	5.2.1
Velocity (ft/s)	4.9	Yes	4.13	Yes	Flow Rate	event without overtopping (103 cfs)	5.2.1
Water surface elevation (ft)	6926.8	N/A	6926.8	N/A	Water Surface	Minimum freeboard of 2-feet at inlet with respect to the low chord	5422
Freeboard (ft)	0.0	No	0.0	No	Elevation		5.4.2.2
Flow Regime	Subcritical	Yes	Subcritical	Yes	Velocity	Minimum velocity of 3 ft/s	5.2
STA	0+30	-	0+30		Headwater	HW/D ratio must be \leq 1.2 for cross sectional area greater than 30 sq. ft.	5.2.3.1
Flow rate (cfs)	103	Yes	103	Yes	Freeboard	Minimum freeboard of 1-foot	4.3.4
Velocity (ft/s)	4.5	Yes	4.3	Yes	Flow Regime	Avoid Froude number in the range of 0.86-1.13	4.3.3
Water surface elevation (ft)	6926.6	N/A	6926.6	N/A			
Freeboard (ft)	0.0	No	0.0	No			
Flow Regime	Subcritical	Yes	Subcritical	Yes			
STA	0+00		0+00				
Flow rate (cfs)	103	Yes	103	Yes			
Velocity (ft/s)	5.6	Yes	5.8	Yes			
Water surface elevation (ft)	6926.1	N/A	6926.0	N/A			
Freeboard (ft)	0.2	No	0.3	No			
FI D 1	Supercritical	No	Critical	Ves			

Cha	annel Cut	/Fill Analysi	s (cu. ft.)		
Cross-Section	Cu	ıt (-)	Fill (+)		
STA 0+00					
STA 0+30	326		99		
STA 0+60		OE		21	
STA 0+66.5	01	00	21		
Outlet	01		21		
Inlet	220		0	1	
STA 1+57	329	1420	0	1	
STA 1+82		1429		1	
Total Cut:	- 78 cu.yd.				

Earth Work Calculations for Culvert				
Туре	Description	Cut/Fill Total (cu. yd.)		
Cut (-)	Excavation to place culvert	221.5		
Cut (-)	Wingwall installation	8.4		
Fill (+)	Fill wingwalls	19.3		
Fill (+)	Fill above culvert to road	61.7		
Fill (+)	Fill other parts of culvert	28		
	Total Cut:	- 120.9 cu. yd.		

Cut/Fill Summary for Hydraulic			
Total Cut for Culvert	- 120.9 cu. yd.		
Total Cut for Channel	- 78 cu.yd.		
Summation of Total Cut	- 198.9 cu.yd.		

Table 11.4 Classifica	ation and Gradation Of Ordinary Riprap
Riprap Classification	D ₅₀ (inches)
Type VL	6
Type L	9
Type M	12
Туре Н	18
Type VH	24

Figure 11.3 Riprap Protection at Rectangular Conduit Outlets

(from UDFCD, 2001)

Use H_α instead of H whenever culvert has supercritical flow in the barrel. ******Use Type L for a distance of 3H downstream.

Rectangular culvert:

$$\frac{\left(\frac{d_{50}}{H}\right)\left(\frac{Y_{f}}{H}\right)}{\frac{Q}{WH^{1.5}}} = 0.014$$

Solving for
$$d_{50}$$
:

where:

W	=	width of rectangular culvert, in feet, and
Η	=	height of rectangular culvert, in feet.

 $d_{50} = \frac{0.014QH^{0.5}}{WY_t}$

Q (cfs)	W (ft)	H (ft)	Yt (ft)	Yn (ft)		0 105
103	16	3	1.48	1.48	d50 (Tt)	0.105

$$H_a = \frac{(H+Y_n)}{2}$$
 11.6

in which the maximum value of H_a shall not exceed H, and

where:

 D_a = parameter to use in place of D_c in Figure 11.2 when flow is supercritical,

11.3

11.4

- D_c = diameter of circular culvert, in feet,
- H_a = parameter to use in place of H in Figure 11.3 when flow is supercritical,
- H = height of rectangular culvert, in feet, and
- Y_n = normal depth of supercritical flow in the culvert.

Ha	2.24
Yt/H	0.660714
Q/WH^0.5	3.716692
Run length (ft)	9
Type L, D50 (in)	9