John Wesley Powell Blvd. West Extension Design - City of Flagstaff

Prepared For: Jeff Bauman

PE, PTOE, Traffic Engineer, City of Flagstaff

By: Cristine Aguila, Elijah Begay, Logan McFarland, and Steven McKimmey

Date: 5/7/2024

Final Report

Contents

Acknowledgements	6
1.0 Project Introduction	7
1.1 Project location	7
1.2 Existing Conditions	8
1.3 Constraints	8
1.4 Major Objectives	9
1.5 Exclusions	9
2.0 Research and Data Collection	9
2.1 Review Codes and Standards	9
2.2 Identify Design Vehicle	9
2.3 Collect Existing Geotechnical Data	10
3.0 Site Investigation	12
3.1 Site Visit Planning	12
3.2 Land Survey	12
3.3 Traffic Counts	
3.4 Photographs of Site Features	14
3.5 Collect Existing Hydraulic Structure Data	15
3.6 Topographic Map	
4.0 Hydrologic Analysis	19
4.1 Watershed Delineation	19
4.2 Runoff Estimation	20
4.3 Time of Concentration	20
4.4 Storm Intensity	22
4.5 Peak Flow	22
5.0 Hydraulic Analysis	23
5.1 Existing Channel Analysis	24
5.2 Post-Improvement Hydraulic Analysis	25
5.3 Proposed Culvert and Channel Design	29
5.3.1 Determine Criteria	29
5.3.2 Develop Alternatives	
5.3.3 Analyze Alternatives and Select Best	

6.1 Roadway Geometry	34
6.2 Intersection Design	
6.2.1 Determine Criteria	
6.2.2 Develop Alternatives	
6.2.3 Analyze Alternatives and Select Best	
6.3 Pavement Design	43
6.3.1 Determine Criteria	43
6.3.2 Develop Alternatives	44
6.3.3 Analyze Alternatives and Select Best	45
6.4 Sidewalk Design	47
6.5 Signage and Striping	47
7.0 Economic Cost	48
7.1 Construction Cost	48
8.0 Impacts Analysis	49
8.1 Social Impacts	49
8.2 Economic Impacts	49
8.3 Environmental Impacts	50
9.0 Summary of Engineering Work	50
10.0 Summary of Engineering Costs	50
11.0 Conclusion	53
References	54
Appendix	56
Appendix A: Soil Report	56
Appendix B: Safety Plan	57
Appendix C: Field Notes	58
Appendix D: Traffic Counts	59
Appendix E: Photographs of Site Features	60
Appendix F: Existing Channel Cross Sections	61
Appendix G: Utility Map	62
Appendix H: StreamStats Report	63
Appendix I: TR-55 Worksheets	64
Appendix J: Existing Hydraulic Outputs from HEC-RAS	65
Appendix K: Proposed Hydraulic Outputs from HEC-RAS	66

Appendix L: Cut & Fill Analysis for Hydraulic Structures	67
Appendix M: Riprap Calculations	68
Appendix N: Construction Drawings	69
Appendix O: Intersections Design Reports	70
Appendix P: Image of Signage and Striping	71
Appendix Q: Referenced Roadway Cost Template	72
Appendix R: Cost Estimate for Culvert	73
Appendix S: Proposed Gantt Chart	74
Appendix T: Final Gantt Chart	75
Appendix U: Final Timesheet	76

List of Figures

Figure 1-1: Location map of project within Flagstaff, Arizona [1]	7
Figure 1-2: Existing project site	8
Figure 2-1: Typical WB-67 vehicle dimensions [2]	10
Figure 2-2: Geotechnical drainage area map	11
Figure 3-1: Surveying existing channel	12
Figure 3-2: Team member utilizing JAMAR board to manually count traffic	13
Figure 3-3: Turning movements for West intersection	13
Figure 3-4: Turning movements for East intersection	14
Figure 3-5: Looking downstream of existing channel	15
Figure 3-6: Ariel image of existing channel	16
Figure 3-7: Plan view of stations and cross-sections	17
Figure 3-8: Channel profile	17
Figure 3-9: Topographic map	18
Figure 4-1: Drainage basin perimeters	19
Figure 4-2: Rainfall intensity diagram [6]	22
Figure 5-1: Profile view of 1-D HEC-RAS model of existing channel's condition	24
Figure 5-2: Profile view of 1-D HEC-RAS model of proposed hydraulic structure	26
Figure 5-3: Plan view of HEC-RAS stationing	27
Figure 5-4: Proposed cross-section of the precast twin-cell culvert	33
Figure 5-5: Flared wingwall configuration	33
Figure 5-6: Plan view of final hydraulic structure design	34
Figure 6-1: Map of proposed alignment	35
Figure 6-2: Typical roadway plan view	36
Figure 6-3: Horizontal Alignment	37
Figure 6-4: Vertical alignment and profile	38
Figure 6-5: Proposed conditions of Lake Mary Rd. & JWP intersection	41

Figure 6-6: MUTCD Warrant 3	
Figure 6-7: S. Pulliam Dr. & JWP Intersection	
Figure 6-8: Typical layer cross-section for pavement design	46
Figure 6-9: Typical roadway cross-section for pavement design	

List of Tables

Table 2-1: Map unit legend	11
Table 3-1: Projected data for year 2045	14
Table 5-1: CoF SWMDM channel design guidelines	23
Table 5-2: CoF SWMDM culvert design guidelines	23
Table 5-3: Evaluation of existing cross-sections using HEC-RAS	25
Table 5-4: Evaluation of improved cross-sections using HEC-RAS	28
Table 5-5: Evaluation of proposed culvert in HEC-RAS	29
Table 5-6: Decision matrix for culvert shape	30
Table 5-7: Culvert scoring description	31
Table 5-8: Proposed culvert characteristics & dimensions	31
Table 6-1: Decision matrix for Lake Mary Rd. & JWP intersection design	39
Table 6-2: Intersection(s) scoring descriptions	40
Table 6-3: Decision matrix for S. Pulliam Dr. & JWP intersection design	41
Table 6-4: Scoring description for pavement design	44
Table 6-5: Decision matrix of pavement design	46
Table 7-1: Construction cost analysis for roadway and hydraulic structure	48
Table 10-1: Proposed staffing summary by task	51
Table 10-2: Proposed staffing cost	51
Table 10-3: Staffing summary by task	52
Table 10-4: Staffing cost summary	53

List of Equations

Equation 4-1: Potential maximum retention [5]	20
Equation 4-2: Runoff in units of length [5]	20
Equation 4-3: Sheet flow [5]	21
Equation 4-4: Shallow concentrated flow [5]	21
Equation 4-5: Hydraulic radius [5]	21
Equation 4-6: Manning's equation [5]	21
Equation 4-7: Channel flow [5]	21
Equation 4-8: Time of concentration [5]	22
Equation 4-9: Peak discharge [5]	23
Equation 6-1: Minimum radius for horizontal curve [9]	

List of Abbreviations

AADT	Average Annual Daily Traffic
AASHTO	American Association of Highway and Transportation Officials
ADA	American Disabilities Act
ADOT	Arizona Department of Transportation
CCEDCM	Coconino County Engineering Design and Construction Manual
CoF	City of Flagstaff
DDM	Drainage Design Manual for Yavapai County
DEM	Digital Elevation Map
FHWA BSP	Federal Highway Administration Bases and Subbases for Pavements Manual
FUTS	Flagstaff Urban Trail System
HEC-RAS	Hydrologic Engineering Center – River Analysis System
JAMAR	Traffic Data Analysis & Reporting Software
JWP	John Wesley Powell
LOS	Level of Service
MAG SPDPWC	Maricopa Association of Governments Specifications and Details for Public Works Constructions
MUTCD	Manual on Uniform Traffic Control Devices
NOAA	National Oceanic and Atmospheric Administration
SWMDM	Storm Water Management Design Manual
TAC	TexAmericas Center
USACE	U.S. Army Corps of Engineers
USGS	United States Geographical Survey
VHF-DME	Very High-Frequency Omni-Directional Range with Distance Measuring Equipment
WSS	Web Soil Survey

Acknowledgements

This project would not have been possible without Jeff Bauman, the project client. The team would like to thank him for providing field data for this project to allow us to stay on schedule.

The team gives thanks to Dr. Edward Smaglik for serving as the technical advisor for this project and providing input towards the technical aspects of the project. The team would also like to thank the capstone faculty: Dr. Jeffrey Heiderscheidt, Dr. Robin Tuchscherer, and Dr. Bridget Bero, for their guidance with non-technical aspects of this project (scheduling, staffing, budgeting, and project management).

A special thanks is also for Dr. Jeffrey Heiderscheidt as he helped keep us on track with weekly meetings, gave constructive feedback, and guided the team to a successful project. His guidance and evaluations were invaluable in the completion of this project.

1.0 Project Introduction

The John Wesley Powell Blvd West Extension Design project aims to extend John Wesley Powell Boulevard (JWP) from South Pulliam Drive to Lake Mary Road, with the primary purpose of enhancing the accessibility to underserved areas. This project centers on a 1.5-mile section between South Pulliam Dr. and Lake Mary Rd.

1.1 Project location

The project is in the Northern Arizona region. The site lies due East of I-17, see Figure 1-1 below. The City of Flagstaff, various neighborhoods, local facilities, and key landmarks can also be seen surrounding the project location in the figure below.

Figure 1-1: Location map of project within Flagstaff, Arizona [1]

The JWP Extension Project aids in improving connectivity and accessibility within this portion of Flagstaff, while offering benefits to both its residents and visitors. Figure 1-2 provides a satellite image of this location; this map is an overview of the project area, hatched in white.

Figure 1-2: Existing project site

1.2 Existing Conditions

Figure 1-2, the vicinity map of the project area, provides a detailed overview of the immediate surroundings as it serves as a reference point for understanding the specific challenges imposed by the existing conditions. Other factors that were considered are: an ongoing housing development to the north, a significant wash located at the intersection of Lake Mary Rd. and JWP Blvd., an existing dirt road that traverses through forested areas, natural terrain, ridges, hills, and minor washes. Additionally, there is a permanent Very High-Frequency Omni-Directional Range (VHF-DME) with Distance Measuring Equipment situated in a cleared field nearby.

1.3 Constraints

The JWP West Road extension faces several constraints. The roadway's path is restricted due to minimal space availability and the need to avoid interfering with airport's daily operations, VHF Omni-Directional Range device, and airport runway thus limiting options to one viable route.

Due to the close proximity of the road to neighboring communities and businesses, the installation of pedestrian facilities such as sidewalks and the American Disabilities Act (ADA) accessible ramps are necessary. However, this requires additional space for sidewalks, bike lanes, crossings, and other facilities and utilities, thus limiting culvert and gutter design options.

Additionally, Flagstaff's freeze and thaw cycles pose as a constraint for road durability and maintenance, as it limits material selection and installation, construction, and maintenance techniques.

1.4 Major Objectives

The major objective of the JWP West Blvd. extension is to connect South Pulliam Dr. with Lake Mary Rd. This will provide greater access to nearby communities and provide a quicker route for getting across town, reducing traffic congestion in crucial areas.

1.5 Exclusions

The following items will not be included nor collected for the project: geotechnical lab sampling/testing, utility design (sanitary sewer, water, storm, gas, electrical, etc.), a full hydraulic design of ditches along the new roadway. Additionally, the Flagstaff Urban Trail System (FUTS) will not be included into the design process; however, it will be considered for later development.

2.0 Research and Data Collection

The research and data collection section covers the methods employed to understand the current conditions of the project site. This includes examination of roadway design standards and regulations, as well as utilization of online tools for site properties identification.

2.1 Review Codes and Standards

In order to ensure adherence to established roadway design standards, an extensive examination of regulatory specifications and standards at the local, state, and federal levels were conducted. The team collectively decided to focus on the manuals and codes from reputable sources, including the City of Flagstaff (CoF) Website, as well as higher-level governmental agencies such as the Storm Water Management Design Manual (SWMDM), Manual on Uniform Traffic Control Devices (MUTCD), and Arizona Department of Transportation (ADOT). With these sources, accurate design practices were able to be followed throughout the entirety of the project.

2.2 Identify Design Vehicle

The primary design vehicle was determined by identifying the type of existing roadways within the project vicinity, the surrounding terrain, and the standard types and volume of vehicles currently using the intersections. This information was needed so that the road can properly accommodate the anticipated flow of traffic both safely and effectively.

Using the Arizona Department of Transportation (ADOT) Roadway Design Guidelines, the roadway was classified as a minor arterial, and therefore the design vehicle was determined to be a WB-67 [2].

As shown in Figure 2-1, the WB-67 refers to a specific type of truck widely used in transportation. These trucks are characterized by their significant size and weight capacity, making them suitable for long-haul transport and heavy-duty applications. With an overall length of up to 76-feet and a maximum gross vehicle weight rating (GVWR) of 67,000 pounds, WB-67 vehicles play a crucial role in the movement of goods and materials across highways and roadways. Their dimensions and weight capacities are important considerations in transportation planning to ensure the safe and efficient operation of these vehicles on public roads.

Figure 2-1: Typical WB-67 vehicle dimensions [2]

2.3 Collect Existing Geotechnical Data

Soil data was collected via the Web Soil Survey (WSS) provided by the United States Geological Survey (USGS) [3]. This information was necessary for the design of the roadway and its construction. The west portion of the road was found to be predominantly a telephone-daze complex.

Telephone Daze Complex series soil is characterized by its unique composition, typically consisting of a mixture of sandy loam or loamy sand with varying degrees of gravel content. These soils often exhibit good drainage properties and are suitable for various agricultural and horticultural activities, depending on local conditions and management practices.

The eastern portion of the road was found to be a mix of a fine sandy loam and a gravelly sandy loam. Figure 2-2, below, shows the mapped area of the project where the soil was analyzed. See Appendix A for the full soil report related to the project site.

Figure 2-2: Geotechnical drainage area map

According to the USGS web soil report, the project site consists of 3 primary soils. By using Table 2-1, the information will be used to assess the runoff curve number for the determination of peak discharge through using the assigned hydrologic soil group. This information will also help determine what type of sub grade will be used for the road and if the soil is feasible for the road. This is necessary for the roadway design and any cut/fill construction costs.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Paymaster family fine	8.2	7.1%
	sandy loam, 0 to 3		
	percent slopes		
19	Telephone gravelly	32.8	28.60%
	sandy loam, 0 to 15		
	percent slopes		
19A	Telephone-Daze	73.8	64.30%
	complex, 0 to 8		
	percent slopes		
Totals for Area of Interest		114.8	100.0%

Table 2-1: Map unit legend

3.0 Site Investigation

Site investigation includes the collection of data and existing conditions of the project. These observations aid in understanding existing site geometry, surrounding intersections, and infrastructures.

3.1 Site Visit Planning

A safety plan was composed by the team to ensure a safe and productive trip to the site. This plan included the objectives of the visit, planned activities, equipment required, and the risks associated. The full version of this safety plan can be found in Appendix B.

3.2 Land Survey

Surveying was performed at the site to analyze the existing channel on the east section of the project site. This was necessary to determine the capacity of the existing channel, quantifying the peak flow, and if modifications need to be made. It was found that the channel exists to the north of the JWP west road extension but not to the south side. A photo of the team performing surveying work can be found in figure 3-1 below. See field notes in Appendix C.

Figure 3-1: Surveying existing channel

3.3 Traffic Counts

Traffic counts were performed at the intersections of JWP & Lake Mary Rd. and JWP & South Pulliam Dr, both ends of the project. The purpose of the counts was to determine the current volume of traffic at these intersections so that the traffic volume in 2045 can be estimated with the implementation of the new road. This information is needed so that the new road will continue to serve Flagstaff and its residents for years to come. The traffic counts were performed using a TDC Ultra traffic data recorder from JAMAR Technologies at each intersection on February 1st, 2023, as shown in Figure 3-2. PetroPro software, version 1.7.43, from JAMAR Technologies was used to evaluate and interpret this information. Fully detailed tables showing turn movements at these intersections can be found in Appendix D.

Figure 3-2: Team member utilizing JAMAR board to manually count traffic

Figure 3-3 and Figure 3-4 are an image representation of the intersection with its traffic volumes and turn movements; for both A.M. (8 am to 9 am) and P.M. (4 pm to 5 pm) peak hours. Figure 3-3 represents the counts that were completed on the west intersection of the project: South Pulliam Dr. & JWP Blvd. It is important to note that within this intersection, it branches into potential users entering/exiting from the Flagstaff Pulliam Airport and FedEx workers utilizing the intersection. Since there is no existing road from the east, it was expected to have a lower number of users. Other contributing users were due to nearby residential areas and the usage of the interstate for both A.M. and P.M. peak hours.

Figure 3-4 represents the counts that were collected on the east intersection of the project: Lake Mary Rd. & JWP Blvd. The volume contributors would seem to be diverse due to Lake Mary Rd. operating as a main highway that enters Flagstaff and JWP Blvd. servicing local residents, that potentially departs into other locations (i.e., schools, rehabilitation facilities).

S. Pulliam Dr. & JWP Blvd. (AM/PM Hours)

Figure 3-3: Turning movements for West intersection

Lake Mary Rd. & JWP Blvd. (AM/PM Hours)

Figure 3-4: Turning movements for East intersection

Furthermore, the data provided from the city are future projections of traffic volumes within the vicinity of the project. Such forecast is used to evaluate the level of service of these intersections depending on the volume. They are also used to determine what necessary designs (i.e. signalized intersection, roundabout, etc.) that should be incorporated into the project.

This data will be used in conjuncture with the CoF's projected traffic volume for 2045 (Table 3-1). This will be done by assuming a 10% peak hour traffic for the average annual daily traffic (AADT). An engineer's estimate will be performed by analyzing the turning movements at each intersection to predict the future traffic movements with the addition of the proposed road.

2045 Projected Traffic Volume			
Intersection: Lake Mary Road and JWP	AADT	Peak Hour	
Lake Mary (Southbound)	6578	658	
Lake Mary (Northbound)	2093	209	
JWP (Eastbound)	4133	413	
JWP (Westbound)	7973	797	
Intersection: S Pulliam Drive and JWP	AADT	Peak Hour	
S Pulliam (Southbound)	1793	179	
S Pulliam (Northbound)	2490	249	
JWP (Eastbound)	7963	796	
JWP (Westbound)	5429	543	

Table 3-1: Projected	l data for year 2045
----------------------	----------------------

3.4 Photographs of Site Features

Photographs of the site were taken to ensure a complete understanding of the project site and its physical features. These photos were used for clarification and reference to avoid extra visits to

the site causing additional travel costs. The picture below shows a few key features that are necessary for better understanding the existing conditions. Figure 3-5 is an image of the channel, looking downstream (northeast towards Lake Mary Rd). The channel is lightly vegetated with semi-tall shrubs and newly planted pine trees. The bottom of the channel is composed of muddy and coarse soil along with some rocky linen at the beginning of the channel, seen in Figure 3-5. Additional photos taken at the site can be found in Appendix E.

Figure 3-5: Looking downstream of existing channel

3.5 Collect Existing Hydraulic Structure Data

Within the boundaries of the project, one operable channel can be observed trailing North, near the east intersection. This channel is segmented along the north side of the Flagstaff Pulliam Airport runway, far upstream from this focused area. Figure 3-6 is an ariel image of the channel that intersects with the proposed graded JWP alignment. This channel can be characterized with upstream and downstream regions, based on the direction flow to the north. As the channel progresses downstream, the channel becomes well defined at the red indicator; while in the upstream region, the channel is flat. The blue hatch in Figure 3-6 shows the existing channel bed.

Figure 3-6: Ariel image of existing channel

To examine the channel's changes in slope, 6-points upstream and 10-points downstream were collected at the thalweg to create a profile of the existing channel. With the channel's cross sections being uniform, 3 cross-sections at 30-foot intervals were documented downstream and will be used to evaluate the existing flow of the stream. For these stations and cross sections, see Figure 3-7, which correspond with Figure 3-8. Note that no cross sections were documented upstream due to it being evenly flat. To enhance the quality of the necessary data of the cross sections, 7-points were surveyed to characterize the change of the cross section: these points are the left floodplain, left of top bank, left of bottom bank, the thalweg, right of bottom bank, right of top bank, and right floodplain. These point elevations were determined using surveying equipment and using one known elevation point of a manhole that was located near the east intersection. Cross sections of the downstream channel can be found in Appendix F. This channel can be identified as an existing hydraulic structure due to conveyance expectancy, while the culvert that underlays Lake Mary Rd. was not evaluated.

Figure 3-7: Plan view of stations and cross-sections

Figure 3-8: Channel profile

3.6 Topographic Map

A topographic map was acquired through the City of Flagstaff with 2-foot contour lines. This map was analyzed and turned into a surface using Autodesk Civil 3D 2024, in order to delineate the watershed and better understand both the flow of water and the current topography of the roadway. Figure 3-9 is the topographic map of the project. The road (seen in yellow) will be set in between the airport's boundary, and the VHF-DME. Other existing features are the surrounding residential areas and roads. To properly design the channel/culvert and the geometry of the roadway, it is important to note that water flows to the east due to the difference in the intersection's elevations. More information about existing culverts and stormwater drainages throughout the project can be found in Appendix G.

Figure 3-9: Topographic map

4.0 Hydrologic Analysis

A hydrological analysis included delineating the sub basin, determining the longest concentration path within the sub basin, and calculating the peak discharge for the project location. Using the watershed and knowing the soil conditions for each affected area allowed the use of the USDA TR-55 method to determine the peak storm water flow. The method is only applicable to drainage areas less than 2,000-acres with a time of concentration less than or equal to two hours; this project site has a drainage area of 155 acres (about twice the area of a large shopping mall). Using the graphical peak method is limited to a single watershed area, which the current project's watershed meets. Ultimately, the peak discharge was used as a parameter for designing a culvert on the upstream side of the existing channel under the proposed road.

4.1 Watershed Delineation

The watershed in the project site was delineated using USGS StreamStats (version 4) where it uses a Digital Elevation Map (DEM) to determine its drainage-basin boundaries. Choosing a junction on the site's east side served as the outlet for the watershed to be delineated (Figure 4-1). Using the Civil 3D software with the constructed surface map also gave more information pertaining to slope and elevations between different points along the channel. Refer to Appendix H for the full StreamStats report showing the boundaries and expected flow paths within the project site.

Figure 4-1: Drainage basin perimeters

4.2 Runoff Estimation

The soil was categorized into two different groups, B and D. A "Soil B" classification represents silt loam or loam. "Soil D" is classified as clay loam, silty clay loam, sandy clay, silty clay, or clay [4]. A runoff curve number was then selected from Table 2-2a of the USDA TR-55 manual [5]. This value was then used to find the potential maximum retention after runoff begins within the bounded area, see Equation 4-1. The precipitation data for the site was found using National Oceanic and Atmospheric Administration (NOAA) Atlas 14 for a 24-hour 50-year storm [6]; the 50-year storm is used because the road is classified as a collector/arterial street per Storm Water Management Design Manual (SWMDM). The runoff in units of length can now be calculated in Equation 4-2.

Equation 4-1: Potential maximum retention [5]

$$S = \frac{1000}{CN} - 10$$

Where,

S: Potential maximum retention after runoff begins (*in*) *CN*: Curve number

Equation 4-2: Runoff in units of length [5]

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Where,

Q: Runoff (*in*) P: Rainfall (*in*) S: Potential maximum retention after runoff begins (*in*)

4.3 Time of Concentration

The USDA TR-55 assumes open and unconfined flow over land and in channels. This method covers sheet flow, shallow concentrated flow, and channel flow to ultimately calculate the time of concentration, which represents the time it takes for runoff to travel from the farthest point in a watershed to a specific location of interest. Equation 4-3 calculated the travel time of sheet flow over a relatively flat surface (upstream from the existing channel). Equation 4-4 calculated shallow concentrated flow over small channels of water just downstream from overland flow (along the North side of Pulliam airport's runway). Equation 4-5,4-6,4-7 calculated channel flow where the collected hydraulic data was used to find the velocity and area of the channel's cross section (downstream near the Eastern intersection). The total time of concentration can now be calculated in Equation 4-8. The time of concentration was found to be 1.96-hours.

Equation 4-3: Sheet flow [5]

$$T_t = \frac{0.007(nL)^{0.8}}{P_2^{0.5}s^{0.4}}$$

Where,

 T_t : Travel time (hr) n: Manning's roughness coefficient L: Flow length (ft) P_2 : Two-year frequency, 24-hour rainfall (in) s: Slope of hydraulic grade line (ft/ft)

Equation 4-4: Shallow concentrated flow [5]

$$T_t = \frac{L}{3600 V}$$

Where,

 T_t : Travel time (hr) L: Flow length (ft) V: Average velocity (ft/s) from Figure 3-1 [5]

Equation 4-5: Hydraulic radius [5]

$$r = \frac{a}{P_w}$$

Where,

r: Hydraulic radius (*ft*) *a*: Cross sectional flow area (*ft*²) P_W : Wetted perimeter (*ft*)

Equation 4-6: Manning's equation [5]

$$V = \frac{1.49r^{2/3}s^{1/2}}{n}$$

Where,

r: Hydraulic radius (ft)

s: Slope of hydraulic grade line (ft/ft)

n: Manning's roughness coefficient from Table 3-1 [5]

Equation 4-7: Channel flow [5]

$$T_t = \frac{L}{3600 V}$$

Where,

 T_t : Travel time (hr) L: Flow length (ft) V: Average velocity (ft/s) Equation 4-8: Time of concentration [5]

$$T_c = T_t + T_t + T_t$$

Where,

T_c: Time of concentration (*hr*)

 T_t : Sheet flow travel time (hr)

 T_t : Shallow concentrated flow travel time (hr)

 T_t : Channel flow travel time (hr)

4.4 Storm Intensity

The USDA TR-55 method uses a 24-hour storm duration to determine the rainfall depth along with the time of concentration calculated above to estimate the peak discharge rate. NOAA Atlas 14 was used to find the 24-hour rainfall for the 50-year storm event. This value was found to be 4.12 inches of rainfall in a 24-hour period for a 50-year storm (Figure 4-2).

Figure 4-2: Rainfall intensity diagram [6]

4.5 Peak Flow

To calculate the peak discharge of the site (Equation 4-9), drainage area, runoff curve number, time of concentration, rainfall distribution, and unit peak discharge were used. Refer to Appendix I for the complete breakdown of the TR-55 procedure that was used to calculate a peak flow of $103 ft^3/s$ for the 50-year storm event. The peak flow is used to design a culvert under the new roadway.

Equation 4-9: Peak discharge [5]

$$q_p = q_u A_m Q F_p$$

Where,

 q_p : Peak discharge (ft^3/s) q_u : Unit peak discharge (csm/in) from Exhibit 4-11 [5] A_m : Drainage area (mi^2) Q: Runoff (in) F_p : Pond and swamp adjustment factor

5.0 Hydraulic Analysis

A hydraulic analysis included evaluating existing channel conditions and proposed improvements to optimize hydraulic performance near the east intersection of the project. Looking at flow rates, velocities, water surface elevations, and compliance with the chosen design criteria, allowed the design of a culvert and channel that meets the project's objectives while ensuring hydraulic stability and functionality from a 50-year storm event. See Tables 5-1 & 5-2 for the following CoF SWMDM policies which guided the existing conditions and proposed improvements to the design [7].

Table 5-1: CoF SWMDM channel design guidelines

	Channel Requirements	Section of SWMDM	
Flow Rate	Shall be designed for the 25-year design storm at a minimum	4.3	
Water Surface	Shall be consistent with maintaining a minimum freeboard of 1-foot	4.3.4	
Elevation	throughout the channel	1.3.1	
Velocity	Maximum velocity of 18 ft/s	4.3.3	
Freeboard	Minimum freeboard of 1-foot	4.3.4	
Flow Regime	Earth lined channels should not be operating at supercritical flow	4.3.3	

Table 5-2: CoF SWMDM culvert design guidelines

Culvert Requirements				
Flow Rate	Culverts near a collector/arterial street should convey a 50-year storm event without overtopping (103 cfs)	5.2.1		
Water Surface Elevation	Minimum freeboard of 2-feet at inlet with respect to the low chord	5.4.2.2		
Velocity	Minimum velocity of 3 ft/s	5.2		
Headwater	HW/D ratio must be \leq 1.2 for cross sectional area greater than 30 sq. ft.	5.2.3.1		
Freeboard	Minimum freeboard of 1-foot	4.3.4		
Flow Regime	Avoid Froude number in the range of 0.86-1.13	4.3.3		

5.1 Existing Channel Analysis

The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center – River Analysis System (HEC–RAS) Version 6.3.1 was used as an iterative software that analyzed the existing channel reach. To accurately utilize HEC-RAS, channel and culvert characteristics were required. All existing data was input from the field survey to create a base 1-D model within the software (Figure 5-1). Note that the stations and cross sections that were used in HEC-RAS are different from the stations that were used previously in this report due to the software's specifics. See Appendix J for software outputs regarding the existing conditions of the channel (i.e. profile, cross-sections, and the standard table).

Figure 5-1: Profile view of 1-D HEC-RAS model of existing channel's condition

The assessment of the existing channel conditions included an examination of cross-sectional data, flow characteristics, and in compliance with the CoF SWMDM. Understanding the current state of the channel allowed the identification of areas that needed improvement such as providing a culvert to convey the water under the road instead of overflowing onto the roadway, this is seen depicted between STA 0+90 and STA 1+32 in Figure 5-1. Table 5-3 shows the existing conditions of the channel; these summaries are compared to CoF stormwater design compliance requirements and are listed as "Yes" or "No" [7].

Existing Conditions of Cross-Sections HEC-RAS						
Variables	Existing Conditions	Compliance				
STA 1+82	50 years	50 years				
Flow rate (cfs)	103	Yes				
Velocity (ft/s)	2.5	Yes				
Water surface elevation (ft)	6929.1	N/A				
Freeboard (ft)	0.0	No				
Flow Regime	Subcritical	Yes				
STA 1+32	50 years	50 years				
Flow rate (cfs)	103	Yes				
Velocity (ft/s)	4.0	Yes				
Water surface elevation (ft)	6928.7	N/A				
Freeboard (ft)	0.0	No				
Flow Regime	Subcritical	Yes				
STA 0+90	50 years	50 years				
Flow rate (cfs)	103	Yes				
Velocity (ft/s)	4.3	Yes				
Water surface elevation (ft)	6927.5	N/A				
Freeboard (ft)	0.0	No				
Flow Regime	Supercritical	No				
STA 0+60	50 years	50 years				
Flow rate (cfs)	103	Yes				
Velocity (ft/s)	4.9	Yes				
Water surface elevation (ft)	6926.8	N/A				
Freeboard (ft)	0.0	No				
Flow Regime	Subcritical	Yes				
STA 0+30	50 years	50 years				
Flow rate (cfs)	103	Yes				
Velocity (ft/s)	4.5	Yes				
Water surface elevation (ft)	6926.6	N/A				
Freeboard (ft)	0.0	No				
Flow Regime	Subcritical	Yes				
STA 0+00	50 years	50 years				
Flow rate (cfs)	103	Yes				
Velocity (ft/s)	5.6	Yes				
Water surface elevation (ft)	6926.1	N/A				
Freeboard (ft)	0.2	No				
Flow Regime	Supercritical	No				

Table 5-3: Evaluation of existing cross-sections using HEC-RAS

5.2 Post-Improvement Hydraulic Analysis

In order to prevent water on the south side of the new road from flowing across the roadway, a new culvert is needed under the new road. After the completion of the HEC-RAS base model, a general culvert was incorporated under the proposed road where the upstream side was excavated to maintain a slope of 0.005 ft/ft to match the already existing channel on the downstream side. The downstream channel was only maintained through cleaning the channel's bottom and freshly excavating the entirety to make it earthy soil. Figure 5-2 shows the profile of the proposed channel and culvert. See Appendix K for software outputs regarding the proposed improvements of the channel (profile, cross-sections, and the standard tables for the channel &

culvert). An excavated ditch on the North and South sides of the proposed road will allow flow to be emptied into the existing channel on both the upstream and downstream sides. Figure 5-3 depicts a plan view of the road, including the proposed culvert underneath it, with stationing's along the channel that were inputted in HEC-RAS.

Figure 5-2: Profile view of 1-D HEC-RAS model of proposed hydraulic structure

Figure 5-3: Plan view of HEC-RAS stationing

The assessment of the proposed channel conditions included an examination of cross-sectional data, flow characteristics, and compliance with the SWMDM. Table 5-4 shows the proposed improvements of the channel; these summaries are compared to CoF stormwater design compliance requirements and are listed as "Yes" or "No" [7]. The yellow cells in the table shows improvements when having a culvert in the channel's system. Although freeboard didn't meet the requirements, there's still improvements within that area. If the existing channel's thalweg elevation were to be lower and if the top of the banks were higher, a better improvement would be shown.

Existing Conditions vs. Proposed Improvements of Cross-Sections HEC-RAS					
Variables	Existing Conditions Compliance		Proposed Improvements	Compliance	
STA	1+82		1+82		
Flow rate (cfs)	103	Yes	103	Yes	
Velocity (ft/s)	2.5	Yes	2.5	Yes	
Water surface elevation (ft)	6929.1	N/A	6927.6	N/A	
Freeboard (ft)	0.0	No	0.3	No	
Flow Regime	Subcritical	Yes	Subcritical	Yes	
STA	1+32		1+57		
Flow rate (cfs)	103	Yes	103	Yes	
Velocity (ft/s)	4.0	Yes	2.4	Yes	
Water surface elevation (ft)	6928.7	N/A	6927.5	N/A	
Freeboard (ft)	0.0	No	0.4	No	
Flow Regime	Subcritical	Yes	Subcritical	Yes	
STA	0+90		0+66.5		
Flow rate (cfs)	103	Yes	103	Yes	
Velocity (ft/s)	4.3	Yes	2.67	Yes	
Water surface elevation (ft)	6927.5	N/A	6927.0	N/A	
Freeboard (ft)	0.0	No	0.7	No	
Flow Regime	Supercritical	No	Subcritical	Yes	
STA	0+60		0+60		
Flow rate (cfs)	103	Yes	103	Yes	
Velocity (ft/s)	4.9	Yes	4.13	Yes	
Water surface elevation (ft)	6926.8	N/A	6926.8	N/A	
Freeboard (ft)	0.0	No	0.0	No	
Flow Regime	Subcritical	Yes	Subcritical	Yes	
STA	0+30		0+30		
Flow rate (cfs)	103	Yes	103	Yes	
Velocity (ft/s)	4.5	Yes	4.3	Yes	
Water surface elevation (ft)	6926.6	N/A	6926.6	N/A	
Freeboard (ft)	0.0	No	0.0	No	
Flow Regime	Subcritical	Yes	Subcritical	Yes	
STA	0+00		0+00		
Flow rate (cfs)	103	Yes	103	Yes	
Velocity (ft/s)	5.6	Yes	5.8	Yes	
Water surface elevation (ft)	6926.1	N/A	6926.0	N/A	
Freeboard (ft)	0.2	No	0.3	No	
Flow Regime	Supercritical	No	Critical	Yes	

Table 5-4: Evaluation of improved cross-sections using HEC-RAS

The hydraulic structure was designed as a concrete twin-cell box culvert with dimensions of each cell being 8-feet wide by 3-feet high (refer to section 5.3.3 for culvert section) with an invert elevation of 6925.9-feet. The assessment of the proposed culvert design is shown in Table 5-5 with the included and relevant CoF stormwater design compliance requirements for culverts. As seen, all requirements are met with the proposed culvert; the outlet has the water surface elevation and headwater ratio set as "N/A" because there is no specific guidance.

Table 5-5: Evaluation of proposed culvert in HEC-RAS

	Culvert Conditions HEC-RAS					
	Culvert 8x3 (2)	Inlet	Comulianas	Outlet	Compliance	
	Variables 50 years		Compliance	50 years	Compliance	
	Flow rate (cfs)	103	Yes	103	Yes	
& e	Velocity (ft/s)	5.9	Yes	4.5	Yes	
llts (Water surface elevation (ft)	6927.5	Yes	6927.0	N/A	
esu mp	HW/D ≤ 1.2	0.47	Yes	N/A	N/A	
a S	Freeboard (ft)	1.4	Yes	1.6	Yes	
	Flow Regime	Supercritical	Yes	Supercritical	Yes	

5.3 Proposed Culvert and Channel Design

The proposed culvert and channel design aimed to optimize hydraulic performance, ensure structural integrity, and meet regulatory requirements.

5.3.1 Determine Criteria

An established criteria that guided the selection and evaluation of design alternatives were considered:

- <u>Cost</u>: The design must be cost-effective, considering both initial costs and long-term maintenance expenses. Cost-effective solutions will be prioritized for the project's budget utilization.
- <u>Efficiency</u>: The design should maximize hydraulic efficiency through taking the average amount of freeboard on the immediate upstream and downstream cross-section. This helps ensure optimal flow rates and velocities to minimize energy losses and maximize conveyance capacity.
- <u>Constructability</u>: The design must be practical and easy to construct within the project constraints, considering factors such as available resources, equipment, and construction techniques. This is essential to ensure timely and cost-effective project implementation.
- <u>Aesthetics</u>: The design should enhance the visual appeal of the project area, integrating with the surrounding environment and meeting aesthetic preferences of stakeholders. This will contribute to the overall quality and perception of the project with a lower priority.

The assigned weights for each criterion were considered to align with project priorities. Cost, accounting for 35%, reflects the need for a budget-friendly solution that balances initial expenses and long-term maintenance costs. Efficiency, weighted at 35%, emphasizes hydraulic performance by optimizing freeboard and flowrates. Constructability, with a 20% weight, ensures practicality and timely execution within project constraints. Lastly, Aesthetics, at 10%, acknowledges the importance of visual integration while maintaining a lower priority in the overall evaluation.

5.3.2 Develop Alternatives

Design alternatives were developed based on different culvert configurations, materials, and dimensions. These alternatives were evaluated against the established criteria to determine their suitability and effectiveness. The following alternatives were considered: concrete box culvert, corrugated metal pipe, concrete arch-entrance, and concrete ellipse culvert.

The following options were analyzed: Concrete Box, noted for its hydraulic efficiency, ease of installation, and clean aesthetic look, yet it's challenged by initial cost; Corrugated Metal Pipe, praised for its cost-effectiveness and moderate flow suitability but faced concerns regarding durability and visual appeal; Concrete Arch, admired for its visually appealing arch design and hydraulic efficiency but hindered by higher construction costs and complexity of installation; and Concrete Ellipse, recognized for its hydraulic efficiency and harmonizing elongated shape with the natural surroundings, yet constrained by higher costs and limitations, which required consideration in the culvert design and selection process.

5.3.3 Analyze Alternatives and Select Best

Each design alternative was analyzed against the established criteria to identify the most suitable option. This analysis involved hydraulic modeling, cost estimation, constructability assessment, and consideration of aesthetic preferences. See Table 5-6 for the decision matrix which was each scored on a scale of 1-3; "1" is worst, "2" is neutral, and "3" is good; for more information on the scale, see Table 5-7 for the descriptions of each criterion.

Decision Matrix									
		Concrete Box		Corrugated Metal Pipe		Concete Arch		Ellipse	
Culvert Entrance Design:		section - x10 \$66,370)	~ \$860 per 2' (Total:	dia.pipe-x16 \$13,800)	~ \$370 per (Total: :	foot 3' dia. 579,000)	~ \$1,010 per (Total::	foot -3' dia. \$76,800)	
Criteria	Weight (%)	Avg Score (1-3)	Weighted Score	Avg Score (1-3)	Weighted Score	Avg Score (1-3)	Weighted Score	Avg Score (1-3)	Weighted Score
Cost	35	2	0.70	3	0.89	1	0.35	1	0.35
Efficiency	35	3	0.95	1	0.35	2	0.79	1	0.47
Constructability	20	2	0.40	3	0.60	1	0.27	1	0.21
Aesthetics	10	2	0.24	1	0.10	3	0.30	2	0.20
Weighted Score	100		2.29		1.94		1.71		1.23

Table 5-6: Decision matrix for culvert shape

Scoring Description for Culvert					
Criteria	1 (Worst)	2 (Neutral)	3 (Good)		
Cast	Structure is very costly & not economical (>\$70,000)	Is costly nor economical	Structure is economical, very sufficient (<\$30,000)		
Efficiency	Does not meet conveyance & allowable freeboard	Able to either convey or have resonable freeboard	Able to channel design flow & has adequate amount of freeboard		
Constructability	Challenging installation, requires additional labor & equipment	Structure requires adequate construction	Less labor & equipment		
Aesthetics Not eye-appealing; does not fit into surrounding background		Has normal appeal	Structure appears to fit into terrain		

Table 5-7: Culvert scoring description

As seen in the decision matrix above, the concrete box culvert was chosen as the preferred option due to its favorable performance in terms of hydraulic efficiency, cost-effectiveness, ease of construction, and aesthetic appeal.

The typical characteristics of the culvert are shown in Table 5-8, where the material, length, span & height, inlet invert elevation, outlet invert elevation, slope, wingwalls, and the headwalls are described.

Culvert Characteristics				
Material	Concrete (ASTM C850)			
Run Length (ft)	76.67 (10 sections at 7'8")			
Span & Height (ft)	8x3 (2 entrances)			
Inlet Invert Elevation (ft)	6925.9			
Outlet Invert Elevation (ft)	6925.5			
Slope (ft/ft)	0.005			
Wingwalls	Flared 30-75 degrees			
Headwalls	Square edge at crown			
Soil Cover Inlet (ft)	1.16			
Soil Cover Outlet (ft)	1.44			

Table 5-8: Proposed culvert characteristics & dimensions

As stated, the primary focus of designing a culvert with its surrounding channel is to improve conveyance, providing a path for existing sheet flow to be channelized below a

roadway to prevent infrastructure damage. Doing so will require a reduction in the water surface elevation at the existing cross-sections (downstream), as well as excavating a new channel on the upstream side. The ditch following the north side of the proposed road will feed into the channel's reach. Maintaining the channel's bottom and side banks will improve the flow path and promote positive freeboard through the channel's reach. Although the freeboard did not meet the minimum of 1-foot, improvements were made in all other areas. To increase freeboard, a larger cross-sectional area through the reach and a reduction in the channel's roughness such as having a complete concrete lining would improve efficiency. Note that only a few cross-sections were designed on the upstream side, so a complete channel design is outside the scope of work.

The side slopes of the earthy soil walls met the minimum requirement of 3V:1H per SWMDM 4.3.2 [7]. These slopes were completed by conducting a cut & fill analysis at each cross-section. The channel is reshaped to accommodate the culvert resulting in excess soil to be removed, see Appendix L for the cut & fill analysis. At the outlet of the culvert, there is a placement of 9-inch stones as riprap to combat the fast-moving outlet velocity. The riprap extends downstream for a length of 9-feet while the width of the riprap follows the contours of the defined trapezoidal channel (Appendix M). The riprap serves as a protective measure, preventing erosion and maintaining stability in the vicinity of the culvert outlet per the Drainage Design Manual for Yavapai County (DDM) [8].

See Figures 5-4 & 5-5 for a visual representation of the culvert's inlet, outlet, and wingwall configurations. Additionally, Figure 5-6 provides a plan view of the culvert integrated into the system, with the proposed road overlaid on top. This view will help illustrate the spatial relationship between the culvert and the roadway alignment. See Appendix N sheets 10, 11, & 12 for detailed construction plans regarding the hydraulic design.

Figure 5-4: Proposed cross-section of the precast twin-cell culvert

Figure 5-5: Flared wingwall configuration

Figure 5-6: Plan view of final hydraulic structure design

6.0 Roadway Design

The roadway design includes an extensive analysis and design process encompassing all aspects of the roadway. Roadway geometry was analyzed to determine the number of lanes, width, radius for curves, horizontal and vertical alignments, etc. Two intersections were also analyzed and designed to best serve the users in the most efficient and inexpensive way. Pavement design is necessary so the road can be properly maintained and serve the users for a long time. An effective sidewalk design was implemented so pedestrians feel safe and comfortable when traversing alongside the road. Finally, roadway signage and striping are required to help guide the users and maximize their safety.

6.1 Roadway Geometry

The roadway geometry consists of multiple different aspects, each contributing to the roadway design. Due to the surrounding terrain, there was only one feasible path for the designated roadway, which runs adjacent to Flagstaff Pulliam Airport. This path can be seen in Figure 6-1. The design speed stays consistent with the adjoining roads at 40-miles per hour.

Figure 6-1: Map of proposed alignment

The number of lanes was determined by calculating the level of service (LOS) of the roadway. Using the projected 2045 traffic volume provided by the city of flagstaff, the level of service for a two-lane road will operate at a LOS B. According to the ADOT Roadway Design Guidelines, this road should be operating at or above a LOS B, therefore the design requirement is met [2].

The lane and shoulder width were determined based on the design vehicle and the ADOT Roadway Design Guidelines. The width of each lane was determined to be 12-feet in both directions. The cross slope on each side of the roadway is 2%, meeting at the middle so the water can run off to the shoulder. The shoulder on each side is designed as 5.5-feet wide with the north side having a curb and gutter of 1.5-feet wide. The shoulder will have a slope of 4% to increase runoff and prevent water from backing up onto the road. Each shoulder will also serve as a bike lane. Drawing sheets showing the typical road section can be found in Appendix N sheet 3.

A 6-foot sidewalk was designed on the northern side of the road to help serve pedestrians. Only the northern side was designed with a sidewalk due to the nearby neighborhood. There are no attractions on the southern side that are accessible to the public, therefore pedestrian travel is not expected. Additionally, by leaving the southern side with just a shoulder, future development, such as adding lanes, can be more easily achieved.

Additionally, there will be trench drains along the sidewalk to allow for water to pass under the sidewalk and into a channelized ditch on the other side. The water flow on the southern side will

run off the shoulder and into the existing ditch that is parallel to Flagstaff Pulliam Airport. Figure 6-2 shows a typical roadway plan view that will reflect what the roadway geometry looks like.

Figure 6-2: Typical roadway plan view

The horizontal alignment was designed according to the American Association of Highway and Transportation Officials (AASHTO) guidelines [9]. Equation 6-1 shows the formula for calculating the minimum radius for a horizontal curve.

Equation 6-1: Minimum radius for horizontal curve [9]

$$R = \frac{V^2}{15(f_s + \frac{e}{100})}$$

Where,

V: Design Speed (mph)

 f_s : Side Friction Design Coefficient

e: Maximum Rate of Superelevation

The minimum radius for horizontal curves on the designated roadway was calculated to be 410feet. Superelevation requirements are also required to counteract the centripetal forces on the vehicle. For a minor arterial, the maximum rate of superelevation shall be 0.04. All of these requirements were met in the roadway design. Each horizontal alignment was designed with a 410-foot radius of curvature. One of the horizontal alignments on the roadway can be seen in Figure 6-3 below.

Figure 6-3: Horizontal Alignment

The vertical alignment of the roadway was designed according to the Coconino County Design Guidelines. Considering the design vehicle and the road classification, a maximum grade of 6% is to be used in the vertical direction. A minimum grade of 0.5% is also necessary to help contribute to rainfall runoff. In the design, the vertical grades range from 0.66-1.17%, meeting the design requirements. The vertical profile showing alignment information can be seen in Figure 6-4.

Figure 6-4: Vertical alignment and profile

6.2 Intersection Design

Two intersections were designed for the designated roadway, Lake Mary Rd. and John Wesley Powell Blvd. and Pulliam Dr. and John Wesley Powell Blvd. Each intersection was designed using the projected 2045 traffic data and the teams traffic counts. Using the traffic counts in section 3.3, an engineer's estimate was performed to project the turning and thru volumes for each leg.

6.2.1 Determine Criteria

According to the CoF and ADOT Design Guidelines, intersection design must consider efficiency, safety, capacity, cost of operation, and operating speed [2]. The intersections shall be accommodating to all users, including vehicles, bicycles, and pedestrians. The decision matric in Figure 6-1 is based off cost, efficiency, constructability, and service to pedestrians. Cost was weighted at 25% due to the financial practicality of each alternative. Efficiency was weighted at 40% as this determines how successful the intersection is. Constructability was weighted at 15% to compare the ease of construction/timeline. Service to pedestrians was weighted at 20% in order to accommodate pedestrians successfully and safely.

6.2.2 Develop Alternatives

Four alternatives were considered for each intersection, a two-way stop, four-way stop, roundabout, and signalized intersection. Each alternative was picked due to its popularity and potential service to the users.

A two-way stop would be inexpensive and easy to construct, but lack in the efficiency of the minor street to both vehicles and pedestrians. A four-way stop would also be inexpensive and easy to construct but would lack efficiency in all directions. A roundabout would be very expensive to construct, poor service to pedestrians, and excellent efficiency to vehicles. A signalized intersection would be costly to construct, provide excellent efficiency to pedestrians, and decent efficiency vehicles in all directions.

6.2.3 Analyze Alternatives and Select Best

All of the alternatives were evaluated using Vistro to determine the level of service, delay, signal phasing, etc. A decision matrix for the intersection of Pulliam Dr. and JWP can be found in Table 6-1 below. The scale for rating is from 1-3, "1" being bad, "2" being neutral, and "3" being good; for more information on the scale, see Table 6-2 for the descriptions of each criterion.

Decision Matrix									
Lake Mary Road and JWP Intersection:		Signa	gnalized 2-Way Stop		4-Way Stop		Roundabout		
Criteria	Weight (%)	Avg Score (1-3)	Weighted Score	Avg Score (1-3)	Weighted Score	Avg Score (1-3)	Weighted Score	Avg Score (1-3)	Weighted Score
Cost	20	2	0.40	3	0.60	3	0.60	1	0.20
Efficiency	45	2	0.90	1	0.45	1	0.45	2	0.90
Constructability	15	2	0.30	3	0.45	3	0.45	1	0.15
Pedestrians	20	3	0.60	1	0.20	2	0.40	1	0.20
Weighted Score	100		2.20		1.70		1.90		1.45

Table 6-1: Decision matrix for Lake Mary Rd. & JWP intersection design

Scoring Description for Intersection								
Criteria	1 (Worst)	2 (Neutral)	3 (Good)					
Cost	Design is very costly	Design applies to categories 1 and 3	Design is not very costly					
Efficiency	LOS E-F	LOS C-D	LOS A-B					
Constructability	Challenging installation, requires additional labor & equipment	Requires adequate construction	Less labor & equipment					
Pedestrians	LOS E-F	LOS C-D	LOS A-B					

Table 6-2: Intersection(s) scoring descriptions

From the decision matrix above, a signalized intersection was determined to be the best alternative. This intersection was further evaluated in Vistro and determined to operate at a level of service C. Along with the addition of the designated road, a right turn lane was added on the eastern leg of the intersection. The full report for the designed intersection can be found in Appendix O. Figure 6-5 below shows an example of what the intersection would look like, along with its turning volumes (based on traffic projections for the year 2045), signal phases, and level of service for each leg. A fully detailed drawing sheet for this intersection can be found in Appendix N sheet 8.

Figure 6-5: Proposed conditions of Lake Mary Rd. & JWP intersection

The intersection of Pulliam Dr. and John Wesley Powell Blvd. was also determined by the use of a decision matrix and can be found in Table 6-3 below.

Decision Matrix									
S Pulliam and JWP		Signalized		2-Way Stop		4-Way Stop		Roundabout	
Criteria	Weight (%)	Avg Score (1-3)	Weighted Score						
Cost	20	2	0.40	3	0.60	3	0.60	1	0.20
Efficiency	45	3	1.35	2	0.90	1	0.45	3	1.35
Constructability	15	2	0.30	3	0.45	3	0.45	2	0.30
Pedestrians	20	3	0.60	2	0.40	2	0.40	1	0.20
Weighted Score	100		2.65		2.35		1.90		2.05

Table 6-3: Decision matrix for S. Pulliam Dr. & JWP intersection design

This intersection was also analyzed to ensure that a signal is warranted at this location. Using the peak hour volume of 1300 vehicles per hour on the main road and 250 vehicles

per hour on the minor road for the year 2045, the MUTCD Warrant 3 was analyzed. This warrant compares the two roads peak hour volume, and if the value exceeds the line for 1 lane and 1 lane, the signal is warranted. Figure 6-6 shows warrant 3 with the traffic values in red.

Figure 6-6: MUTCD Warrant 3

From the decision matrix and the signal warrant, a signalized intersection was determined to be the best alternative. This intersection was further evaluated in Vistro and determined to operate at a level of service B. The full report for the designed intersection can be found in Appendix O. Figure 6-7 below shows an example of what the intersection would look like, along with its turning volumes, signal phases, and level of service for each leg. A fully detailed drawing sheet for this intersection can be found in Appendix N sheet 9.

Figure 6-7: S. Pulliam Dr. & JWP Intersection

6.3 Pavement Design

Pavement Design for this project includes the analysis of the structural and functional aspects essential for constructing a durable, safe, and cost-effective road surface. The final pavement design was analyzed based on durability, effectiveness, and cost. Additional information including width, depth, and material selection specifications and requirements were based off of the Coconino County Engineering Design and Construction Manual (CCEDCM) [10], Maricopa Association of Governments Specifications and Details for Public Works Constructions (MAG SPDPWC) [11] and the Federal Highway Administration Bases and Subbases for Pavements Manual (FHWA BSP) [12].

6.3.1 Determine Criteria

Several criteria, namely durability, effectiveness, and cost, were carefully assessed for pavement design selection. Durability refers to the ability of the pavement to withstand wear and tear over time. Effectiveness pertains to how well the pavement meets the intended purpose of facilitating safe and efficient transportation, as well as assessing its drainage capabilities and its ability to perform under the road's expected volumes. Cost

considers the financial implications of construction, maintenance, and rehabilitation throughout the pavement's lifespan.

See Table 6-5 for the decision matrix which was each scored on a scale of 1-3; "1" is worst, "2" is neutral, and "3" is good; for more information on the scale, see Table 6-4 for the descriptions of each criterion. Each criterion was assigned weights based on its importance and performance metrics to quantify the suitability of different design alternatives. Cost is allocated the highest weight at 35% because it directly impacts the project's budget and financial feasibility. This percentage indicates that minimizing costs and optimizing cost-efficiency throughout the pavement's lifecycle are crucial objectives for the project. Durability is also assigned a weight of 35% due to its critical role in determining the pavement's longevity and performance. A weight of 35% underscores the project's emphasis on selecting materials and designs that can withstand wear and tear over time, reducing maintenance costs and disruptions due to premature pavement failures. Effectiveness received a weight of 30%, highlighting its role in evaluating how well the pavement meets functional and performance requirements. This includes aspects such as safety, efficiency in transportation, drainage capabilities, and overall performance under expected traffic conditions. A weight of 30% indicates that while effectiveness is vital, it is slightly less weighted compared to cost and durability in this decision matrix.

This structured approach ensured that the chosen pavement design not only met technical requirements but also aligned with budgetary constraints and long-term sustainability goals.

Scoring Description for Pavement Design								
Criteria	1 (Worst)	2 (Neutral)	3 (Good)					
Cost	highest upfront cost	moderate upfront cost	lowest upfront cost					
Durability	shorterst lifespan, continuous maintenance necessary	moderate lifespan, moderate maintenance necessary	longest lifespan, minimal maintenance necessary					
Effectiveness	not permeable, cannot withstand heavy traffic load	moderately permeable, lower ability to withstand heavy traffic load	permeable, can withstand heavy traffic load					

Table 6-4: Scoring description for pavement design

6.3.2 Develop Alternatives

Two alternate materials considered for the pavement were asphaltic concrete and concrete. Asphaltic concrete, also known as asphalt pavement, consists of a mixture of asphalt binder and aggregates. It is commonly used for flexible pavement due to its ability

to withstand heavy loads and adapt to minor ground movements. Asphaltic concrete offers benefits such as faster construction time, smoother ride quality, and ease of maintenance through surface treatments like overlays. Conversely, concrete pavement comprises a mixture of cement, water, and aggregates, providing rigid support for heavy traffic loads. Concrete pavements are known for their durability, long service life, and resistance to deformation under high temperatures. However, they often require longer construction periods and can be more expensive to install and repair compared to asphaltic concrete.

6.3.3 Analyze Alternatives and Select Best

In terms of cost based on cubic and square yards for the unit price, construction, and maintenance, asphaltic concrete is the most economical. The cost per cubic yard for asphaltic concrete typically ranges from \$80 to \$100, while concrete can range from \$100 to \$175 per cubic yard. Moreover, maintenance costs for asphaltic concrete are generally lower due to easier repairability.

In terms of durability, asphaltic concrete has a lifespan of approximately 15 to 20 years, depending on factors such as traffic volume and climate conditions, while concrete has an average lifespan of 20 to 30 years. However, it's important to note that proper maintenance practices can significantly extend the lifespan of both materials.

In terms of effectiveness, asphaltic concrete outperforms traditional concrete in terms of permeability, allowing for more efficient water drainage from roadways. This permeability not only reduces the risk of hydroplaning but also enhances drainage during heavy rainfall, thereby improving overall road safety and minimizing long-term maintenance costs. Moreover, the porous nature of asphaltic concrete helps mitigates traffic-generated noise, resulting in a quieter driving experience compared to concrete surfaces. However, the increased porosity of asphalt also contributes to its susceptibility to cracking and potholes in regions with freeze and thaw cycles, like Flagstaff. Consequently, regular crack sealing and seal coating of asphaltic pavement are required more frequently than with concrete pavement, to maintain its durability and performance.

By systematically scoring each material against the defined metrics, the decision matrix provided a comprehensive assessment of the advantages and disadvantages of each option, aiding in the selection of the most suitable pavement material for the project (Table 6-5).

Decision Matrix								
Material O	otions:	Asphaltic	Concrete	Concrete				
Critoria	$M_{oight}(0/)$	Avg Score	Weighted	Avg Score	Weighted			
Criteria	weight (%)	(1-3) Score		(1-3)	Score			
Cost	35	3	1.05	1	0.35			
Durability	35	2	0.7	2	0.7			
Effectiveness	30	2	0.6	2	0.6			
Weighted Score	100		2.35		1.65			

Table 6-5: Decision matrix of pavement design

Based on the decision matrix, asphaltic concrete scored the highest and was selected for the roadway design. With the surface material selected, the full pavement was designed. As shown in Figure 6-8 several layers were needed to ensure compliance with the pavement design requirement. Per the CCEDCM, the topmost asphaltic concrete layer must have a minimum thickness of 6 inches and a base thickness of a minimum of 6 inches [10]. Per the FHWA BSP the sub-base layer must have a minimum thickness of 4 inches [12]. Lastly, per the MAG SPDPWC, any layer under asphaltic concrete must be compacted to 100% [11].

Figure 6-8: Typical layer cross-section for pavement design

Shown in Figure 6-9 and in the Appendix N sheet 2, is the final roadway cross section and pavement design. Key features of the roadway include 12-foot lanes with a 2% slope, a 5.5- foot shoulder with a 4% slope, a 1.5-foot curb and gutter with a 4% slope, and a 6-foot sidewalk along the north side of the roadway.

Figure 6-9: Typical roadway cross-section for pavement design

6.4 Sidewalk Design

Using the CCEDCM, it was determined that the sidewalk width be no less than 6-feet wide for arterial roads. Additionally, based on the Arizona Department of Transportation Concrete Driveway and Sidewalks Standard Drawings [13], it was determined that the sidewalk be 4-inches thick. Standard concrete will be used to make the sidewalk.

6.5 Signage and Striping

Signage and stripping are a fundamental aspect of a roadway as they guide users and promote safety. Signage sizing and shapes were followed according to the Manual on Uniform Traffic Control Devices (MUTCD).

White markings are used for the right-hand edge of the roadway, including the shoulder and bike lane. Yellow markings are used to delineate the separation of traffic traveling in opposing directions. These markings will be on the left-hand side of the road. Bike lanes will be marked with a figure and arrow to indicate the direction of travel. This figure will be 10-16 in the MUTCD. Each intersection will have a white stop line at its designed area to indicate stopping before the line. Where necessary, a continental crosswalk will be present in front of the stop line to indicate where pedestrians will be crossing the street. Turn lane markings at each intersection will be according to 10-10 in the MUTCD. These markings will indicate the turning movement of each lane and will promote safety at each intersection.

Due to the roadway having turns and not being very long, there will be no passing zones along its length and will consist of a solid yellow line in its entirety. To enforce this policy, "Do Not Pass"

signs will be present throughout the roadway, configuring to R4-1 in the MUTCD. Speed limit signs will be placed on each side of the roadway and will configure to R2-1 in the MUTCD. All MUTCD signage and striping designs can be found in Appendix P.

Streetlights are to be spaced at intervals of 300-feet along the minor arterial. This consistent spacing ensures adequate coverage without creating unnecessary glare. Streetlights are positioned at the property lines. However, this placement should not conflict with other utility service locations. In areas where there is curbing but no sidewalk (south side), streetlights should be installed 2-feet from the back of the curb. When the sidewalk aligns with the back of the curb (north side), streetlights should be placed 1-foot from the back of the sidewalk [14].

7.0 Economic Cost

The project consists of two major components that work together to develop a safe and efficient design for JWP West. Therefore, two cost analyses were performed. Each analysis was completed by referencing local projects of similar scopes. Cost estimates for the roadway portion were obtained through CoF (Appendix Q) and cost estimates for the hydraulic portion were obtained from Wieser Concrete, a precast product company (Appendix R).

7.1 Construction Cost

The major contributors to the cost of this design are the asphaltic concrete pavement, concrete sidewalk, and the precast box culvert. The general estimate of the project came out to \$4,466,022, excluding utilities and labor of work from the construction cost (Table 7-1).

Roadway and Hydraulic Structure							
ITEM	Quantity	Unit	Unit Price	Cost			
Roadway:							
6" Asphatic Concrete over 10" MSL ABC Layer	30800	SY	\$65	\$2,002,000			
Traffic Signal Installation	2	EA	\$442,345	\$884,690			
Concrete Sidewalk	47520	SF	\$16	\$760,320			
Streetlight	52	EA	\$6,850	\$356,200			
Vertical Curb and Gutter	7920	LF	\$25	\$198,000			
Remove Existing Tree	120	EA	\$610	\$73,200			
White Bike Lane Striping	15840	LF	\$2	\$31,680			
6" Double Yellow Stripe Marking	7920	LF	\$4	\$31,680			
Roadway Earthwork (Cut & Fill)	1212	CY	\$21	\$25,452			
40 MPH Speed Limit Sign	2	EA	\$750	\$1,500			
Do Not Pass Sign	2	EA	\$550	\$1,100			
Pavement Arrow Marking	4	EA	\$125	\$500			
Crosswalk Marking	6	LF	\$2	\$12			
Hydraulic Structure:							
Precast Concrete Box Culvert	1	EA	\$66,375	\$66,375			
Flared Wingwalls	4	EA	\$3,750	\$15,000			
Outlet Protection (RipRap)	121.5	CY	\$75	\$9,113			
Inlet/Outlet Headwall	2	EA	\$2,500	\$5,000			
Hydraulic Earthwork (Cut & Fill)	200	CY	\$21	\$4,200			
TOTAL				\$4,466,022			

Table 7-1: Construction cost analysis for	for roadway and hydraulic structure
---	-------------------------------------

8.0 Impacts Analysis

The proposed extension of JWP Boulevard will bring about significant changes to the social, economic, and environmental landscape of the City of Flagstaff. It's crucial to acknowledge that while there are many positive outcomes, there are also accompanying negative effects that will demand attention and mitigation strategies. The following section provides a comprehensive analysis of the complexities surrounding the extension of JWP Boulevard.

8.1 Social Impacts

The extension of JWP Boulevard West will bring about significant societal effects, both positive and negative. One of the key positive impacts lies in enhanced accessibility. The roadway extension will improve access to local employment centers and essential services, thereby benefiting residents by increasing convenience and reducing future commute times. However, there are also potential negative aspects to consider. Increased traffic flow resulting from the initial construction period could lead to congestion and longer commute times for some residents, offsetting the accessibility benefits for those living in the immediate vicinity. Additionally, increased traffic within the area may result in a substantial increase in noise pollution and overall reduction in aesthetic appeal for surrounding residences. While the design and implementation of the roadway extension aims to enhance safety, there may be initial disruptions and hazards during construction, potentially impacting road safety for pedestrians, cyclists, and motorists alike. However, it's important to note that measures are being taken to mitigate these risks. For instance, the installation of a sidewalk alongside the extended roadway will provide greater pedestrian access, which will be beneficial in the future. This improvement in pedestrian infrastructure can enhance safety by separating pedestrians from vehicular traffic, ultimately reducing the risk of accidents, and promoting walkability in the community.

8.2 Economic Impacts

The extension of JWP Boulevard West is anticipated to have significant economic effects, encompassing both positive and negative outcomes. One positive impact is the potential increase in property values in adjacent areas. Improved accessibility and shorter commute times resulting from the extension may lead to higher property values, benefiting homeowners and potentially attracting new residents. However, there is also the possibility of negative consequences, such as heightened noise pollution and decreased aesthetic appeal due to changes in traffic patterns, which could result in decreased property values for some residents. In terms of economic development, the extension is expected to stimulate growth by facilitating the movement of goods and people. This enhanced access can lead to increased business activity and investment in the region, thereby bolstering the local economy. Nonetheless, there may be challenges associated with managing increased traffic flow and ensuring infrastructure keeps pace with development to support sustainable economic growth.

8.3 Environmental Impacts

The extension of JWP Boulevard West will have environmental effects, presenting both positive and negative implications. One significant concern is the potential for water pollution. Runoff from the road surface, as well as from construction activities, may carry pollutants such as oils, heavy metals, and sediment into nearby waterways, thereby impacting water quality and posing risks to aquatic ecosystems. This presents a clear negative consequence that must be addressed through proper mitigation measures. Additionally, habitat disruption is another notable environmental consideration. The road construction process will involve clearing land, which will disrupt the local environment by removing vegetation and altering natural drainage patterns. This disruption can negatively affect wildlife habitats and biodiversity in the area. However, there may also be positive environmental outcomes to consider. For instance, the implementation of stormwater management systems and erosion control measures during construction can help minimize water pollution and mitigate habitat disruption to some extent. Moreover, if properly planned and executed, the extension could potentially contribute to improved transportation efficiency, reducing overall carbon emissions and mitigating environmental impacts associated with vehicle congestion.

9.0 Summary of Engineering Work

The original proposed design schedule can be found in Appendix S. All the work done for the project followed closely to the teams original set schedule with no major deviations. Field work, including surveying and taking traffic counts were conducted in month of January. By February, analysis of the field work, and the background research for the project were concluded. Following this, the team primarily focused on the hydraulics, hydrology, and geotechnical portions of the project during the month of February and March. By the end of March and the entirety of April, the team worked on the final design, construction plans, and the cost analysis, and were on track to conclude the project earlier than planned, see Appendix T for updated schedule. The main difference between the two schedules is that the actual had less hours and more defined deadlines regarding the submittals; the team continued to work on the weekends and throughout Spring break to meet the current schedule's needs. The remainder of the project duration will be utilized to work on the project website.

10.0 Summary of Engineering Costs

Table 10-1 below outlines the project original proposed staffing hours delegated by task. By estimation, the team determined that the project will take a total of 736 hours, with the Senior Engineer having the second lowest hours logged at 129 hours, the Project Engineer with the highest number of hours logged at 346 hours, the Lab Technician logging the lowest number of hours at 120 hours and the Intern logging a total of 141 hours. A full detailed breakdown of the hourly delegations per task and role can be found in Appendix U.

Task	SENG	ENG	TECH	INT	Total Hours
1.0 Research and Data Collection	0	4	3	2	9
2.0 Site Investigation	1	13	30	24	68
3.0 Hydrologic Analysis	0	12	3	3	18
4.0 Hydraulic Analysis	15	34	32	10	91
5.0 Roadway Design	30	124	26	31	211
6.0 Construction Plans	8	23	0	18	49
7.0 Economic Analysis	6	18	0	7	31
8.0 Impact Analysis	1	6	0	5	12
9.0 Deliverables	8	65	14	24	111
10.0 Project Management	60	47	12	17	136
Total	129	346	120	141	736

Table 10-1: Proposed staffing summary by task

Based on the hourly rates and staffing hours estimated above, a proposed cost of engineering services was created. As shown in Table 10-2, the total proposed cost of engineering services was originally estimated to be \$82,395.

Proposed Cost of Engineering Services								
1.0 Personnel	Classification	Hours	Rat	e, \$/hour		Cost		
	SENG	129	\$	200	\$	25,800		
	ENG	346	\$	120	\$	41,520		
	LAB	120	\$	75	\$	9,000		
	INT	141	\$	25	\$	3,525		
	Total	736			\$	79,845		
2.0 Travel	Classification	Miles/Trip	Rat	Rate, \$/Mile		Cost		
	5 1-Day Trips	7	\$	0.40	\$	14		
3.0 Supplies	Classification	Days	Rat	te, \$/Day		Cost		
	Surveying	3	\$	100	\$	300		
	JAMAR Board	2	\$	75	\$	150		
	Camera	2	\$	50	\$	100		
	Computer Lab	20	\$	100	\$	2,000		
Total					\$	82,395		

Table 10-2: Proposed staffing cost

By the conclusion of the project, it was determined that the hours logged for the project were significantly less than the original proposed staffing hours, with a difference of 87 hours. As shown in Table 10-3 the actual hours logged for the entire project totaled 649 hours with the Senior Engineer having the lowest hours logged at 61 hours, the Project Engineer with the highest number of hours logged at 277 hours, the Lab Technician logging the second lowest number of hours at 136 hours and the Intern logging a total of 175 hours.

Task	SENG	ENG	TECH	INT	Total Hours
1.0 Research and Data Collection	1	16	1	8	25
2.0 Site Investigation	0	21	11	15	47
3.0 Hydrologic Analysis	0	6	3	3	12
4.0 Hydraulic Analysis	5	28	29	28	89
5.0 Roadway Design	15	82	2	26	124
6.0 Construction Plans	4	20	29	24	77
7.0 Economic Analysis	1	5	5	5	16
8.0 Impact Analysis	0	3	2	3	8
9.0 Deliverables	28	71	42	51	191
10.0 Project Management	8	25	13	14	60
Total	61	277	136	175	649

Table 10-3: Staffing summary by task

The difference in the proposed hours and actual hours logged is reflected in the actual cost of engineering services. As shown in Table 10-4, the actual staffing hours logged were significantly less than the proposed staffing hours. It can be seen that actual and proposed cost of the project, has a difference of \$19,830 with the total cost of engineering services coming out to \$62,565. Three major project tasks experienced delays beyond the initial estimates. Firstly, the research and data collection task required an additional 16 hours to complete due to the extensive time needed to review multiple manuals. These manuals required frequent revisits throughout the project duration to ensure compliance with all project requirements. Secondly, the construction plans task took 28 hours longer than planned as new sheets had to be generated with each deliverable submission, necessitating ongoing revisions to individual sheets. Lastly, the deliverable creation task surpassed the original estimate by 80 hours due to the need to develop new sections for the report and revise existing work with each deliverable submission. Conversely, tasks such as site investigation, hydrologic analysis, hydraulic analysis, roadway design, economic analysis, impact analysis, and project management were completed more efficiently than anticipated. This successful management of certain tasks offset the extended timelines experienced in other project areas, enabling the project to maintain overall schedule adherence.

Actual Cost of Engineering Services							
1.0 Personnel	Classification	Hours	Ra	ıte, \$/hour		Cost	
	SENG	61	\$	200	\$	12,200	
	ENG	277	\$	120	\$	33,240	
	LAB	136	\$	75	\$	10,200	
	INT	175	\$	25	\$	4,375	
	Total	649			\$	60,015	
2.0 Travel	Classification	Miles/Trip	Ra	Rate, \$/Mile		Cost	
	5 1-Day Trips	7	\$	0.40	\$	14	
3.0 Supplies	Classification	Days	Ra	ate, \$/Day		Cost	
	Surveying	3	\$	100	\$	300	
	JAMAR Board	2	\$	75	\$	150	
	Camera	2	\$	50	\$	100	
	Computer Lab	20	\$	100	\$	2,000	
Total					\$	62,565	

Table 10-4: Staffing cost summary

11.0 Conclusion

The final design the team selected was a 35-foot road with a 1.5-foot curb/gutter and a 6-foot sidewalk on the northern end. This road traverses to the north of Flagstaff Pulliam Airport and will increase serviceability to surrounding areas. The design abides by all city, county, and state regulations. It is designed according to the projected 2045 traffic volume and will continue to serve its users for years to come.

The road travels above a 76'-8" box culvert which was designed to accommodate a 50-year storm. This culvert design successfully conveys water beneath the roadway in a safe and efficient manner.

The total construction cost for the project is estimated to be \$4,466,022 and the cost of engineering services was calculated to be \$62,565.

The final design will positively impact Flagstaff and its residents by adding an efficient route to get around the city. The addition of this roadway will greatly decrease the amount of travel time users experience as there is currently no direct route between these locations. The design considers all impacts, including social, economic, and environmental. The proposed design enhances Flagstaff's accessibility for all users, encompassing vehicles, bicyclists, and pedestrians.

In summary, while significant progress has been made in the project, several tasks remain to be addressed. Our exclusions, which include utility design, a comprehensive hydraulic design of ditches along the new roadway, FUTS, a full channel design for the upstream section of the existing channel, and the intersection leading up to the residential area, still require attention.

References

- B. Jones, "Arizona US State PowerPoint Map," Maps for Design, 1 January 2023. [Online]. Available: https://www.mapsfordesign.com/product/arizona-us-state-powerpoint-maphighways-waterways-capital-and-major-cities/. [Accessed 26 September 2023].
- [2] Arizona Department of Transportation, "Roadway Design Guidelines," 1 January 2021. [Online]. Available: https://azdot.gov/sites/default/files/media/2022/02/2021-roadway-design-guidelinesfeb-2022-revised.pdf. [Accessed 20 January 2024].
- [3] United States Department of Agriculture , "Web Soil Survey," 31 July 2019. [Online]. Available: https://websoilsurvey.nrcs.usda.gov/app/. [Accessed 20 January 2024].
- [4] Purdue Engineering, "Hydrologic Soil Groups," [Online]. Available: https://engineering.purdue.edu/mapserve/LTHIA7/documentation/hsg.html#:~:text=Soils%20are %20classified%20by%20the%20Natural%20Resource%20Conservation,the%20smallest%20runoff %20potential%20and%20Ds%20the%20greatest. [Accessed 9 February 2024].
- [5] United States Department of Agriculture, "Urban Hydrology for Small Watersheds TR-55," Conversation Engineering Division, Washington DC, Maryland, 1986.
- [6] National Oceanic and Atmospheric Administration, "NOAA ATLAS 14 Point Precipitation Frequency Estimates: KS," HDSC Webmaster, Silver Spring, Maryland, 2017.
- [7] City of Flagstaff Utilities Division, "City of Flagstaff Stormwater Management Design Manual," Stormwater Managment Section, 1 March 2009. [Online]. Available: https://flagstaff.az.gov/DocumentCenter/View/58133/SWMgmtDesignManual-3-09?bidId=. [Accessed 20 October 2023].
- [8] Yavapai County, Drainage Dsign Manual for Yavapai County, Prescott: Yavapai County Arizona, 2015.
- [9] American Association of State Highway and Transportation Officials, "A Policy on Geometric Design of Highways and Strees 'Green Book'," ADOT, 1 January 2018. [Online]. Available: https://kankakeerecycling.com/wpcontent/uploads/2023/04/THE_GREEN_BOOK_A_Policy_on_Geometric_Des.pdf. [Accessed 15 March 2024].
- [10] Coconino County, Arizona, "Coconino County Engineering Desgin and Construction Manual," Coconino County, 1 August 2021. [Online]. Available: /https://www.coconino.az.gov/DocumentCenter/View/25925/2021-Engineering-Design-and-Construction-Manual-EDCM?bidId=. [Accessed 15 March 2024].
- [11] Maricopa Association of Governments, "Uniform Standard Specifications and Details for Public Works Construction," Maricopa Association of Governments, 1 January 2021. [Online]. Available:

https://azmag.gov/Portals/0/Documents/MagContent/2021_MAG_Uniform_Standard_Specifications_for_Public_Works_Construction_SPECS_FINAL.pdf. [Accessed 15 March 2024].

- [12] Federal Highway Administration, "Bases and Subbases for Concrete Pavements," U.S. Department of Transportation, 1 August 2017. [Online]. Available: https://www.fhwa.dot.gov/pavement/concrete/pubs/hif16005.pdf. [Accessed 15 March 2024].
- [13] Arizona Department of Transportation, "Concrete Sidewalk from Curb," ADOT, 1 January 2007. [Online]. Available: https://apps.azdot.gov/files/Roadway-Engineering/Construction-Standard-Drawings/C-05_20_2.pdf. [Accessed 15 March 2024].
- [14] City of Flagstaff, "PAGE 196 CHAPTER 13-12 STREET LIGHTING Divisions," City of Flagstaff, 1
 October 2017. [Online]. Available: https://www.flagstaff.az.gov/DocumentCenter/View/57321/1017-Engineering-Standards---- Streetlights?bidId=. [Accessed 6 May 2024].
- [15] Flagstaff City Charter, "Code Publishing," City of Flagstaff, 1 February 2024. [Online]. Available: https://www.codepublishing.com/AZ/Flagstaff/. [Accessed 15 March 2024].
- [16] U.S. Department of Transportation, "Manual on Uniform Traffic Control Devices," Deferal Highway Administration, 1 January 2004. [Online]. Available: https://mutcd.fhwa.dot.gov/sershs_millennium_eng.htm. [Accessed 15 March 2024].
- [17] TexAmericas, "TexAmericas Center," Texarkana USA, 1 January 2020. [Online]. Available: https://texamericascenter.com/. [Accessed 15 March 2024].

Appendix

Appendix A: Soil Report

See the following pages for the soil report related to the project site.

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Oak Creek-San Francisco Peaks Area, Arizona, Part of Coconino County

JWP West

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	12
Map Unit Descriptions	12
Oak Creek-San Francisco Peaks Area, Arizona, Part of Coconino Coun	ty14
8—Paymaster family fine sandy loam, 0 to 3 percent slopes	
19—Telephone gravelly sandy loam, 0 to 15 percent slopes	15
19A—Telephone-Daze complex, 0 to 8 percent slopes	16
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND				MAP INFORMATION	
Area of Inf	e rest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.	
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points	Ø3 ♥ △	Very Stony Spot Wet Spot Other	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil	
Special ©	Point Features Blowout Water Borrow Pit		Special Line Features tures Streams and Canals	contrasting soils that could have been shown at a more detailed scale.	
× \	Clay Spot Closed Depression	Transport	ation Rails Interstate Highways	Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service	
й .: ©	Gravelly Spot	* *	US Routes Major Roads Local Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator	
人 业 交	Lava Flow Marsh or swamp Mine or Quarry	Backgrou	nd Aerial Photography	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	
0	Miscellaneous Water Perennial Water Rock Outcrop	aneous Water This production of the verse Soil Survey		This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	
+	Saline Spot Sandy Spot Sandy Spot		Arizona, Part of Coconino County Survey Area Data: Version 13, Sep 11, 2023		
⊕ ◇ ◇	Severely Eroded Spot Sinkhole Slide or Slip			Date(s) aerial images were photographed: Oct 19, 2022—Oct 31, 2022	
ţi	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background	

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
8	Paymaster family fine sandy loam, 0 to 3 percent slopes	8.2	7.1%			
19	Telephone gravelly sandy loam, 0 to 15 percent slopes	32.8	28.6%			
19A	Telephone-Daze complex, 0 to 8 percent slopes	73.8	64.3%			
Totals for Area of Interest		114.8	100.0%			

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Oak Creek-San Francisco Peaks Area, Arizona, Part of Coconino County

8—Paymaster family fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1vhk1 Elevation: 6,650 to 7,040 feet Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 43 to 49 degrees F Frost-free period: 90 to 115 days Farmland classification: Not prime farmland

Map Unit Composition

Paymaster and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Paymaster

Setting

Landform: Alluvial fans, flood plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 14 inches: fine sandy loam *H2 - 14 to 60 inches:* loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6c Hydrologic Soil Group: B Ecological site: R039XA108AZ - Meadow 17-22" p.z. Hydric soil rating: No

19—Telephone gravelly sandy loam, 0 to 15 percent slopes

Map Unit Setting

National map unit symbol: 1vhkj Elevation: 6,880 to 7,090 feet Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 43 to 49 degrees F Frost-free period: 90 to 115 days Farmland classification: Not prime farmland

Map Unit Composition

Telephone and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Telephone

Setting

Landform: Hills Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Colluvium and/or residuum weathered from sandstone

Typical profile

H1 - 0 to 3 inches: gravelly sandy loam *H2 - 3 to 11 inches:* gravelly loamy sand *R - 11 to 21 inches:* bedrock

Properties and qualities

Slope: 0 to 15 percent
Depth to restrictive feature: 8 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 0.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6c Hydrologic Soil Group: D Ecological site: F039XA139AZ - Limestone/Sandstone Upland 17-22" Hydric soil rating: No
19A—Telephone-Daze complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 1vhkk Elevation: 6,620 to 7,130 feet Mean annual precipitation: 18 to 24 inches Mean annual air temperature: 43 to 49 degrees F Frost-free period: 90 to 115 days Farmland classification: Not prime farmland

Map Unit Composition

Telephone and similar soils: 55 percent Daze and similar soils: 45 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Telephone

Setting

Landform: Hills Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Colluvium and/or residuum weathered from sandstone

Typical profile

H1 - 0 to 3 inches: gravelly sandy loam *H2 - 3 to 11 inches:* gravelly loamy sand *R - 11 to 21 inches:* bedrock

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 8 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 0.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6c Hydrologic Soil Group: D Ecological site: F039XA139AZ - Limestone/Sandstone Upland 17-22" Hydric soil rating: No

Description of Daze

Setting

Landform: Plains, hills Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone and sandstone

Typical profile

H1 - 0 to 3 inches: fine sandy loam H2 - 3 to 7 inches: clay loam H3 - 7 to 18 inches: clay R - 18 to 28 inches: bedrock

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6c Hydrologic Soil Group: D Ecological site: F039XA139AZ - Limestone/Sandstone Upland 17-22" Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix B: Safety Plan

See the following pages for the safety plan related to the site visit.

Onsite Visit:

Safety Protocols

PREPARED FOR: Jeffery Heiderscheidt

REVISED: 1/25/2023

EDITED BY:

Logan McFarland - Site Coordinator Steven McKimmey - Safety Lead Cristine Aguila - Technical Coordinator Elijah Begay - Technical Coordinator

1. Project Background

Location of the project will take place at the intersection of Lake Mary Rd. and John Wesley Powell Blvd. (Figure 1) at 4:00 PM - 5:00 PM, Thursday, February 1st, 2024. A Morning site visit from 8:00 AM - 9:00 AM will also be conducted on Friday, February 2nd, 2024.

Figure 1: Intersection of interest (East side)

Location of the project will take place at the intersection of South Pulliam Dr. and John Wesley Powell Blvd. (Figure 2) at 4:00 PM - 5:00 PM, Thursday, February 1st, 2024. A Morning site visit from 8:00 AM - 9:00 AM will also be conducted on Friday, February 2nd, 2024.

Figure 2: Intersection of interest (West side)

2. Project Objective

The team will meet at the intersections in order to make consecutive counts of traffic that is transposed on the JAMAR board. The count will be a 15-minute interval for 1-hour. Once the count is over, the data from the JAMAR board will then be transferred to the software 'Petro' for further analysis.

3. Planned Activities

The team will meet at both intersections of the East and West side to conduct a traffic count for a duration of 1-hour on both selected days (Thursday & Friday) while utilizing JAMAR boards. The team will also take photos of existing conditions along the proposed alignment.

4. Equipment Required

It is required that the team, on site, wear safety vests at all times due to being easily identifiable to users at the intersection. Prior knowledge of certain procedures, concerning the risks at any involvement of traffic, will also be required and talked over before collecting data. While maintaining safety, two JAMAR boards will be used for traffic counts.

5. Hazard/Risk Associated

While a serious injury or event can occur at the time of collecting data, it is always appropriate to take the necessary precautions and procedures when being near to ongoing traffic. Thus, the purpose of this protocol must be recognized and discussed, in case any event happens at the time.

6. Safety Protocols

The team has decided upon the following to ensure the safety of the public and team, this will have to be maintained and constantly checked:

- *Individual responsibility* is needed. Must always stand in a safe place, out of any traffic. Must only cross streets in a legal manner, at the crosswalk when a legal signal is displayed or "Stop" sign is present. Must never be in the street for any reason.

- *Teamwork* is required for safety procedures. Two members of the team: one will be logging the data, while the other is assigned coordination duties with the team on the opposite corner, keeping track of when to switch people. Another person needs to be watching the other two team members to help ensure that they do not do something that is considered to be endangering.

Given a possible list of potential actions:

- 1. Team member unconsciously steps out into the road
 - a. A loud and stern shout to alert the endangered member
 - b. A teammate in the proximity will quickly grab the endangered member out of harm
- 2. Team member standing too close to the curb
 - a. Alert endangered member to stand back
 - b. Command everyone to not make the mistake again

- *Protective clothing* is required to be seen by drivers. An orange safety vest will be provided by management. Everyone MUST wear their safety vest when on site.

- Location of the team members are listed:

- 1. Cristine Aguila: First user of the JAMAR board (West)
- 2. Logan McFarland: Standing near JAMAR board user
- 3. Elijah Begay: First user of the JAMAR board (East)
- 4. Steven McKimmey: Standing near JAMAR board user
 - * Roles will be rotating and, thus, all team members must be precautious.

- How and where the streets will be crossed depends on the crosswalk usage and if a signalized crossing is available.

- Vehicles will be legally parked in the Swift Travel Center parking lot.

Additional details:

- 1. Before Count
 - Make sure all team members are up to date with the JAMAR board, how it's used.
 - b. Make sure all team members have orange safety vests on.
 - c. Make sure all team members know the area.
 - d. Be sure to be efficient enough with board so eyes are not taken off of the intersections
- 2. After count
 - a. Be sure to have all members accounted for before leaving the site.
 - b. All brought equipment is accounted for.
 - c. The procedure was clear for all team members.

7. Emergency Response Plan

Logan McFarland: The caller for an emergency (<u>911</u>) Elijah Begay: Emotional support for the injured individual Cristine Aguila: Waver/Flagger against oncoming users Steven McKimmey: Physical support for the injured member to transport him out of the danger zone

Once the injured person has been relieved to emergency care, members of the group will inform the course instructor, Jeffrey Heiderscheidt and the Dean of Students. More steps will be taken as needed.

The following is to ensure that each group member is well aware of the risks of traffic and their potential hazards, however, each member will be as precautious and concise to maintain each other's safety. While abiding by the laws that are carried out within traffic, each group member will fulfill their duties.

Cristine Aguila

Elijah Begay

Logan McFarland

Steven McKimmey

Appendix C: Field Notes

See the following pages for the handwritten field notes.

		WEIAWA	- 1	17
-	Dompt	streem	+ Profi	ile 414.91
Point	B.S.	H.I.	9.5(4)	Elevation (ft)
BM#1	1.19'			69444
5740+00		5.70	6.08	
ST40+10		6.08	-6.85	
STA0+20		0.85	7.64	
ST40+30		7.64	8,22	
STA 0+46		8.02	9.02	
STA 0+50	1	9.01	9.00	
STADIO	3.19	13.4	8.43	
ADITO	12	Mar Barry	8.4D	
STA DIED	10.00		8.49	
STAD 90		in the second	8.27	tabi
1	unchon	in		10.01
	Da	unstro	como P	m file
BM#1	1.5W3	1		69444
STAC+00		X	5.44	
STAU+10		Liel 34	5,56	
STA 0+20	in the second	111 200	6.60	
STA 0-30			5 61	
STAU+Un	- aluk		5 90	
STA (1+5)		No.	E 41	
C-10-60			2.19	
1				
1.1	1			
N.R.		12.11		Sold States

	5	lum	1-7 B		1 L-	
L	WhSH/	CYOSS S	section	STA	0+30	F
Part	B.S.	H.I.	5.5(fl)	Elevano	n CHI	F
BM#1	1.19			6944		3
ST4 (1+00)	1		4.90			-
TA 0+06.	5		5.54			F
STA 0+16.	R1		7.72530	-		-
STA 0+2	.1		7.687	S		-
STA 0+2	1,7	-	7.24			
5T40+	35.0		6.49			
TA U+U	12.9		6.05			-
and a start of			0.5			
			14 m			-
1		1.00			1	
		1.				-
and a		and the second				
						-
						1
			1200			-
						27
					2	-
E. P.		1				2
	2010	2				-
			1			-
110	× 198					4
38	1					4
100 million (1990)	1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and the	· · · ····

1	Pour	Sheun m Cr	L-> R USS Sect	iun STA	Uthe	F
Bint	B.S.	H.I.	S.S.M)	Elevention	(02)	F
BM#1	1.38-			6944		-
STA 6 +00)		4.52			
STAUTIC	4.3	14	7,01			F
STA 0+1	5.8		8.56			-
STA OJ	21		8.62			-
STA 0+3	Pa		8.17			2
STAD-3	2,3		6.91			
STA 0+1	10		6.57			2
						-
						-
						E
						-
	-6					-
	1999		315.77		_	
		1				E
		108				-
						-
				1.		
-						
		1				
-					1	J
	12					4

		1	1		
	Dou	unstrea	am Gros	s Section	STA0-70
BINS	B.S.	H. T.	S.S. Ru	Elevation	At)
13M #1	1.51			Gaun	
STA 0100		1	4.26	1 k	
514 0+13	2		6.40		1
STA 0+13	.25		8.71		
STA 0+2	1.5		8.82		
STA 0+2	60	1213	8.59		
STA U+	5.2	1000	7.20		
STA 0+	5.0		6.91		
	1.2 1.2 1.0	1.000			
				5	
				-	4-2
		5			
			1		
		1.1.1.1	-		
		L Star			
		-		- 62.00	
			1.1.8		

Appendix D: Traffic Counts

See the following pages for the full traffic counts showing all movements at different times.

West side		From	North			From	East			From	South			From 1	West	· · · · · · · · · · · · · · · · · · ·	
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
8:00:00 AM	18	1	i 0	0	2	14	1	0	1	1	4	0	6	11	14	0	
8:15:00 AM	17	C	2	0	0 0	7	0	0	0	0	3	0	7	3	17	0	
8:30:00 AM	18	C) 1	(0 0	10	0	0	1	0	1	0	3	2	6	0	
8:45:00 AM	14	C	0 0	(3	5	1	0	0	0	5	0	4	2	8	0	Total
	67	1	3	() 5	36	2	0	2	1	13	0	20	18	45	0	213
West side		From	North			From	East			From	South			From 1	West	· · · · · · · · · · · · · · · · · · ·	
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
3:45:00 PM	12	C) 0	0	1	2	0	0	0	0	5	0	3	1	31	0	
4:00:00 PM	15	3	3 1	0	0 0	1	0	0	0	1	9	0	7	4	27	0	
4:15:00 PM	12	C	2	0	0 0	3	0	0	0	0	5	0	1	1	26	0	(
4:30:00 PM	22	2	2 0	0	2	1	1	0	0	2	5	0	3	3	23	0	Total
	61	5	; 3	() 3	7	1	0	0	3	24	0	14	9	107	0	237
East side		From	North			From	East			From	South			From	West		
East side Start Time	Right	From	North	Peds	Right	From	East Left	Peds	Right	From	South Left	Peds	Right	From	West Left	Peds	
East side Start Time 8:00:00 AM	Right 2	From Thru 13	North Left 39	Peds	Right	From Thru 0	East Left 2	Peds 0	Right 9	From Thru 15	South Left 0	Peds 0	Right 0	From ¹ Thru 0	West Left 1	Peds 0	
East side Start Time 8:00:00 AM 8:15:00 AM	Right 2 0	From Thru 13 7	North Left 39 38	Peds (Right 0 14 0 24	From Thru 0 0	East Left 2 6	Peds 0 0	Right 9 7	From Thru 15 17	South Left 0 0	Peds 0 0	Right 0	From ' 'Thru 0	West Left 1 0	Peds 0 0	
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM	Right 2 0 0	From Thru 13 7 10	1 North Left 1 39 2 38 36	Peds (Right 0 14 0 24 0 11	From Thru 0 0 0	East Left 2 6 2	Peds 0 0 0 0 0	Right 9 7 4	From Thru 15 17 12	South Left 0 0 0	Peds 0 0 0	Right 0	From 1 Thru 0 0	West Left 1 0 0	Peds 0 0 0 0 0	
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	Right 2 0 0 0	From Thru 13 7 10 13	North Left 3 39 38 0 36 43	Peds ()	Right 0 14 0 24 0 11 0 16	From Thru 0 0 0 0	East Left 2 6 2 2 2 2	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7	From Thru 15 17 12 18	South Left 0 0 0 0	Peds 0 0 0 0	Right 0 0 0 0	From Thru 0 0 0 0	West Left 1 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	Right 2 2 0 0 0 0 2	From Thru 13 7 10 13 43	Left 1 39 2 38 36 43 156 56	Peds () () () () () ()	Right 0 14 0 24 0 11 0 65	From Thru 0 0 0 0 0 0 0	East 2 6 2 2 12	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62	South Left 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0	Right 0 0 0 0 0	From Thru 0 0 0 0 0 0 0	West Left 0 0 0 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	Right 2 0 0 0 0 2 2	From Thru 13 7 10 13 43	Left 39 38 36 36 36	Peds () () () () ()	Right 14 24 11 16 65	From Thru 0 0 0 0 0 0	East 2 6 2 2 12	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62	South Left 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0	From Thru 0 0 0 0 0 0	West Left 1 0 0 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	Right 2 0 0 0 0 2 2 2 2 2 0 2 2	From Thru 13 7 10 13 43	North Left 3 39 7 38 1 36 1 43 1 156	Peds	Right 14 24 11 16 65	From Thru 0 0 0 0 0 0	East Left 2 6 2 2 12	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62	South Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0	Right 0 0 0 0 0 0	From Thru 0 0 0 0 0 0	West Left 0 0 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:30:00 AM	Right 2 0 0 0 0 2 0	From Thru 13 7 10 13 43	North Left 3 39 7 38 9 36 4 43 5 156	Peds () () () () () () ()	Right 14 24 11 16 65	From Thru 0 0 0 0 0 0 0	East 2 6 2 2 2 12	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62	South Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0	From Thru 0 0 0 0 0 0	West Left 0 0 0 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	Right 2 0 0 0 0 2 2	From Thru 13 7 7 10 13 43	North Left 3 39 38 36 3 43 4 156	Peds () () () () ()	Right 14 24 11 16 65	From Thru 0 0 0 0 0 0	East 2 6 2 2 2 12	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62	South Left 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0	From Thru 0 0 0 0 0 0	West 0 0 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	Right 2 0 0 0 2	From Thru 13 7 10 13 43	North Left 3 39 7 38 9 36 3 43 3 156	Peds (((((((Right 14 24 11 11 16 65	From Thru 0 0 0 0 0 0	East Left 2 6 2 2 12	Peds 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62	South Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0	From Thru 0 0 0 0 0	West Left 0 0 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM	Right 2 0 0 0 0 2 0	From Thru 13 7 10 13 43	North Left 3 39 7 38 9 36 9 36 9 43 9 156	Peds () () () () ()	Right 14 24 11 16 65	From Thru 0 0 0 0 0 0	East Left 2 6 2 2 12 12	Peds 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62	South	Peds 0 0 0 0 0	Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	From Thru 0 0 0 0 0	West Left 1 0 0 1 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM 8:45:00 AM	Right 2 0 0 0 2	From Thru 13 7 10 13 43 43	North Left 3 39 38 3 36 3 43 3 156 North	Peds () () () ()	Right 14 24 11 16 65	From 0 0 0 0 0 0 0 From	East Left 2 6 2 2 12 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27	From Thru 15 17 12 18 62 62	South Left 0 0 0 0 0 0 0 South	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	From Thru 0 0 0 0 0 0 From	West Left 1 0 0 1 1 West	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:30:00 AM 8:45:00 AM East side Start Time	Right 2 0 0 0 2 2 2 3 2 3 3 Right 1	From Thru 13 7 10 13 43 43 43 43 7 From Thru	North Left 3 39 7 38 9 36 3 43 3 156 North Left	Peds () () () () () () () () () () () () () (Right 14 24 11 16 65	From Thru 0 0 0 0 0 0 0 0 7 From	East Left 2 6 2 2 12 East Left	Peds 0 0 0 0 0 0 0 Peds	Right 9 7 4 7 27 27 Right	From Thru 15 17 12 18 62 From Thru	South Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0 0 0 8 1 8 1 8 1 8 1 8 1 8 1	From Thru 0 0 0 0 0 0 0 7 0 7 0 7 7 7 7 7 7 7 7	West Left 0 0 0 1 West Left	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:30:00 AM 8:45:00 PM East side Start Time 3:45:00 PM	Right 2 0 0 2 0 3 2 3 2 3 3 Right 0 0 0	From Thru 13 7 10 13 43 43 43 43 7 7 10 11 43 14 14	North Left 3 39 7 38 9 36 9 43 8 156 North Left 16	Peds () () () () () () () () () () () () () (Right 14 24 11 16 65	From Thru 0 0 0 0 0 0 0 0 0 0 7 0 7 7 7 7 7 7 7	East Left 2 2 2 12 12 East Left 6 6 6 7 12 12 12 12 12 12 12 12 12 12	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27 27 <u>Right 6</u>	From Thru 15 17 12 18 62 From From Thru 10	South	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0 Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	From Thru 0 0 0 0 0 0 0 From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0	West Left 1 0 0 1 West Left Left 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM 8:45:00 AM East side Start Time 3:45:00 PM 4:00:00 PM	Right 2 0 0 2 0 0 0 2 2	From Thru 13 7 10 13 43 43 43 43 43 14 13 14 17 17	North Left 3 39 7 38 9 36 9 36 9 36 156 156 156 156 156 156 156 15	Peds () () () () () () () () () () () () () (Right 14 24 11 16 65 85 Right 40 35	From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	East 2 6 2 2 12 East Left 6 13	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27 Right 6 8 8	From Thru 15 17 12 18 62 62 From Thru 10 8 8	South	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0 0 0 8 1 8 1 9 1 0 0 0 0 0	From Thru 0 0 0 0 0 0 0 1 From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0	West Left 1 0 0 1 1 West Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:30:00 AM 8:45:00 AM 8:45:00 AM 8:45:00 AM 3:45:00 PM 4:00:00 PM 4:15:00 PM	Right 2 0 0 0 0 2 0 8 0 0 0 1 0	From Thru 13 7 10 13 43 43 43 43 43 43 43 43 43 4	North Left 3 39 7 38 3 36 3 43 3 156 North Left . 16 18 20	Peds () () () () () () () () () () () () ()	Right 14 24 11 16 65 85 865 <tr< td=""><td>From Thru 0 0 0 0 0 0 0 From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>East 2 6 2 2 12 5 East Left 6 13 9</td><td>Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Right 9 7 4 7 27 Right 6 8 3</td><td>From Thru 15 17 12 18 62 From Thru 10 8 9</td><td>South</td><td>Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>From Thru 0 0 0 0 0 0 0 1 From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>West Left 1 0 0 1 1 West Left 0 0 1 1</td><td>Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Total 368</td></tr<>	From Thru 0 0 0 0 0 0 0 From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0	East 2 6 2 2 12 5 East Left 6 13 9	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27 Right 6 8 3	From Thru 15 17 12 18 62 From Thru 10 8 9	South	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	From Thru 0 0 0 0 0 0 0 1 From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0	West Left 1 0 0 1 1 West Left 0 0 1 1	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368
East side Start Time 8:00:00 AM 8:15:00 AM 8:30:00 AM 8:45:00 AM East side Start Time 3:45:00 PM 4:10:00 PM 4:30:00 PM	Right 2 0 0 2 0 0 0 2 0 8 0 0 0 0 0 1 0	From Thru 13 7 10 13 43 43 43 43 43 43 43 43 43 43 43 43 43	North Left 3 39 7 38 9 36 9 43 9 156 9 156 9 16 16 16 18 20 21	Peds () () () () () () () () () () () () () (Right 14 24 111 16 65 8 8 9 40 35 31 42	From 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	East Left 2 2 2 12 East Left 6 13 9 8 8	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 9 7 4 7 27 Right 6 8 3 8 8	From Thru 15 17 12 18 62 From Thru 10 8 9 10 10 10 10 10 10 10 10 10 10	South Left 0 0 0 0 0 0 0 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	From Thru 0 0 0 0 0 0 0 0 1 From Thru 0 0 0 0 0 0 0 0 0 0 0 0 0	West Left 0 0 0 1 West Left 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0	Peds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 368

Appendix E: Photographs of Site Features

See the following pages for detailed photos of site features.

Conducting traffic counts on JWP Blvd. & Lake Mary Rd.

Conducting traffic counts on JWP Blvd. & S. Pulliam Dr.

Culvert at the furthest point downstream of channel

Looking upstream of the channel

Existing channel (looking upstream)

STA 1+52 cross section (looking upstream)

STA 1+82 cross section (looking upstream)

STA 1+22 cross section (looking upstream)

Riprap at the furthest upstream point of the existing channel

STA 0+00 looking downstream of the existing channel

Graded road from the east side of site

Graded road from east side of site

Further along the graded road

Existing wash with airport security fence along the upper ridge

Existing shallow concentrated flow channel

Existing weir further upstream

Closer view of the weir

Upstream side of the Weir

Weir cross section at bottom level

Midpoint of the proposed roadway

Level rod and benchmark (manhole)

Staking out the downstream channel

Auto level setup

Staking out the upstream side of the channel

Appendix F: Existing Channel Cross Sections

See the following pages for the existing grade of channel cross sections.

Appendix G: Utility Map

See the following page for the utility map.

Appendix H: StreamStats Report

See the following pages for the StreamStats report.

StreamStats Report (JWP West)

 Region ID:
 AZ

 Workspace ID:
 AZ20240206232349911000

 Clicked Point (Latitude, Longitude):
 35.15393, -111.65789

 Time:
 2024-02-06 16:24:15 -0700

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CONTDA	Area that contributes flow to a point on a stream	1.1	square miles
DRNAREA	Area that drains to a point on a stream	1.1	square miles
ELEV	Mean Basin Elevation	6998.097	feet
JANAVPRE	Mean January Precipitation	2.44	inches

> Maximum Probable Flood Statistics

Maximum Probable Flood Statistics Parameters [Crippen Bue Region 16]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.1	square miles	0.1	1000
2/6/24	4.27	PM			
-----------	------	----	--		
_, _, _ ,					

StreamStats

Maximum Probable Flood Statistics Flow Report [Crippen Bue Region 16]

Statistic	Value	Unit
Maximum Flood Crippen Bue Regional	9760	ft^3/s

Maximum Probable Flood Statistics Citations

Crippen, J.R. and Bue, Conrad D.1977, Maximum Floodflows in the Conterminous United States, Geological Survey Water-Supply Paper 1887, 52p. (https://pubs.usgs.gov/wsp/1887/report.pdf)

> Bankfull Statistics

Bankfull Statistics Pa	arameters [Intermonta	ne Platea	au D Bieger 2015]	
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.1	square miles	3.62934	7579.9152
Bankfull Statistics Pa	arameters [Colorado P	lateau P	Bieger 2015]		
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.1	square miles	3.621618	3649.980906
Bankfull Statistics Pa	promotoro [116A Diago	2015]			
		2013]			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
Parameter Code DRNAREA	Parameter Name Drainage Area	Value 1.1	Units square miles	Min Limit 0.07722	Max Limit 59927.7393
Parameter Code DRNAREA Bankfull Statistics Di	Parameter Name Drainage Area sclaimers [Intermonta	Value 1.1 ane Plate	Units square miles au D Bieger 2015	Min Limit 0.07722	Max Limit 59927.7393
Parameter Code DRNAREA Bankfull Statistics Di One or more of the para	Parameter Name Drainage Area Sclaimers [Intermonta	Value 1.1 ane Plate	Units square miles au D Bieger 2015 Estimates were ext	Min Limit 0.07722	Max Limit 59927.7393 known errors.

Statistic	Value	Unit
Bieger_D_channel_width	5.62	ft
Bieger_D_channel_depth	0.324	ft
Bieger_D_channel_cross_sectional_area	1.65	ft^2

Bankfull Statistics Disclaimers [Colorado Plateau P Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

StreamStats

Bankfull Statistics Flow Report [Colorado Plateau P Bieger 2015]

Statistic	Value	Unit
Bieger_P_channel_width	4.54	ft
Bieger_P_channel_depth	0.148	ft
Bieger_P_channel_cross_sectional_area	0.686	ft^2

Bankfull Statistics Flow Report [USA Bieger 2015]

Statistic	Value	Unit
Bieger_USA_channel_width	12.8	ft
Bieger_USA_channel_depth	1.23	ft
Bieger_USA_channel_cross_sectional_area	18	ft^2

Bankfull Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
Bieger_D_channel_width	5.62	ft
Bieger_D_channel_depth	0.324	ft
Bieger_D_channel_cross_sectional_area	1.65	ft^2
Bieger_P_channel_width	4.54	ft
Bieger_P_channel_depth	0.148	ft
Bieger_P_channel_cross_sectional_area	0.686	ft^2
Bieger_USA_channel_width	12.8	ft
Bieger_USA_channel_depth	1.23	ft
Bieger_USA_channel_cross_sectional_area	18	ft^2

Bankfull Statistics Citations

Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G.,2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p. (https://digitalcommons.unl.edu/usdaarsfacpub/1515? utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm_medium=PDF&utm_campaign=PDFCov

> Peak-Flow Statistics

Peak-Flow Statistics Parameters [Peak Region 2 Colorado Plateau 2014 5211]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CONTDA	Contributing Drainage Area	1.1	square miles	0.103	16017
ELEV	Mean Basin Elevation	6998.097	feet		

StreamStats

Peak-Flow Statistics Flow Report [Peak Region 2 Colorado Plateau 2014 5211]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PIL	PIU	ASEp
50-percent AEP flood	55.8	ft^3/s	11.3	275	122
20-percent AEP flood	149	ft^3/s	42.4	523	87.2
10-percent AEP flood	247	ft^3/s	80.1	761	75.7
4-percent AEP flood	423	ft^3/s	149	1200	68.6
2-percent AEP flood	597	ft^3/s	215	1660	66.6
1-percent AEP flood	810	ft^3/s	291	2260	67.3
0.5-percent AEP flood	1070	ft^3/s	376	3040	68.8
0.2-percent AEP flood	1480	ft^3/s	495	4430	72.9

Peak-Flow Statistics Citations

Paretti, N.V., Kennedy, J.R., Turney, L.A., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peak-flow data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2014-5211, 61 p., http://dx.doi.org/10.3133/sir20145211. (http://pubs.usgs.gov/sir/2014/5211/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.19.3 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Appendix I: TR-55 Worksheets

See the following pages for worksheets 2-4.

JWP	West	By Logo	~ Ma	Farl	hand	Date 2	-/7/24
Flagsta	ff, Az	Checked L-ogo	in McFarland			L Date	18/24
Check one: 🖾 Prese	ent Developed				_		
1. Runoff curve n	umber	Seal Maria	1.250		1112	111111	100
Soil name and	Cover description		-	CN 1		Area	Product of CN x area
group (appendix A)	(cover type, treatment, and hydrologic con impervious, unconnected/connected imper	udition; percent rvious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	⊠acres □mi ² □%	
В	Paymenter family fin	e Sandy Slopes	86			8.2	705
D	Telephone gravely Sm O to 15 percent Slo	ly loam, pes	84			32.8	2755
.D	Telephone - Date Com O to 8 Percent Sla	plex;	84			73.8	6199
[⊥] / Use only one CN source	per line		Т	otals	s 🕪	[14,B	9659
N (weighted) = <u>total p</u> total	product = <u>9659</u> = <u>9</u> larea 119.78	34.14 :	Use	CNI	•	84	
. Runoff		A PARTY AND		221	- Mai	-	-
		Storm #1	-	Storn	n #2	-	Storm #3
Frequency .		0	_	5	0	_	100
1000 TACS.	in the second seco	2 68		4	12		410
Rainfall, P (2	(4-nour) in	5.00	-	1	10		1.60

(210-VI-TR-55, Second Ed., June 1986)

NAL

D-2

JWP West	Logan M	Ic Farland	2/7/24
Flagstate AZ	Checked	Entland	Date 2/8/24
			Car Dr Ca
Check one: IdT C Tt through subarea			
Include a map, schematic, or description of flow	pe can be used for e segments.	ach worksheet.	
Sheet flow (Applicable to Te only)	1212/ASTRONO		and the set
Segment ID		Community	
1. Surface description (table 3-1)	Grass		
2. Manning's roughness coefficient, n (table 3-1)	0,15		
3. Flow length, L (total L † 300 ft) ft	292	-	
4. Two-year 24-hour rainfall, P2 in	2.13		
5. Land slope, s ft/ft	F2010.0	-	-
6. $T_{I} = \frac{0.007 \text{ (nL)}^{0.8}}{P_{9} 0.5 \text{ s}^{0.4}}$ Compute T_{I} hr	0.6158	+	=0,615
Shallow concentrated flow	in an and	a fer al an	A STREET
Segment ID		comments	
7. Surface description (paved or unpaved)	numpowed	Purch areas	5
8. Flow length, Lft	7,214		_
9. Watercourse slope, s fv/tt	0.0083		_
10. Average velocity, V (figure 3-1) ft/s	.5		_
11. T _t = <u>L</u> Compute T _t hr L	1.336	+	= 1,334
Channel flow		R. Contraction	CERTER
Segment ID		Commoni	5
2. Cross sectional flow area, a ft ²	105.22		
3. Wetted perimeter, pw ft	27		
4. Hydraulic radius, r= Compute r ft	3.897		
5 Channel slope, s	0.0125		_
6. Manning's roughness coefficient, n	0.025	(mobile but	1.0-
7. V = 1.49 r 2/3 s 1/2 Compute Vft/s	16.50		
8. Flow-length, L ⁿ	320		_
	D.DOCSA		-

(210-VI-TR-55, Second Ed., June 1986)

JWP West	Br	McFarla	ad Dat	2/7/20
Flagstaff, Az	Checked	McFarl	nd Du	w Z/8/24
Check one: Developed				
. Data				
Drainage area	.18 mi ² (acres/640)		
Runoff curve numberCN =	84 (From	n worksheet	2)	
Time of concentration	957 hr (F	rom workshe	et 3)	
Rainfall distribution =	(I, IA,	i) III)		
Pond and swamp areas sprea throughout watershed =O	percent	of A _m (<u>b.o.</u> acres o	or mi ² covered
		Storm #1	Storm #2	Storm #3
2. Frequency	ут	10	50	100
3. Rainfall, P (24-hour)	in	3.08	4.12	4.60
4. Initial abstraction, Ig (Use CN with table 4-1)	in	0.381	0.381	0-3%1
5. Compute I _a /P		0.124	0.092	0.083
6. Unit peak discharge, q _u	csm/in	230	230	230
7. Runoff, Q	in	1.58	2,40	2,91
(From worksheet 2) Figure 2-6		-	1	-
8. Pond and swamp adjustment factor, Fp (Use percent pond and swamp area with table 4-2. Factor is 1.0 for		1.0	1.0	1.0
2ero percent poro ans swamp area; 6 Peak discharge, g-	ft ³ /s	65.4	102.	3 12.0.5
an or i				

Appendix J: Existing Hydraulic Outputs from HEC-RAS

See the following pages for cross-sections, profile, and standard table outputs of existing conditions.

Existing Cross Sections HEC-RAS Outputs

Existing Profile HEC-RAS Output

Standard Table of Existing Cross Sections HEC-RAS

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
reach	182	50yr Storm Event	103	6928.09	6929.10		6929.19	0.002	2.45	43.34	42.90	0.43
reach	132	50yr Storm Event	103	6928.09	6928.70	6928.65	6928.94	0.013	4.00	26.25	42.90	0.90
reach	90	50yr Storm Event	103	6927.49	6928.05	6928.05	6928.34	0.016	4.34	24.15	42.90	1.02
reach	60	50yr Storm Event	103	6925.44	6926.85	6926.79	6927.23	0.011	4.92	21.10	25.65	0.91
reach	30	50yr Storm Event	103	6924.76	6926.65	6926.36	6926.96	0.006	4.49	23.38	23.57	0.70
reach	0	50yr Storm Event	103	6924.69	6926.14	6926.14	6926.64	0.019	5.62	18.32	18.92	1.01

Appendix K: Proposed Hydraulic Outputs from HEC-RAS

See the following pages for cross-sections, profile, and standard table outputs of proposed conditions.

Proposed Profile HEC-RAS Output

Proposed Inlet of Culvert Structure

Proposed Outlet of Culvert Structure

Proposed Profile HEC-RAS Output

Standard Table of Proposed Cross Sections HEC-RAS

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
reach	182	50yr Storm Event	103	6926.06	6927.56		6927.66	0.0019	2.51	40.96	31.96	0.39
reach	157	50yr Storm Event	103	6925.93	6927.52	6926.78	6927.61	0.0016	2.41	42.69	31.73	0.37
reach	121		Culvert									
reach	66.5	50yr Storm Event	103	6925.47	6926.95		6927.06	0.0022	2.67	38.63	30.71	0.42
reach	60	50yr Storm Event	103	6925.44	6926.76		6927.02	0.0068	4.13	24.95	25.22	0.72
reach	30	50yr Storm Event	103	6924.76	6926.55	6926.19	6926.84	0.0054	4.30	24.10	20.93	0.66
reach	0	50yr Storm Event	103	6924.69	6926.03	6926.03	6926.55	0.0183	5.75	17.92	17.44	1.00

Culvert Table of Proposed Cross Sections HEC-RAS

Reach	Rive	er Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
				(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
reach	121 Cu	ulvert	50yr Storm Event	6927.62	6927.52	6927.62	6927.64	6932.01	103.00		0.57	5.92	4.45

Appendix L: Cut & Fill Analysis for Hydraulic Structures

See the following pages for cut and fill analysis for hydraulic structures (culvert, channel, etc.).

Earthwork (Cut/Fill) Analysis for Hydraulics and Channel:

Channel Cut/Fill Analysis (cu. ft.)										
Cross-Section	Cu	t (-)	Fill (+)							
STA 0+00										
STA 0+30	326		99							
STA 0+60		OE		21						
STA 0+66.5	01	60	21	21						
Outlet	01		21							
Inlet	220		0							
STA 1+57	529	1420	0	1						
STA 1+82		1429		L L						
Total Cut:	- 78 cu.yd.									

	Earth Work Calculations for Culvert						
Туре	Description	Cut/Fill Total (cu. yd.)					
Cut (-)	Excavation to place culvert	221.5					
Cut (-)	Wingwall installation	8.4					
Fill (+)	Fill wingwalls	19.3					
Fill (+)	Fill above culvert to road	61.7					
Fill (+)	Fill other parts of culvert	28					
	- 120.9 cu. yd.						

Cut/Fill Summary for Hydraulic						
Total Cut for Culvert	- 120.9 cu. yd.					
Total Cut for Channel	- 78 cu.yd.					
Summation of Total Cut	- 198.9 cu.yd.					

Appendix M: Riprap Calculations

See the following pages for the riprap exiting the hydraulic structure.

Rectangular culvert:

$$\frac{\left(\frac{d_{50}}{H}\right)\left(\frac{Y_t}{H}\right)}{\frac{Q}{WH^{1.5}}} = 0.014$$

$$\frac{Q}{WH^{1.5}} = 0.014$$

$$\frac{Q}{Q} = 0.014$$

d

$$d_{50} = \frac{0.014QH^{0.5}}{WY_t}$$
 11.4

median rock size in feet

where:

Solving for d₅₀:

W = width of rectangular culvert, in feet, and
 H = height of rectangular culvert, in feet.

Q (cfs)	W (ft)	H (ft)	Yt (ft)	Yn (ft)
103	16	3	1.48	1.48

$$H_{\alpha} = \frac{(H+Y_n)}{2}$$

in which the maximum value of H_a shall not exceed H, and

where:

$D_0 = 1$	parameter to	use in p	lace of a	D _c in	Figure 11.2	when flo	w is supercritica	١,
-----------	--------------	----------	-----------	-------------------	-------------	----------	-------------------	----

D _c = diameter of circular	r culvert, i	in feet,
---------------------------------------	--------------	----------

- H_a = parameter to use in place of H in Figure 11.3 when flow is supercritical,
- H = height of rectangular culvert, in feet, and
- Y_n = normal depth of supercritical flow in the culvert.

Ha	2.24
Yt/H	0.660714
Q/WH^0.5	3.716692
Run length (ft)	9
Type L, D50 (in)	9

Table 11.4 Classification and Gradation Of Ordinary Riprap

Table 11.4 Classification and Gradation Of Ordinary Riprap					
Riprap Classification	D _{so} (inches)				
Type VL	6				
Type L	9				
Туре М	12				
Туре Н	18				
Type VH	24				

Following Yavapai County's manual resulted in 9" stones at a run length of 9' that follows the width of the defined channel.

Appendix N: Construction Drawings

See the following sheets for the project's construction plans for the roadway and hydraulic structure.

Design Project - City of Flagstaff

Located between South Pulliam Drive & Lake Mary Road West of Flagstaff, Arizona 35°8'39.39"N 111°40'44.25W & 35°9'14.02"N 111°39'26.14"

Prepared for Jeff Baumen

PE, PTOE, Traffic Engineer, C.O.F

Cristine Aguila - Pavement Design Manager

Elijah Begay - Hydraulics Engineer

Logan McFarland - Head Engineer

Steven McKimmey - Highway Engineer

Lał
S.
ł

State Map of Arizona

			00	JWP WEST EXT.		HORIZONTAL ALIGNMENTS		
			7+00.0	SCALE: 1"= 20'	DATE: 5/6/2024	DRAWN: SJM	DESIGN: SJM	CHECKER: LSM
	7	7+	00			1900 S KNOLES DR. FLAGSTAFF. AZ. 86011		
				(CELS ENGINEERING
					DATE BY	MBC	MBC	MBC
,				Revisions	DESCRIPTION			
				D	Ö Z RAV	- VING	∼ NC	۳).
			_	SHI	Г. N 5	0	0F 12	2

	JWP WEST EXT.		JWP AND LAKE MARY		
OWELL ND	SCALE: 1' = 30'	DATE: 4/7/2024	DRAWN: SJM	DESIGN: SJM	CHECKER: LSM
TURN LANE (TYP.) KE LANE (TYP.) IRU LANE (TYP.) TURN LANE (TYP.) AISED MEDIAN	1900 S KNOLES DR. FLAGSTAFF, AZ, 86011				
					CELS ENGINEERING
		DATE BY			
	Revisions	DESCRIPTION			
	D	Ö Z RAV	- WING	~ 3 NC	т).
Ň	SHI	г. N 8	10	0F 12	2

ARE ONLY THE NEWLY AD DUE TO URATIONS NOT	JWP WEST EXT.			JWP AND PULLIAM	
ILL	SCALE: 1' = 25'	DATE: 4/7/2024	DRAWN: SJM	DESIGN: SJM	CHECKER: LSM
TURN LANE (TYP.) E LANE (TYP.) J LANE (TYP.) ^T TURN LANE (TYP.)			1900 S KNOLES DR. FLAGSTAFF, AZ, 86011		
PED MEDIAN (TYP.) Dulder					CELS ENGINEERING
YP.)	Revisions	DESCRIPTION DATE BY			
N.	DR SHT.	<u>9</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 ING	7 N 0F 2	₽).

- 10 sections will be placed continuously to connect both up & downstream at a total run length of: 76' 8" (each typical section measures: 7' 8")

- Culvert structure will be sloped at -0.05% to ensure calculated flow is maintained.

Inlet Elevation: 6525.90 ft.

Outlet Elevation: 6925.51 ft.

- Wingwalls are incorporated into as hydraulic structure. 4 walls will be used as a retaining wall, standing approximately equal to the top of the culvert. 2 walls are place both up & downstream. All walls will be flared 45° to the channel's flow direction. See next page for dimensions of wall.

- A headwall is incorporated into the design. It is placed at the top of the hydraulic structure to prevent excessive earth entering onto channel.

- Section between STA 0+60 and STA 1+82, will be sloped at -0.05%.

- Top of road elevation is 6932 ft.

- Lowest height to fill above culvert is 14" - Ripraps will be placed at the outlet of the culvert to maintain high flow velocities. A run apron length of 9' with 9" stones is requested.

- Cross Sections at downstream (STA 0+00, STA 0+30, & STA 0+60) will have minimum cut and maintain 3H:1V side slopes, for these sections see report.

- To see excavation sheets and cut/fill analysis, see report.

- Total earth removal: **198.9 cyd.**

6924.69'

- Precast concrete box culvert sections are pre-manufactured and will be planned

- A minimum fill of 14" is expected above the culvert, other heights will be more and

pavement to be placed adequately at an

- A metal fence will be posted on ends and top to ensure pedestrian safety. - Both the inlet and outlet of the culvert will have the exact dimensions and are

- See typical dimensions of culvert and

Appendix O: Intersections Design Reports

See the following pages for design reports generated from VISTRO Version 2021 (SP0-4).

Vistro File: C:\...\Lake Mary and JWP.vistro Report File: C:\...\Intersection Reports.pdf Scenario: Base Scenario 3/6/2024

Intersection Analysis Summary

ID	Intersection Name	Control Type	Method	Worst Mvmt	V/C	Delay (s/veh)	LOS
1	JWP and Lake Mary	Signalized	HCM 6th Edition	NB Thru	0.477	23.8	С
2	Pulliam Dr and JWP	Signalized	HCM 6th Edition	NB Left	0.478	12.1	В

V/C, Delay, LOS: For two-way stop, these values are taken from the movement with the worst (highest) delay value. For all other control types, they are taken for the whole intersection.

Version 2021 (SP 0-4)

Intersection Level Of Service Report

Intersection 1: JWP and Lake Mary

Control Type:	
Analysis Method:	
Analysis Period:	

Signalized HCM 6th Edition 15 minutes

Delay (sec / veh):	23.8
Level Of Service:	С
Volume to Capacity (v/c):	0.477

Intersection Setup

Name		Lake Mary	/		Lake Mary	/		JWP			JWP	
Approach	1	lorthboun	d	S	Southboun	d		Eastbound	ł	Westbound		
Lane Configuration		ЧİГ		лÌг				٦F		ліг		
Turning Movement	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	1	0	1	1	0	1	1	0	0	1	0	1
Entry Pocket Length [ft]	160.00	100.00	100.00	180.00	100.00	180.00	100.00	100.00	100.00	300.00	100.00	100.00
No. of Lanes in Exit Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00 0.00 0.00			0.00 0.00 0.00			0.00	0.00
Speed [mph]		40.00			40.00			40.00			40.00	
Grade [%]		0.00			0.00			0.00			0.00	
Curb Present		No			No			No		No		
Crosswalk		No			Yes			Yes		Yes		

Version 2021 (SP 0-4)

Volumes

Name	I	_ake Mary	'	I	_ake Mary	/		JWP			JWP	
Base Volume Input [veh/h]	45	100	65	350	150	158	200	164	50	40	333	425
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [%]	4.00	2.00	2.00	2.00	2.00	4.00	4.00	4.00	2.00	2.00	4.00	2.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Right Turn on Red Volume [veh/h]	0	0	25	0	0	25	0	0	15	0	0	75
Total Hourly Volume [veh/h]	45	100	40	350	150	133	200	164	35	40	333	350
Peak Hour Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	11	25	10	88	38	33	50	41	9	10	83	88
Total Analysis Volume [veh/h]	45	100	40	350	150	133	200	164	35	40	333	350
Presence of On-Street Parking	No		No	No		No	No		No	No		No
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0	0	0	0	0	0	0
Local Bus Stopping Rate [/h]	0	0	0	0	0	0	0	0	0	0	0	0
v_do, Outbound Pedestrian Volume crossing	9	0			15			0			15	
v_di, Inbound Pedestrian Volume crossing r	n	0			15			0			15	
v_co, Outbound Pedestrian Volume crossing	me crossing 0				15			15			0	
v_ci, Inbound Pedestrian Volume crossing n	Pedestrian Volume crossing ni 0				15			15			0	
v_ab, Corner Pedestrian Volume [ped/h]		0			0		0			0		
Bicycle Volume [bicycles/h]		0			0			0			0	

Version 2021 (SP 0-4)

Intersection Settings

-	
Located in CBD	No
Signal Coordination Group	
Cycle Length [s]	100
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Fixed time
Offset [s]	0.0
Offset Reference	Lead Green - Beginning of First Green
Permissive Mode	SingleBand
Lost time [s]	0.00

Phasing & Timing

Control Type	ProtPer	Permiss	Permiss									
Signal Group	1	6	0	5	2	0	3	8	0	7	4	0
Auxiliary Signal Groups												
Lead / Lag	Lead	-	-									
Minimum Green [s]	6	6	0	6	6	0	6	6	0	6	6	0
Maximum Green [s]	30	30	0	30	30	0	30	30	0	30	30	0
Amber [s]	3.0	3.0	0.0	3.0	3.0	0.0	3.0	3.0	0.0	3.0	3.0	0.0
All red [s]	1.0	1.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0
Split [s]	10	32	0	13	35	0	10	45	0	10	45	0
Vehicle Extension [s]	3.0	3.0	0.0	3.0	3.0	0.0	3.0	3.0	0.0	3.0	3.0	0.0
Walk [s]	0	7	0	0	7	0	0	7	0	0	7	0
Pedestrian Clearance [s]	0	21	0	0	21	0	0	10	0	0	27	0
Delayed Vehicle Green [s]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rest In Walk		No			No			No			No	
I1, Start-Up Lost Time [s]	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0
l2, Clearance Lost Time [s]	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0
Minimum Recall	No	No										
Maximum Recall	No	No										
Pedestrian Recall	No	No										
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	0
Pedestrian Walk [s]	0
Pedestrian Clearance [s]	0

Version 2021 (SP 0-4)

Lane Group Calculations

Lane Group	L	С	R	L	С	R	L	С	L	С	R
C, Cycle Length [s]	100	100	100	100	100	100	100	100	100	100	100
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
I1_p, Permitted Start-Up Lost Time [s]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l2, Clearance Lost Time [s]	0.00	2.00	2.00	0.00	2.00	2.00	0.00	2.00	0.00	2.00	2.00
g_i, Effective Green Time [s]	41	28	28	41	31	31	51	41	51	41	41
g / C, Green / Cycle	0.41	0.28	0.28	0.41	0.31	0.31	0.51	0.41	0.51	0.41	0.41
(v / s)_i Volume / Saturation Flow Rate	0.03	0.05	0.03	0.25	0.08	0.09	0.17	0.11	0.03	0.18	0.23
s, saturation flow rate [veh/h]	1322	1870	1589	1425	1870	1488	1143	1785	1277	1840	1531
c, Capacity [veh/h]	576	524	445	639	580	461	556	732	671	754	628
d1, Uniform Delay [s]	18.05	27.38	26.59	22.68	25.88	26.02	14.61	19.59	12.56	21.25	22.32
k, delay calibration	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	0.26	0.81	0.40	3.35	1.08	1.57	1.81	0.92	0.17	1.87	3.55
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Group Results											
X, volume / capacity	0.08	0.19	0.09	0.55	0.26	0.29	0.36	0.27	0.06	0.44	0.56
d, Delay for Lane Group [s/veh]	18.32	28.19	26.99	26.03	26.96	27.59	16.41	20.51	12.73	23.12	25.87
Lane Group LOS	В	С	С	С	С	С	В	С	В	С	С
Critical Lane Group	No	Yes	No	Yes	No	No	Yes	No	No	No	Yes
50th-Percentile Queue Length [veh/ln]	0.65	1.88	0.73	6.28	2.76	2.50	2.60	3.11	0.45	5.70	6.48
50th-Percentile Queue Length [ft/ln]	16.13	46.95	18.33	157.01	68.88	62.56	64.97	77.74	11.30	142.47	161.91
95th-Percentile Queue Length [veh/ln]	1.16	3.38	1.32	10.39	4.96	4.50	4.68	5.60	0.81	9.61	10.65
95th-Percentile Queue Length [ft/ln]	29.03	84.52	32.99	259.76	123.99	112.61	116.94	139.92	20.34	240.34	266.26

Version 2021 (SP 0-4)

Movement, Approach, & Intersection Results

d_M, Delay for Movement [s/veh]	18.32	28.19	26.99	26.03	26.96	27.59	16.41	20.51	20.51	12.73	23.12	25.87	
Movement LOS	В	С	С	С	С	С	В	С	С	В	С	С	
d_A, Approach Delay [s/veh]		25.53			26.58			18.46			23.88		
Approach LOS		С			С			В					
d_I, Intersection Delay [s/veh]	23.80												
Intersection LOS		С											
Intersection V/C						0.4	477						
Other Modes													
g_Walk,mi, Effective Walk Time [s]	0.0				11.0			11.0		11.0			
M_corner, Corner Circulation Area [ft²/ped]		0.00			0.00			0.00			0.00		
M_CW, Crosswalk Circulation Area [ft²/ped	0.00			176.77				256.50					
d_p, Pedestrian Delay [s]		0.00			39.61			39.61					
I_p,int, Pedestrian LOS Score for Intersectio	n	0.000			2.743			2.399			2.859		
Crosswalk LOS		F			В			В			С		
s_b, Saturation Flow Rate of the bicycle lane	9	2000			2000			2000		2000			
c_b, Capacity of the bicycle lane [bicycles/h]	560			620			820		820			
d_b, Bicycle Delay [s]		25.92			23.81			17.41		17.41			
I_b,int, Bicycle LOS Score for Intersection	0.834				1.573			1.171			1.804		
Bicycle LOS		A			A			A		А			

Sequence

-			_		_											
Ring 1	1	2	3	4	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2	5	6	7	8	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 1 10s 5	SG: 2/35s	SG: 3 10s SG: 4 45s	
	SG: 102 28s	SG: 104 34s	8
SG: 5 13s	SG: 6 32s	SG: 7 10s SG: 8 45s	8
	SG: 106 28s		

Version 2021 (SP 0-4)

Intersection Level Of Service Report Intersection 2: Pulliam Dr and JWP

Control Type:	
Analysis Method:	
Analysis Period:	

Signalized HCM 6th Edition 15 minutes

Delay (sec / veh):	12.1
Level Of Service:	В
Volume to Capacity (v/c):	0.478

Intersection Setup

Name		Pulliam			Pulliam			JWP			JWP		
Approach	1	Northboun	d	S	Southboun	d		Eastbound	ł	۱	Westbound		
Lane Configuration		٦Ìг			ліг			٦F		ліг			
Turning Movement	Left	Left Thru Right			Thru	Right	Left	Thru	Right	Left	Thru	Right	
Lane Width [ft]	12.00	12.00 12.00 12.00			12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Entry Pocket	1	1 0 1			0	1	1	0	0	1	0	1	
Entry Pocket Length [ft]	250.00	100.00	410.00	240.00	240.00 100.00 150.00		150.00 100.00 100.		100.00	150.00	100.00	150.00	
No. of Lanes in Exit Pocket	0	0	0	0	0	0	0	0	0	0	0	0	
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Speed [mph]		40.00			40.00			40.00			40.00		
Grade [%]		0.00			0.00			0.00			0.00		
Curb Present	No				No			No		No			
Crosswalk		Yes			Yes			No		No			

Version 2021 (SP 0-4)

Volumes

Name		Pulliam			Pulliam			JWP			JWP		
Base Volume Input [veh/h]	125	30	95	90	20	70	400	325	75	25	350	125	
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Heavy Vehicles Percentage [%]	2.00	2.00	4.00	4.00	2.00	2.00	2.00	6.00	2.00	3.00	4.00	3.00	
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Right Turn on Red Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Total Hourly Volume [veh/h]	125	30	95	90	20	70	400	325	75	25	350	125	
Peak Hour Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
Total 15-Minute Volume [veh/h]	31	8	24	23	5	18	100	81	19	6	88	31	
Total Analysis Volume [veh/h]	125	30	95	90	20	70	400	325	75	25	350	125	
Presence of On-Street Parking	No		No	No		No	No		No	No		No	
On-Street Parking Maneuver Rate [/h]	0	0	0	0	0	0	0	0	0	0	0	0	
Local Bus Stopping Rate [/h]	0	0	0	0	0	0	0	0	0	0	0	0	
v_do, Outbound Pedestrian Volume crossing	9	0			0			0			0		
v_di, Inbound Pedestrian Volume crossing r	n	0			0			0			0		
v_co, Outbound Pedestrian Volume crossing	9	0			0			0			0		
v_ci, Inbound Pedestrian Volume crossing n	ni O				0			0			0		
v_ab, Corner Pedestrian Volume [ped/h]		0			0		0			0			
Bicycle Volume [bicycles/h]		0			0			0		0			

Version 2021 (SP 0-4)

Intersection Settings

-	
Located in CBD	No
Signal Coordination Group	-
Cycle Length [s]	60
Coordination Type	Time of Day Pattern Coordinated
Actuation Type	Semi-actuated
Offset [s]	0.0
Offset Reference	Lead Green - Beginning of First Green
Permissive Mode	SingleBand
Lost time [s]	0.00

Phasing & Timing

Control Type	Permiss	Overlap	Permiss									
Signal Group	0	8	0	0	4	0	0	2	0	0	6	0
Auxiliary Signal Groups		8										
Lead / Lag	-	-	-	-	-	-	-	-	-	-	-	-
Minimum Green [s]	0	15	0	0	15	0	0	6	0	0	6	0
Maximum Green [s]	0	30	0	0	30	0	0	30	0	0	30	0
Amber [s]	0.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	0.0
All red [s]	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
Split [s]	0	19	0	0	19	0	0	41	0	0	41	0
Vehicle Extension [s]	0.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	0.0
Walk [s]	0	7	0	0	7	0	0	7	0	0	7	0
Pedestrian Clearance [s]	0	10	0	0	10	0	0	14	0	0	14	0
Delayed Vehicle Green [s]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rest In Walk		No			No			No			No	
I1, Start-Up Lost Time [s]	0.0	2.0	0.0	0.0	2.0	0.0	0.0	2.0	0.0	0.0	2.0	0.0
l2, Clearance Lost Time [s]	0.0	2.0	0.0	0.0	2.0	0.0	0.0	2.0	0.0	0.0	2.0	0.0
Minimum Recall		No			No			No			No	
Maximum Recall		No			No			No			No	
Pedestrian Recall		No			No			No			No	
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Exclusive Pedestrian Phase

Pedestrian Signal Group	0
Pedestrian Walk [s]	0
Pedestrian Clearance [s]	0

Version 2021 (SP 0-4)

Lane Group Calculations

Lane Group	L	С	R	L	С	R	L	С	L	С	R
C, Cycle Length [s]	60	60	60	60	60	60	60	60	60	60	60
L, Total Lost Time per Cycle [s]	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
I1_p, Permitted Start-Up Lost Time [s]	2.00	0.00	0.00	2.00	0.00	0.00	2.00	0.00	2.00	0.00	0.00
l2, Clearance Lost Time [s]	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
g_i, Effective Green Time [s]	15	15	15	15	15	15	37	37	37	37	37
g / C, Green / Cycle	0.25	0.25	0.25	0.25	0.25	0.25	0.62	0.62	0.62	0.62	0.62
(v / s)_i Volume / Saturation Flow Rate	0.09	0.02	0.06	0.07	0.01	0.04	0.39	0.23	0.03	0.19	0.08
s, saturation flow rate [veh/h]	1392	1870	1564	1357	1870	1589	1031	1752	977	1840	1577
c, Capacity [veh/h]	408	462	386	395	462	393	631	1085	585	1140	977
d1, Uniform Delay [s]	20.75	17.28	18.11	20.44	17.19	17.79	12.47	5.63	8.45	5.36	4.72
k, delay calibration	0.11	0.11	0.11	0.11	0.11	0.11	0.50	0.50	0.50	0.50	0.50
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
d2, Incremental Delay [s]	0.42	0.06	0.33	0.29	0.04	0.21	4.80	0.96	0.14	0.70	0.27
d3, Initial Queue Delay [s]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rp, platoon ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PF, progression factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Group Results											
X, volume / capacity	0.31	0.06	0.25	0.23	0.04	0.18	0.63	0.37	0.04	0.31	0.13
d, Delay for Lane Group [s/veh]	21.17	17.34	18.43	20.73	17.23	18.00	17.27	6.59	8.59	6.06	4.99
Lane Group LOS	С	В	В	С	В	В	В	А	A	А	А
Critical Lane Group	Yes	No	No	No	No	No	Yes	No	No	No	No
50th-Percentile Queue Length [veh/In]	1.41	0.29	0.97	0.99	0.19	0.70	4.15	1.84	0.16	1.52	0.48
50th-Percentile Queue Length [ft/ln]	35.16	7.21	24.19	24.80	4.78	17.46	103.72	46.08	4.01	37.88	12.00
95th-Percentile Queue Length [veh/ln]	2.53	0.52	1.74	1.79	0.34	1.26	7.47	3.32	0.29	2.73	0.86
95th-Percentile Queue Length [ft/ln]	63.29	12.99	43.54	44.65	8.61	31.43	186.70	82.94	7.22	68.19	21.59

Version 2021 (SP 0-4)

Movement, Approach, & Intersection Results

d_M, Delay for Movement [s/veh]	21.17	17.34	18.43	20.73	17.23	18.00	17.27	6.59	6.59	8.59	6.06	4.99	
Movement LOS	С	В	В	С	В	В	В	A	A	A	А	А	
d_A, Approach Delay [s/veh]		19.67		19.28			11.93						
Approach LOS		В			В			В			A		
d_I, Intersection Delay [s/veh]						12	.08						
Intersection LOS						E	3						
Intersection V/C						0.4	78						
Other Modes													
g_Walk,mi, Effective Walk Time [s]	11.0			11.0			0.0						
M_corner, Corner Circulation Area [ft²/ped]	0.00				0.00	0.00			0.00				
M_CW, Crosswalk Circulation Area [ft²/ped]	0.00			0.00		0.00						
d_p, Pedestrian Delay [s]		20.01			20.01			0.00					
I_p,int, Pedestrian LOS Score for Intersection	n	2.264			2.916			0.000			0.000		
Crosswalk LOS		В			С			F			F		
s_b, Saturation Flow Rate of the bicycle lane	e	2000			2000			2000		2000			
c_b, Capacity of the bicycle lane [bicycles/h	n] 500				500			1233					
d_b, Bicycle Delay [s]	16.88				16.88		4.41			4.41			
I_b,int, Bicycle LOS Score for Intersection	1.972				1.857			2.880			2.385		
Bicycle LOS		A			A			С			В		

Sequence

-		-													
Ring 1 -	2	-	4	-	-	-	-	-	-	-	-	-	-	-	-
Ring 2 -	6	-	8	-	-	-	-	-	-	-	-	-	-	-	-
Ring 3 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ring 4 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

SG: 2 41s		SG: 4 19s	
SG: 102 21s	8		8
SG:6 41s		SG; 8 19s	
SG: 106 21s	8		8

Appendix P: Image of Signage and Striping

See the following pages for an example of the signage and striping that will be used.

SPEED LIMIT (ENGLISH)

	А	В	С	D	E	F	G	Н	J	К	L
	18	24	.375	.625	3	3 E	2	8 E	7.188	5.5	1.5
C	24	30	.375	.625	4	4 E	2	10 E	9.563	7.313	1.5
	36	48	.625	.875	6	6 E	5	14 E	14.375	11	2.25

8 E

6

16 E

19.125

.75

60

48

1.25

8

*Optically space numerals about centerline

14.625

3

COLORS: LEGEND - BLACK BACKGROUND - WHITE (RETROREFLECTIVE)

*Reduce spacing to fit.

	А	В	С	D	E	F	G	Н	J	K	L
	12	18	.375	.438	2.875	2.75 D	2	2.125	2.188	3.188	3.438
	18	24	.375	.625	3.5	4 D	2.5	3.125	3.313	4.75	4.875
C	24	30	.375	.625	3.5	6 D	2.5	4.688	5	7.125	7.375
	36	48	.625	.875	7	8 D	5	6.25	6.625	9.5	9.75
	48	60	.75	1.25	8	10 D	7	7.75	8.313	11.875	12.25

М	N	Р
4.188	4.438	1.5
6.25	6.5	1.5
9.375	9.75	1.5
12.5	13	2.25
15.625	16.25	3

COLORS: LEGEND - BLACK BACKGROUND - WHITE (RETROREFLECTIVE) Appendix Q: Referenced Roadway Cost Template

See the following pages for roadway cost template.

Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR				
Project #	:	COF# ST3040				
Dwgs:		SWI Engineering; stamped 8-25-222				
Submitte	d:	11/9/2022				
EMC #	Keynote	DESCRIPTION	QTY	Unit	Unit Cost	Total
CITY TRA	NSPORTAT	ION SCOPE				
DEMOLITIC	ON					
10	101	SAWCUT EXISTING PAVEMENT	4,250	LF	\$ 3.00	\$ 12,750.00
20	102	REMOVE EXISTING AC PAVEMENT	17,553	SY	\$ 8.00	\$ 140,424.00
30	103	REMOVE AND DISPOSE OF EXISTING CONCRETE CURB	4,907		\$ 3.00	\$ 14,721.00
50	105	SAWOUT AND REMOVE EXISTING CONCRETE	22,991	SF EA	\$ 2.00 \$ 1.500.00	\$ 45,982.00 \$ 10,500.00
60	106 1		1	EA FA	\$ 1,500.00 \$ 1,500.00	\$ 10,500.00 \$ 1,500.00
70	106.1	REMOVE AND SALVAGE EXISTING LIGHT POLE	2		\$ 1,500.00	\$ 3,000,00
80	106.3	REMOVE EXSITING STREET LIGHT MAST ARM AND LUMINAIRE	2	EA	\$ 3,500.00	\$ 7,000.00
90	110	REMOVE EXISTING WATER SERVICE - SALVAGE WATER METER	1	EA	\$ 350.00	\$ 350.00
100	111	REMOVE AND DISPOSE OF EXISTING WATER METER	1	EA	\$ 300.00	\$ 300.00
110	111.1	REMOVE AND RELOCATE EXISTING WATER METER	2	EA	\$ 900.00	\$ 1,800.00
120	111.2	REMOVE AND RELOCATE EXISTING WATER METER, Bf, IRR BF & METER	1	EA	\$ 750.00	\$ 750.00
130	112	REMOVE EXISTING FIRE HYDRANT ASSEMBLY	3	EA	\$ 750.00	\$ 2,250.00
140	113	REMOVE AND DISPOSE OF EXISTING VB&C	2	EA	\$ 325.00	\$ 650.00
150	115	REMOVE EXISTING WATER LINE	637		\$ 12.00	\$ 7,644.00
170	115	REMOVE AND SALVAGE EXISTING FIRE HYDRANT		EA	\$ 750.00	\$ 750.00 \$ 2.750.00
180	117		667		\$ 550.00 \$ 16.00	\$ 2,730.00 \$ 10,672.00
190	110	REMOVE AND DISPOSE OF EXISTING STORM DRAIN MANHOLE	1	FA	\$ 550.00	\$ 550.00
200	122.1	REMOVE AND DISPOSE OF EXISTING SEWER MANHOLE	5	EA	\$ 550.00	\$ 2.750.00
210	123	REMOVE AND DISPOSE OF EXISTING SEWER MAIN	729	LF	\$ 15.00	\$ 10,935.00
220	123.5	REMOVE AND DISPOSE OF EXISTING SEWER LINE PER M.A.G. SPEC. SEC. 350	1,035	LF	\$ 15.00	\$ 15,525.00
230	123.7	PLUG UPSTREAM INVERT INSIDE OF EXISTING MANHOLE	1	EA	\$ 1,250.00	\$ 1,250.00
240	123.8	PLUG EXISTING TEE PER M.A.G. SPEC. SEC. 350	1	EA	\$ 1,251.00	\$ 1,251.00
250	124.1	ABANDON EXISTING SEWER IN PLACE	0	LF	\$ 2.00	\$ -
260	126	CUT, CAP, AND ABANDON SEWER IN PLACE PER M.A.G. 350	117	LF	\$ 10.00	\$ 1,170.00
270	128	REMOVE ANY REMAINING CONCRETE VAULTS BY EXISTING RUSSIAN OLIVE TREE	1	EA	\$ 1,250.00	\$ 1,250.00
280	133	REMOVE AND SALVAGE EXISTING TRAFFIC SIGNAL PER ADOT	1	LS	\$ 13,500.00	\$ 13,500.00
290	134	REMOVE EXISTING RAILING AND RETAINING WALL	114		\$ 10.00 \$ 200.00	\$ 1,140.00 \$ 1,200.00
310	130	REMOVE AND DISPOSE OF EXISTING RIDRAD FOR RELISE	712	SE SE	\$ 500.00 \$ 2.00	\$ 1,200.00 \$ 1,200.00
320	138	REMOVE AND SAEVAGE EXISTING RITRAL FOR REDSE	1	FA	\$ 550.00	\$ 550.00
330	139	OBLITERATE EXISTING STRIPING - HYDRO-JET METHOD	1,769	LF	\$ 3.00	\$ 5,307.00
340	140	OBLITERATE EXISTING PAVEMENT MARKINGS - HYDRO-JET METHOD	9	EA	\$ 450.00	\$ 4,050.00
350	142	PROTECT EXISTING MAILBOX IN PLACE	3	NPI	\$ -	\$-
360	143	PROTECT EXISTING WATER METER IN PLACE.	3	EA	\$ 100.00	\$ 300.00
370	144	REMOVE AND DISPOSE OF EXISTING CHAINLINK FENCE	795	LF	\$ 2.00	\$ 1,590.00
380	145	MILL 2' WIDE AND 2" DEEP STRIP NEXT TO FULL STRUCTURAL SECTION	1,053	LF	\$ 26.00	\$ 27,378.00
390	148.1	REMOVE AND DISPOSE OF EXISTING FENCE	505	LF	\$ 2.00	\$ 1,010.00
400	150	REMOVE AND DISPOSE OF EXISTING TREE AND ROOTBALL	556	EA	\$ 170.00	\$ 94,520.00
410	153.1	REMOVE AND SALVAGE EXISTING MAILBUX	25	EA	\$ 150.00 \$ 75.00	\$ 150.00 \$ 1.975.00
420	150		25	EA EA	\$ 750.00 \$ 750.00	\$ 1,875.00 \$ 750.00
440	160	COORDINATE WITH MOUNTAIN LINE FOR REMOVAL OF BUS SHELTER	1	FA	\$ 850.00	\$ 850.00
450	163	PROTECT EXISTING LIGHT IN PLACE	1	EA	\$ 150.00	\$ 150.00
					+	
			D	EMOLIT	ION SUBTOTAL :	\$ 454,218.00
ROADWAY	WORK					
500	-	ROADWAY EARTHWORK (CUT & FILL)	45,700.0	CY	\$ 21.00	\$ 959,700.00
510	-	EXPORT (INCLUDES HAULING FOR 30 MIN ROUND NO DUMP FEES)	52,200.0	LCY	\$ 9.00	\$ 469,800.00
520	120	INSTALL SURVEY MARKER	18	EA	\$ 1,200.00	\$ 21,600.00
530	200A	LUNSTRUCT AC SECTION 6" \ 10"; D103 - DTL 1	17,201	SY	> 78.00	\$ 1,341,678.00
540	2000	CONSTRUCT AC SECTION 4" \ 12"; DT03 - DTL 3	615	SY	\$ 75.00	\$ 46,125.00
550	2000		2,101	51	\$ 90.00 \$ 2,250.00	\$ 194,490.00 \$ 2,250.00
570	203	CONSTRUCT CONCRETE PAVEMENT SEC (10") PER DETAIL 4 ON DWG DT03	657	SE	\$ 2,330.00 \$ 16.00	\$ 2,330.00 \$ 10,512,00
580	205	INSTALL CONCRETE SCUPPER AND SPILLWAY PER M A G STD DTL 206	1	FA	\$ 4 250 00	\$ 4 250 00
590	209	INSTALL SALVAGED TARGET MONUMENT SIGN. COORDINATE WITH TARGET	1	EA	\$ 4,500.00	\$ 4,500.00
600	213	INSTALL 6' CHAIN LINK FENCE PER MAG DETAIL 160	1,548	LF	\$ 18.00	\$ 27,864.00
610	220A	CONSTRUCT VERTICAL CURB AND GUTTER	5,545	LF	\$ 25.00	\$ 138,625.00
620	220D	CONSTRUCT ROLL CURB AND GUTTER	505	LF	\$ 26.00	\$ 13,130.00
630	221	CONSTRUCT CURB TRANSITION	1	EA	\$ 75.00	\$ 75.00
640	222	CONSTRUCT CURB TERMINATION	8	EA	\$ 75.00	\$ 600.00
650	222B	ICONSTRUCT SINGLE CURB TYPE 'B' AND DETAIL 'X' ON DWG DT03	4,689	LF	\$ 26.00	\$ 121,914.00
660	223	LUNSTRUCT MEDIAN NOSE TRANSITION DEP MIAIC, STD. DTL, 202 MODIFIED TO DE 21 TRANSITION	13	EA	\$ 750.00	> 9,750.00
670	223.2	LUNSTAUL ONCRETE SECTION (10" \ 10") DEP DETAIL & ON DWG DTO?	18	EA CE	> 550.00	> 9,900.00 \$ 102.240.00
690	224.1	INSTALL CONCILIE SECTION (10 / 10 / PER DETAIL 4 ON DWG D103.	1 986	SF SF	γ <u>18.00</u> \$ 28.00	 τυ2,240.00 55 608 00
700	227	CONSTRUCT CURB TRANSITION	2,500	EA	\$ 75.00	\$ 150.00
710	229	INSTALL PAVERS, MATCH EXISTING PAVERS	47	SF	\$ 28.00	\$ 1,316.00
720	230	CONSTRUCT CONCRETE SIDEWALK - 5'	16,146	SF	\$ 9.00	\$ 145,314.00

Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR						
Project #	:	COF# ST3040						
Dwgs:		SWI Engineering; stamped 8-25-222						
Submitte	d:	11/9/2022						
EMC #	Keynote	DESCRIPTION	ОТУ	Unit	1	Init Cost		Total
Livie #	Reynote	CONSTRUCT CONCRETE SIDEWALK PER M.A.G. STD. DTL. 230 (MATCH EXISTING WIDTH) AND DETAIL '8'		0		Shire Cost		Total
730	230.1	ON DWG DT03. MODIFIED FOR 6" CONCRETE OVER 4" AB	2.704	SF	Ś	10.00	Ś	27.040.00
		CONSTRUCT FUTS - 11' - COLD JOINTS TO INCLUDE PAVING CAP SEAL PER WESTEC BARRIER			7		Ŧ	
740	231	TECHNOLOGIES PER EXPANSION BOARD CAP SEAL SYSTEM	38.175	SF	Ś	13.00	Ś	496.275.00
	-	CONSTRUCT CONCRETE SIDEWALK PER M.A.G. STD. DTL. 230 (WIDTH PER PLAN 8' TYPICAL) AND DETAIL '8'	, -	-	· ·			,
750	231.2	ON DWG DT03. MODIFIED FOR 6" CONCRETE OVER 4" AB	6.809	LE	Ś	10.00	Ś	68.090.00
760	232	CONSTRUCT STAIRS AND RAILING PER NORRIS DESIGN AND SIRIUS STRUCTURES	139	SF	Ś	65.00	Ś	9.035.00
770	234	CONSTRUCT TURNDOWN PER DETAIL 11 ON SHEET PV15	56	LF	Ś	85.00	Ś	4,760.00
780	235	CONSTRUCT BIKE RAMP PER DTL 12	13	EA	Ś	1.300.00	Ś	16,900.00
790	236	BAIDAL CUBB RAMP PER MAG STD DTL 236 5	2	FA	Ś	750.00	Ś	1 500 00
800	238.1	CONSTRUCT CONCRETE PERPENDICULAR SIDEWALK RAMP	4	EA	Ś	1.750.00	Ś	7.000.00
810	239	CONCSTRUCT CONCRETE SIDEWALK RAMP PER ADOT	6	FA	Ś	1 850 00	Ś	11 100 00
820	243	PLUG EXISTING CURB OPENING	1	FA	Ś	350.00	Ś	350.00
830	245	CONSTRUCT DEPRESSED CONCRETE PEDESTRIAN ISLAND REFLIGE	255	SE	Ś	15.00	Ś	3 825 00
840	245	CONSTRUCT CONCRETE PEDESTRIAN ISLAND REFUGE	2 024	SE	Ś	15.00	Ś	30,360,00
850	248		2,024	FA	ć	650.00	¢	16 250 00
860	250.1	CONSTRUCT DRIVEWAY WITH DETACHED SIDEWALK BERMAN, C. STD. DTI. 250.1	211		ċ	16.00	¢	4 976 00
000	250.1	CONSTRUCT DRIVEWAY WITH DETACHED SIDE WARK FER MI.A.G. STD. DTL 250-1	145		ې د	16.00	ې د	4,370.00
070	250.2	CONSTRUCT DRIVEWAT WITH ATTACHED SIDEWALK PER WI.A.G. STD. DTL. 250-2	145		ې د	12.00	ې د	2,320.00
800	251	CONSTRUCT RETURN TYPE DRIVEWAY PER C.O.F. STD. DTL. 10-10-041 AND WLA.G. STD. DTL. 251.	4,155		Ş	13.00	ې د	54,015.00
890	251.1	CONSTRUCT RETURN TYPE DRIVEWAY PER C.O.F. STD. DTL. 10-10-041.	1,047	SF	>	13.00	\$	13,611.00
900	252	CONSTRUCT DRIVEWAY WITH SIDEWALK SETBACK PER ADOT	531	SF	\$	16.00	Ş	8,496.00
910	259	CONSTRUCT RUCK WALL PER DETAIL "18" ON SHEET DT03.	96		\$	175.00	\$	16,800.00
920	268	INSTALL D50=6" RIPRAP 12" THICK \ MIRAFI 140N FF	382	SF	Ş	35.00	\$	13,370.00
930	269	INSTALL D50=6" RIPRAP 12" THICK \ MIRAFI 140N FF, DTL 18 ON SHEET DR01	632	SF	Ş	38.00	Ş	24,016.00
940	329	INSTALL SALVAGED WATER METER, WITH NEW BOX	1	EA	\$	750.00	\$	750.00
950	391	ADJUST EXISTING WATER VB&C	2	EA	Ş	750.00	Ş	1,500.00
960	623	INSTALL 30 MPH SIGN	2	EA	Ş	750.00	Ş	1,500.00
		CONSTRUCT AC SECTION 6" AC \ 10" AB; DTL 1.1 ON DT03 (Assumed to be 6" AC; if match existing						
970	711	sections are diferent, CMAR reserves rights to submit for additional costs)	4,602	SY	\$	95.00	\$	437,190.00
980	712	CONSTRUCT 2" AC OVERLAY PER ADOT	240	SY	\$	120.00	\$	28,800.00
990	725	CONSTRUCT CURB OPENING DETAIL PER DETAIL '17' ON SHEET DT03.	13	EA	\$	950.00	\$	12,350.00
1000	733	CONSTRUCT TYPE 1 CATCH BASIN PER ADOT STD. DETAIL C-15.10 ON 3" AB	1	EA	\$	9,250.00	\$	9,250.00
1010	736	CONSTRUCT DEPRESSED CONCRETE PEDESTRIAN ISLAND REFUGE PER ADOT	132	SF	\$	18.00	\$	2,376.00
1020	745	INSTALL CONCRETE CAP PER M.A.G. STD. DTL. 404.	147	LF	\$	20.00	\$	2,940.00
1030	753	CONSTRUCT CONCRETE SIDWALK PER ADOT	3,959	SF	\$	16.00	\$	63,344.00
1040	754	CONSTRUCT CURB AND GUTTER TYPE D PER ADOT	739	LF	\$	30.00	\$	22,170.00
1050	755	CONSTRUCT SINGLE CURB PER ADOT	837	LF	\$	35.00	\$	29,295.00
1060	756	CONSTRUCT VALLEY GUTTER PER ADOT (950 SF)	118	LF	\$	175.00	\$	20,650.00
1070	769	CONSTRUCT MEDIAN NOSE TRANSITION PER M.A.G. STD. DTL. 223	5	EA	\$	750.00	\$	3,750.00
1080	770	CONSTRUCT MEDIAN STAMPED CONCRETE PER ADOT STANDARD DRAWING C-05.40	788	SF	\$	28.00	\$	22,064.00
1090		STREET LIGHT POLE, ARM, LIGHT FIXTURE, AND FOUNDATION, PULL BOX & CONDUIT	35	EA	\$	6,850.00	\$	239,750.00
						,		,
		1	ROAD	WAY W	ORK	SUBTOTAL :	Ś	5.409.259.00
STRIPING	AND SIGNAG)E			1		•	-,,
		INSTALL WHITE BIKE LANE STRIPING PER C.O.F. STD. DETAIL 16-06-010. PAVEMENT MARKINGS WITHIN						
1300	600	CITY ROW OR NALL PROPERTY SHALL BE METHYL METHACRYLATE (MMA) PAVEMENT MARKINGS WITHIN	2.611	LE	Ś	2.00	Ś	5.222.00
		INSTALL WHITE BIKE LANE DASHED STRIPING PER C.O.E. STD. DETAIL 16-06-010 PAVEMENT MARKINGS	_,		Ť		Ŧ	0,00
1310	601	WITHIN CITY ROW OR NALL PROPERTY SHALL BE METHYL METHACRYLATE (MMA) PAVEMENT MARKINGS	702	IF	Ś	2 00	Ś	1 404 00
1010	001	INSTALL WHITE RIKE LANE PAVEMENT MARKINGS PER C.O.E. STD. DETAIL 16-06-010. PAVEMENT	702		Ť.	2.00	Ŷ	2,101100
1220	602	MARKINGS WITHIN CITY ROW OR NAU ROOFPTY SHALL REMETHY METHACRY ATE (MMAA) RAVEMENT	/1	EA	ć	10.00	ć	410.00
1320	002	INFARMINGS WITHIN CITEROW OR NAUPROPERTESHALL DE METHELMETHACKTLATE (MINA), PAVEIMENT	41		Ş	10.00	Ş	410.00
1220	602.1	DAVENENT MARKINGS WITHIN CITY ROW OR NALL RECOTES SHALL REMETHY MARKOW.	4	EA	ć	500.00	ć	2 000 00
1550	002.1	PAVEIVIENT MIARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE WIETHTL WIETHACKYLATE (WIVIA).	4		2	500.00	Ş	2,000.00
1240	602	INSTALL 8 WHITE INTERSECTION LAINE STRIPING PER C.U.F. STD. DETAIL 10-00-010 PAVEMENT	2 202			2.00	ć	7 1 40 00
1340	603	MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACKYLATE (MIMA). PAVEMENT	2,383		Ş	3.00	Ş	7,149.00
4050	607	INSTALL 4 DOUBLE YELLOW CENTERLINE STRIPING PER C.O.F. STD. DETAIL 16-06-010 PAVENIENT	4 470			1.00		4 472 00
1350	607	MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATE (MMA). PAVEMENT	1,472		Ş	1.00	Ş	1,472.00
		INSTALL CROSSWALK MARKING PER C.O.F. STD. DETAIL 16-06-010. PAVEMENT MARKINGS WITHIN CITY						
1360	610	ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATE (MMA). PAVEMENT MARKINGS WITHIN	139	LF	\$	2.00	Ş	278.00
		INSTALL CROSSWALK MARKING PER FIGURE 4-27 OF THE FORT WORTH, TEXAS TRANSPORTATION						
1370	610.1	ENGINEERING MANUAL ON SHEET DT03. 24" WIDE STRIPE WITH 24" SPACING, BICYCLE SYMBOL WITHOUT	194	LF	\$	2.00	\$	388.00
		INSTALL CROSSWALK MARKING PER MUTCD SECTION 3B.18. 12" WIDE STRIPE WITH 12" SPACING.						
1380	610.2	PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATE (MMA).	45	LF	\$	2.00	\$	90.00
		INSTALL 18" WHITE STOP BAR PER C.O.F. STD. DETAIL 16-06-010 PAVEMENT MARKINGS WITHIN CITY ROW						
1390	611	OR NAU PROPERTY SHALL BE METHYL METHACRYLATE (MMA). PAVEMENT MARKINGS WITHIN ADOT	131	LF	\$	2.00	\$	262.00
		INSTALL 6" SOLID YELLOW LINE PER MUTCD SECTION 9C.03. PAVEMENT MARKINGS WITHIN CITY ROW OR						
1400	616	NAU PROPERTY SHALL BE METHYL METHACRYLATE (MMA). PAVEMENT MARKINGS WITHIN ADOT ROW	4,014	LF	\$	4.00	\$	16,056.00
		INSTALL YIELD LINE WITH MINIMUM DIMENSIONS PER MUTCD SECTION 3B.14. SPACE 6 INCHES APART.	,		Ľ		-	,
1410	617	PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATF (MMA)	45	LF	\$	20.00	\$	900.00
		INSTALL YIELD LINE WITH MAXIMUM DIMENSIONS PER MUTCH SECTION 3B.16. SPACE 12 INCHES APART	-	1	Ľ			
1420	618	PAVEMENT MARKINGS WITHIN CITY ROW OR NALL PROPERTY SHALL BE METHYL METHACRYLATE (MMA)	49	LF	\$	20.00	Ś	980.00
1420					+ -	_0.00	Ŧ	500.50

Total

\$

4.00

250.00 \$

3,850.00

1,500.00

4,500.00

2,200.00

2,200.00

1,140.00

2,200.00

1,100.00 2,750.00 1,100.00

900.00

480.00

550.00

550.00

550.00 550.00

350.00

7,150.00

2,070.00 651.00

375.00

2,250.00 3,747.00

152.00

5,349.00 1,100.00

22,750.00

4,400.00

2,200.00 1,100.00

6,600.00

2,000.00

350.00

350.00

8,325.00

1,392.00

6,375.00

1,050.00

368.00 6,012.00

730.00

2,568.00

166,353.00

750.00

350.00 1,050.00

500.00

750.00 9,708.00

	Flagstaf	T, AZ 86001		FI	agsta	iff, AZ 86004	
		GUARANTEED MAXIMUM PRICE					
Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR					
Project #:		COF# ST3040					
Dwgs:		SWI Engineering; stamped 8-25-222					
Submitte	d:	11/9/2022					
EMC #	Keynote	DESCRIPTION	QTY	Unit	I	Jnit Cost	
1440	621	INSTALL STOP SIGN (R-1) PER MUTCD	7	EA	\$	550.00	\$
1450	623	INSTALL 30 MPH SPEED LIMIT SIGN (R2-1) PER MUTCD	2	EA	\$	750.00	\$
1460	626	INSTALL BEGIN RIGHT TURN LANE SIGN (R4-4) PER COF STD DTL 10-10-020 AND MUTCD	1	EA	\$	750.00	\$
1470	627	INSTALL 8" WHITE CHEVRON MARKING WITH 5' LONGITUDIONAL SPACING PER MUTCD. 5'	800	C.E.	ć	12.00	ė
1470	629	INSTALL "ADVANCE INTERSECTION LANE CONTROL" SIGN (R3-8) PER MUTCD	6	FA	ې د	750.00	\$
1400	025	INSTALL "NARROW KEEP RIGHT" SIGN (R04-07C) WITH OM-3L SIGN PER MUTCD AND COF STD DTL 10-06-	U	L/(Ŷ	750.00	Ť
1490	630	011	4	EA	\$	550.00	\$
1500	631	INSTALL ROUNDABOUT SIGN (R6-4a) PER MUTCD	4	EA	\$	550.00	\$
		INSTALL 4" WHITE DOTTED LINE PER MUTCD SECTION 3A.06 WITH 2 FT LINE SEGMENTS AND 2- TO 6 FT					
1510	632	GAPS. PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATE	57	LF	\$	20.00	\$
4500		INSTALL "STREET NAME" SIGN (D3-1) PER MUTCD. UPPER CASE LETTERS TO BE 6" TALL AND LOWER CASE					
1520	634	LETTERS 4" TALL	4	EA	Ş	550.00	\$ ¢
1530	638		5	EA FA	ې د	550.00	ې د
1550	640	INSTALL NOT TURN SIGN (R3-4) PER_MUTCD	2	EA	Ś	550.00	Ś
		INSTALL GREEN CONTINUOUS BIKE LANE EPOXY OR PREFORMED THERMOPLASTIC MARKINGS FROM			Ŧ		Ť
1560	641	ENNIS FLINT, OR APPROVED EQUAL. BICYCLE LANES THROUGH INTERSECTION SHALL BE INSTALLED AS PER	90	LF	\$	10.00	\$
		INSTALL GREEN DASHED BIKE LANE EPOXY OR PREFORMED THERMOPLASTIC MARKINGS FROM ENNIS					
1570	642	FLINT, OR APPROVED EQUAL. MARKING SHALL BE 2 FT SEGMENTS WITH 6' SPACING.BICYCLE LANES	40	LF	\$	12.00	\$
1580	643	INSTALL EXISTING SALVAGED "NO OVERNIGHT PARKING OR CAMPING" SIGN	1	EA	\$	550.00	\$
1590	644	INSTALL EXISTING SALVAGED "TARGET PARKING ONLY" SIGN	1	EA	Ş	550.00	Ş
1610	645	INSTALL EXISTING SALVAGED IND PARKING BIKE LANE ISIGN (K79A)	1	EA	ې د	550.00	> ¢
1620	647	INSTALL BIRE LANE ENDS SIGN (RS-17 & RS-17 BP) PER MUTCH	1	EA FA	ې د	350.00	ې د
1020	040	INSTALL EXISTING SALVAGED SIGN FERMIOTED	-	LA.	Ļ	550.00	7
1630	657	HUMPS WITH CROSSWALKS", OPTION, PER MUTCD. PAVEMENT MARKINGS WITHIN CITY ROW OR NAU	13	EA	\$	550.00	\$
		INSTALL 6" YELLOW SOLID / 6" YELLOW BROKEN STRIPE (10' SEGMENT WITH 30' GAPS), PER ADOT DWG.					
1640	658	M-2 PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATE	690	LF	\$	3.00	\$
		INSTALL 12" WHITE STRIPING (YIELD LINE), 3' SEGMENTS WITH 3' GAPS PER MUTCD SECTION 3A.06				I	
1650	659	PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATE (MMA).	217	LF	\$	3.00	\$
1000	664	INSTALL 8" DOTTED WHITE STRIPING (3' GAP AND 1' LINE) PER MUTCD SECTION 3A.06 AND C.O.F. STD.	4.25		~	2.00	
1660	661	DIL. 16-06-010 PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL	125	LF	\$	3.00	Ş
1670	663	AND M-11 HORIZONITAL DLACEMENT AS SHOWN DLANS, DAVEMENT MARKING THE LER ADOL DWGS. M-10	3	FΔ	Ś	750.00	Ś
10/0	005	INSTALL 6" NORMAL BROKEN WHITE LINE STRIPING CONSISTING OF 10' SEGMENTS WITHIN CIT NOW OR	5	LA.	Ŷ	730.00	Ţ
1680	665	MUTCD SECTION 3A.06 PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL	1,249	LF	\$	3.00	\$
1690	666	INSTALL 6" DOTTED WHITE PER MUTCD SECTION 3A.06 AND C.O.F. STD. DTL. 16-06-010	76	LF	\$	2.00	\$
1700	669	INSTALL 6" NORMAL WHITE PER MUTCD SECTION 3A.06 AND C.O.F. STD. DTL. 16-06-010	1,783	LF	\$	3.00	\$
1710	671	INSTALL "BIKE LANE ENDS" SIGN (R3-17) AND (R317bP) PER MUTCD	2	EA	\$	550.00	\$
		INSTALL PEDESTRIAN SYMBOL PER THE "SMALL TOWN AND RURAL DESIGN GUIDE" - "PEDESTRIAN LANE"					
1720	672	AND PER MANUFACTURER'S RECOMMENDATION. PAVEMENT MARKINGS WITHIN CITY ROW OR NAU	35	EA	Ş	650.00	Ş
1730	670	INSTALL "YIELD" SIGN (R1-2) PER MUTCH. HORIZONTAL PLACEMENT	8	EA	ې د	550.00	\$ ¢
1740	680	INSTALL UNE WAT SIGN (R0-1R) PER MUTCH AND 6 OFF THE GROUND	2	ΓA FΔ	ې د	550.00	\$
1760	685	INSTALL PEDESTRIAN SIGN (W11-15) WITH DIRECTIONAL ARROW (W16-7P) PER MUTCD	12	EA	Ś	550.00	Ś
1770	686	INSTALL "LANE ENDS MERGE LEFT" (W9-2) PER MUTCD. HORIZONTAL PLACEMENT	1	EA	\$	500.00	\$
		INSTALL "OFF STREET SHARED USE PATH AHEAD" SIGN. HORIZONTAL RECTANGULAR WHITE PLAQUE					
1780	687	(36"X30") WITH A BLACK BORDER AND THE WORDS "OFF STREET SHARED USE PATH AHEAD" IN BLACK ON	4	EA	\$	500.00	\$
1790	777	INSTALL SALVAGED "ADOT" SIGN (96") REINSTALL PER ADOT STANDARD DETAIL S-3 (6/16)	1	EA	\$	350.00	\$
1800	778	INSTALL SALVAGED "NAU" SIGN (54") REINSTALL PER ADOT STANDARD DETAIL S-3 (5/16)	1	EA	\$	350.00	\$
		INSTALL 12" SINGLE WHITE LANE STRIPE IN ACCORDANCE WITH ADOT STANDARD 709 (EPOXY).				[
1810	787		1,665	LF	Ş	5.00	Ş
1920	700	INSTALL 6" DOUBLE YELLOW STRIPE IN ACCORDANCE WITH ADOT SPECIFICATION 709 (EPOXY).	240	15	ć	4.00	ć
1620	/00	INSTALL PAVEMENT MARKING ARROW IN ACCORDANCE WITH ADOT STANDARD DETAILS M-10.8 M-11	540	LF	Ş	4.00	Ş
1830	789	PAVEMENT MARKINGS WITHIN CITY ROW OR NALL PROPERTY SHALL BE METHYL METHACRYLATE (MMA)	51	EA	Ś	125.00	Ś
1840	790	INSTALL 16" HIGH WHITE ON GREEN FLEXIBLE DELINEATOR (F1GW) PER ADOT DTL M-26.	1	EA	\$	350.00	\$
-		INSTALL PAVEMENT MARKING LEGEND "ONLY" IN ACCORDANCE WITH ADOT STANDARD DETAILS M-6 &					Ľ.
1850	791	M-11. PAVEMENT MARKINGS WITHIN CITY ROW OR NAU PROPERTY SHALL BE METHYL METHACRYLATE	3	EA	\$	350.00	\$
1860	792	INSTALL 3" x 4' YELLOW FLEXIBLE DELINEATOR (F1Y) PER ADOT DTL M-26.	3	EA	\$	350.00	\$
		INSTALL 18" WHITE STOP BAR PER ADOT STANDARD DETAIL M2 IN ACCORDANCE WITH ADOT STANDARD					
1870	793	SPECIFICATION 709 (EPOXY)	92	LF	\$	4.00	\$
1000	700	INSTALL 6" WHITE STRIPING CONSISTING OF 10' SEGMENTS WITH 30' GAPS PER ADOT DWG. M-4 IN	1 500	15	ć	4.00	~
1000	190		1,503	LF	Ş	4.00	Ş
1890	797	ADOT STANDARD SPECIFICATION 709 (EPOXY).	146	LF	\$	5.00	\$
			-				

STRIPING AND SIGNAGE SUBTOTAL : \$

\$

LF

EA \$

642

3

798

799

1900

1910

INSTALL 6" WHITE STRIPING (SKIP LINE), 1' SEGMENT WITH 3' GAPS PER ADOT DWG. M-2 IN ACCORDANCE

INSTALL CURB MARKINGS FOR RAISED MEDIAN AND ISLANDS PER ADOT DWG. M-1.

WITH ADOT STANDARD SPECIFICATION 709 (EPOXY)

Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR					
Project #	:	COF# ST3040					
Dwgs:		SWI Engineering: stamped 8-25-222					
Submitte	٠d٠	11/0/2022					
Submitte	Kourata		OTV	11	Unit Cost		Tatal
EIVIC #			QIY	Unit	Unit Cost		Iotai
			4		¢ 10.250.00	ć	CE 000 00
2000	731040		4	EA	\$ 16,250.00	Ş	1 400 00
2010	7310010		1	EA	\$ 1,400.00	Ş	1,400.00
2020	7310320		4		\$ 0,750.00	ې د	27,000.00
2030	7310200		1	EA	\$ 2,500.00	>	2,500.00
2040	/310610	MAST ARM (SUFT.) (TAPERED)	3	EA	\$ 10,925.00	>	32,775.00
2050	7220050	MAST ARM (SS FT.) (TAPERED)	1	EA	\$ 11,130.00	> ¢	11,130.00
2060	7320050	ELECTRICAL CONDUIT (2) (PVC)	9		\$ 150.00	Ş	1,350.00
2070	7320070	ELECTRICAL CONDUIT (3) (PVC)	1,000		\$ 45.00	Ş	45,000.00
2080	7320291		8		\$ 50.00	> ¢	2 750 00
2090	7320420		3	EA	\$ 1,250.00	Ş	3,750.00
2100	7320421	PULL BUX (NU. 7 W/ EXTENSION)	1	EA	\$ 1,000.00	>	1,000.00
2110	7320650		1	EA	\$ 16,500.00	>	16,500.00
2120	7330060	TRAFFIC SIGNAL FACE (TYPE F)	10		\$ 850.00	> ¢	8,500.00
2130	7330135	TRAFFIC SIGNAL FACE (TYPE G)	10	EA	\$ 1,100.00	>	11,000.00
2140	7330210	TRAFFIC SIGNAL FACE (PEDESTRIAN)(MAN/HAND)	4	EA	\$ 550.00	\$	2,200.00
2150	7330220	PEDESTRIAN PUSH BUTTON	4	EA	\$ 3,000.00	Ş	12,000.00
2160	7330310	TRAFFIC SIGNAL MOUNTING ASSEMBLY (TYPE II)	16	EA	\$ 300.00	Ş	4,800.00
2170	7330340	TRAFFIC SIGNAL MOUNTING ASSEMBLY (TYPE V)	8	EA	\$ 750.00	Ş	6,000.00
2180	7340101	CONTROLLER CABINET (INCLUDES R&R METER/COMBO BBU)	1	EA	\$ 35,700.00	Ş	35,700.00
2190	7340105	CONTROLLER CABINET FOUNDATION	1	EA	\$ 1,850.00	\$	1,850.00
2200	7340115	LOAD CENTER CABINET	1	EA	\$ 13,500.00	\$	13,500.00
2210	7340306	LOAD CENTER CABINET FOUNDATION	1	EA	\$ 1,500.00	\$	1,500.00
2220	7350030	VIDEO DETECTION SYSTEM	1	EA	\$ 50,000.00	\$	50,000.00
2230		EMERGENCY VEHICLE PREEMPTION	1	LS	\$ 45,000.00	\$	45,000.00
2240	7360030	LUMINAIRE (HORIZONTAL MOUNT)	4	EA	\$ 2,650.00	\$	10,600.00
2250		INTERNALLY ILLUMINATED STREET NAME SIGN	4	EA	\$ 2,750.00	\$	11,000.00
2260		PEDESTRIAN SIGNS	14	EA	\$ 750.00	\$	10,500.00
2270		TRAFFIC SIGNAL ENGINEERING	1	LS	\$ 10,390.00	\$	10,390.00
		MILTON ROAD/UNIVERSITY A	VENUE TRAI	FFIC SIG	NAL SUBTOTAL :	\$	442,345.00
BEULAH B	OULEVARD P	EDESTRIAN SIGNAL					
2400	7310130	POLE (TYPE Q) (INCLUDES LUMINAIRE)	2	EA	\$ 12,500.00	\$	25,000.00
2410	7310010	POLE (TYPE A)	2	EA	\$ 2,250.00	\$	4,500.00
2420	7310310	POLE FOUNDATION (TYPE Q)	2	EA	\$ 6,500.00	\$	13,000.00
2430	7310200	POLE FOUNDATION (TYPE A)	2	EA	\$ 5,750.00	\$	11,500.00
2440	7310563	MAST ARM (25 FT.) (TAPERED)	2	EA	\$ 7,200.00	\$	14,400.00
2450	7320070	ELECTRICAL CONDUIT (3") (PVC)	135	LF	\$ 45.00	\$	6,075.00
2460	7320420	PULL BOX (NO. 7)	5	EA	\$ 1,250.00	\$	6,250.00
2470	7320650	CONDUCTORS	1	EA	\$ 4,500.00	\$	4,500.00
2480	7330135	TRAFFIC SIGNAL FACE (TYPE D)	12	EA	\$ 500.00	\$	6,000.00
2490	7330210	TRAFFIC SIGNAL FACE (PEDESTRIAN)(MAN/HAND)	4	EA	\$ 500.00	\$	2,000.00
2500	7330220	PEDESTRIAN PUSH BUTTON	4	EA	\$ 2.600.00	Ś	10.400.00
2510	7330310	TRAFFIC SIGNAL MOUNTING ASSEMBLY (TYPE II)	4	EA	\$ 365.00	\$	1,460.00
2520	7330360	TRAFFIC SIGNAL MOUNTING ASSEMBLY (TYPE VII)(MOD)	6	EA	\$ 800.00	Ś	4.800.00
2530	7340101	CONTROLLER CABINET	1	EA	\$ 16,750.00	Ś	16,750.00
2540	7340105	CONTROLLER CABINET FOUNDATION	1	EA	\$ 2,600.00	Ś	2.600.00
2550	7340115		1	FA	\$ 13,000,00	Ś	13 000 00
2560	7340306		1	FA	\$ 1,000,00	Ś	1 000 00
2570	/0.0000	PEDESTRIAN SIGNS	12	FΔ	\$ 650.00	Ś	7 800 00
2580		WATERBRONE-TYPE II PAVEMENT MARKING (PAINTED) (WHITE)	48	LF	\$ 25.00	Ś	1.200.00
			~~~~		- 25.00	Ť	1,200.00
					NAL SUBTOTAL ·	Ś	152 225 00
LANDSCAL	F/IRRIGATIC				CALCODIOTAL .	1	132,233.00
CAR		FMC PROVIDED ROCK FX_CONSTRUCTION WATER_SERVICE LINES_SLEEVES	1	15	\$ 9,800.2E	¢	0 800 25
2700	1200		2 5 2 2	10	\$ 3,000.23	Ś	72 120 00
2700	1000		2,322		÷ 29.00	ې د	73,138.00
2710	1810	ROCK EXCAVATION, STOCKPILE AND PLACE TOPSOIL FOR PLANTING IVIEDIOW IN ROCK CUT AREAS	8/5		\$ 33.00	Ş	28,875.00
2720	1820		10,013	55	\$ 0.30	Ş	4,983.90
2/30	1821	DRYLAND NATIVE SEED (IRRIGATED)	60,664	SF	\$ 0.25	\$	15,166.00
2740	1822	WEILAND SEED (NOT IRRIGATED)	7,433	SF	\$ 0.35	Ş	2,601.55
2750	1823	EKUSION CONTROL MAT (FOR FILL SLOPE SEEDED AREAS)	10,000	SF	> 2.50	\$	25,000.00
2760	1830	KUCK MULCH BED W/ SHRUBS AND GROUNDVOVER 3" DEPTH W/ WEED BARRIER (INCLUDES SOIL PREP)	17,916	SF	\$ 2.00	\$	35,832.00
2770	1831	KOCK MULCH BED 3" DEPTH W/ WEED BARRIER (NO SHRUBS)	18,306	SF	\$ 1.75	\$	32,035.50
2780	1832	MALAPAI BOULDERS (1/2 TON AVERAGE)	150	TN	\$ 279.00	\$	41,850.00
2790	1841	ROOT BARRIER SYSTEM	1,184	LF	\$ 16.00	\$	18,944.00
2800	1850	CANOPY TREE (2" CALIPER)	86	EA	\$ 486.00	\$	41,796.00
2810	1851	EVERGREEN TREE (6' HEIGHT)	12	EA	\$ 325.00	\$	3,900.00
2820	1852	ORNAMENTAL TREE (2" CALIPER)	26	EA	\$ 430.00	\$	11,180.00
2830	1853	SHRUBS (5 GAL.)	200	EA	\$ 35.00	\$	7,000.00
2840	1854	SHRUBS (1 GAL.)	411	EA	\$ 15.00	\$	6,165.00
2850	1900	1-1/2" TAP	1	EA	\$ 750.00	\$	750.00
2860	1910	CONTROLLER	1	EA	\$ 4,200.00	\$	4,200.00
2870	1920	1-1/2" BACKFLOW PREVENTOR	1	EA	\$ 4,890.00	\$	4,890.00





Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR					
Project #	:	COF# ST3040					
Dwgs:		SWI Engineering; stamped 8-25-222					
Submitte	d.	11/0/2022					
	Kaumata		OTV	11	Linit Cost		Tetal
2990	1021		1	EA	\$ 2,400,00	ć	2 400 00
2000	1022		20		\$ 2,400.00 \$ 12.00	ې د	2,400.00
2090	1922	1" MAGTED VALVE	20		\$ 1.00 \$ 1.205.00	ې د	1 205.00
2900	1930		1	EA	\$ 1,205.00	>	1,205.00
2910	1931		1	EA	\$ 1,125.00	\$	1,125.00
2920	1932	BRONZE BALL VALVE	15	EA	\$ 300.00	Ş	4,500.00
2930	1933	DRIP ZONE VAVLE W/ BOX	18	EA	\$ 967.00	\$	17,406.00
2940	1934	SPRAY ZONE VAVLE W/ BOX	11	EA	\$ 825.00	\$	9,075.00
2950	1935	CONTROL WIRE (14G)	28,024	LF	\$ 0.70	\$	19,616.80
2960	1935	COMMON WIRE (12G)	7,500	LF	\$ 0.80	\$	6,000.00
2970	1936	4" SCH 40 PVC SLEEVE	2,000	LF	\$ 15.00	\$	30,000.00
2980	1937	SCHEDULE 40 PVC MAINLINE INCLUDE TRACER WIRE 1-1/2"	7,125	LF	\$ 8.50	\$	60,562.50
2990	1938	SCHEDULE 40 PVC LATERAL - 1"	5 213	LE	\$ 5.00	Ś	26 065 00
3000	1939		1 000	Ε. FΔ	\$ 28.30	Ś	28,300,00
2010	1940		26	EA	\$ 28.00	¢ ¢	20,500.00
2020	1940		20		μ         μ         μ           μ         5         56.00           μ         5         56.00	ې د	900.00
3020	1941	POP UP SPRAY HEADS W/ JOINT	228	EA	\$ 51.00	>	11,628.00
3030	1942		1	EA	\$ 375.00	Ş	2,625.00
3040	1943	FLUSH END CAPS W/ BOX	29	EA	\$ 53.00	\$	1,537.00
		L/	ANDSCAPE/	RRIGAT	ION SUBTOTAL :	\$	591,400.50
WATER DI	STRIBUTION	SYSTEM					
3200	304.1	INSTALL 8" C900 WATERLINE - FULLY RESTRAINED	2,391	LF	\$ 105.00	\$	251,055.00
3210	304.3	INSTALL 8" C900WATERLINE	1.172	LF	\$ 90.00	Ś	105,480.00
3220	302	INSTALL NEW WATER SERVICE WITH METER BOX	11	FA	\$ 2,005,00	Ś	22 055 00
3230	304.2		51	LE	\$ 195.00	¢	9 9/15 00
2240	304.2	INSTALL D [®] COOD WATERLINE DED ADOT STECS SLUBBY PACKELLE FOLLT RESTRAINED	40	1.5	\$ 175.00	ې د	9 575 00
3240	305.4	INSTALL 6" COOD WATERLINE PER ADOT SPECS SLURNT BACKFILL - FOLLT RESTRAINED	49		\$ 175.00 \$ 160.00	ې د	0,575.00
3250	305.5	INSTALL & COU WATERLINE PER ADDI SPECS SLURRY BACKFILL	147		\$ 160.00	>	23,520.00
3260	310.1	INSTALL 8", 22.5 DEG; JOINT RESTRAINTS	2	EA	\$ 650.00	Ş	1,300.00
3270	310.2	INSTALL 8", 11.25 DEG; JOINT RESTRAINTS	4	EA	\$ 650.00	\$	2,600.00
3280	310.5	INSTALL 8", 22.5 DEG; JOINT RESTRAINTS	6	EA	\$ 650.00	\$	3,900.00
3290	311.1	INSTALL 1" AIR RELEASE VALVE	6	EA	\$ 2,950.00	\$	17,700.00
3300	312	INSTALL 8" GATE VALVE	7	EA	\$ 2,350.00	\$	16,450.00
3310	312.1	INSTALL 8" GATE VALVE	14	EA	\$ 2.350.00	Ś	32,900.00
3320	312.2	INSTALL 10" GATE VALVE	1	EA	\$ 2,550.00	Ś	2,550.00
3330	312.3		1	FΔ	\$ 1,950,00	Ś	1 950 00
33/0	313		1	E/T	\$ 750.00	¢	750.00
2250	215		1	EA	\$ 750.00	ć	750.00
3330	313		1		\$ 750.00 \$ 1,750.00	ې د	1 750.00
2270	323	REINSTALL REDUCED BACKFLOW PREVENTION ASSEMBLT AND HOT BOX.	1		\$ 1,750.00	ې د	1,750.00
3370	324	INSTALL NEW 2 WATER SERVICE LINE PER C.O.F. STD. DTL. 9-03-070 ON DWG DT01	1	EA	\$ 550.00	>	550.00
3380	328	INSTALL NEW WATER SERVICE WITH METER BOX	1	EA	\$ 1,880.00	Ş	1,880.00
3390	331	INSTALL 8"x6" REDUCER DIP CLASS 250, WITH JOINT RESTRAINTS	2	EA	\$ 900.00	\$	1,800.00
3400	333.1	INSTALL 8"x10" TEE DIP CLASS 250, WITH JOINT RESTRAINTS	1	EA	\$ 950.00	\$	950.00
3410	333.11	INSTALL 8"x6" TEE DIP CLASS 250, WITH JOINT RESTRAINTS	4	EA	\$ 950.00	\$	3,800.00
3420	333.12	INSTALL 8"x8" TEE DIP CLASS 250, WITH JOINT RESTRAINTS	4	EA	\$ 900.00	\$	3,600.00
3430	333.2	INSTALL 8"x8" TEE DIP CLASS 250. WITH JOINT RESTRAINTS	5	EA	Ś 950.00	Ś	4,750.00
3440	341.1	CONNECT NEW 8" WATERLINE TO EXT 8"	4	FA	\$ 950.00	Ś	3 800 00
3450	3/1 11	CONNECT EXISTING WAERINE TO NEW TEE	5	E/ C	\$ 750.00	¢	3 750 00
2460	241.11		2	EA	\$ 950.00	¢	1,900,00
3400	341.2	CONNECT NEW 8 WATERLINE TO LATO	1		\$ 930.00	ې د	1,900.00
3470	341.3		1	EA	\$ 1,025.00	>	1,025.00
3480	360	INSTALL FIRE HYDRANT ASSEMBLY	7	EA	\$ 6,750.00	Ş	47,250.00
3490	360.1	INSTALL FIRE HYDRANT ASSEMBLY SLURRY BACKFILL PER ADOT	1	EA	\$ 6,950.00	Ş	6,950.00
3500	361	INSTALL FIRE HYDRANT ASSEMBLY PER M.A.G STD. DTL. 360-3 EXCLUDE HYDRANT	1	EA	\$ 1,850.00	\$	1,850.00
3510	363	INSTALL 8"x8" TEE DIP CLASS 250, WITH JOINT RESTRAINTS	1	EA	\$ 750.00	\$	750.00
3520	365	ADJUST EXISTING WATER VALVE COVER TO FINISH GRADE PER C.O.F. STD. DTL. 9-03-060 ON SHEET DT01.	8	EA	\$ 975.00	\$	7,800.00
3530	366	CONSTRUCT 8" DIP CLASS 350 RESTRAINED WATER VERTICAL REALIGNMENT	2	EA	\$ 3,500.00	\$	7,000.00
3540	368.2	CONSTRUCT 10" DIP CLASS 350 RESTRAINED WATER VERTICAL REALIGNMENT	1	EA	\$ 4.350.00	Ś	4.350.00
3550	369	CONSTRUCT 8" DIP CLASS 350 RESTRAINED WATER VA (4 - 45DEG)	4	FA	\$ 3,500,00	Ś	14 000 00
3560	369.1		1	E/ C	\$ 2,750,00	¢	2 750 00
2570	200		2	EA	\$ 2,750.00	¢	2,750.00
3370	350		5		\$ 2,550.00	7	0,050.00
	L		DICTOUR				
		WATER	DISTRIBUTI	UN SYS	IEM SUBTOTAL :	Ş	632,585.00
SEWER CO	LLECTION SY	(STEM				<u> </u>	
3700	401.2	INSTALL 8" SEWER MAIN	238	LF	\$ 85.00	\$	20,230.00
3710	401.4	INSTALL 8" SEWER MAIN - ADOT SLURRY BACKFILL	948	LF	\$ 160.00	\$	151,680.00
3720	404	INSTALL EXTRA PROTECTION MAG 404	1	EA	\$ 950.00	\$	950.00
3730	414	CONNECT OLD SEWER SERVICE TO NEW MANHOLE	1	EA	\$ 1.350.00	\$	1.350.00
3740	420	INSTALL 48" DIA. SEWER PRE-CAST (WATER-TIGHT) MANHOLF	3	EA	\$ 6,850,00	S	20 550 00
2750	/20		2	EA	\$ 7,000.00	ć	20,330.00
3730	420.1		2		÷ 7,200.00	د ~	21,/30.00
3/60	420.2	INSTALL OU DIA. SEWER PRE-CAST (WATER-TIGHT) MANHULE	2	EA	> /,500.00	>	15,000.00
3770	420.2	INSTALL OU DIA. SEWEK PKE-CAST (WATEK-TIGHT) MANHULE	5	EA	\$	>	37,500.00
3780	422	ADJUST EXT MANHOLE F&C PER M.A.G. 422 AND PER C.O.F. 9-03-062.	10	EA	\$ 1,250.00	\$	12,500.00
3790	423	CONNECT EXISTING SEWER TO NEW MANHOLE	1	EA	\$ 1,450.00	\$	1,450.00
3800	427	INSTALL CAP AND BLOCK ON SANITARY SEWER	3	EA	\$ 750.00	\$	2,250.00
3810	428	INSTALL 8" SEWER MAIN STUB	190	LE	\$ 85.00	Ś	16.150.00





Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR						
Project #:		COF# ST3040						
Dwgs:		SWI Engineering: stamped 8-25-222						
Submitte	d٠	11/9/2022						
FMC #	Kevnote	DESCRIPTION	ΟΤΥ	Unit	l r	Init Cost		Total
3820	440	INSTALL 6" SERVICE & CONNECTION: "S" TOC MARKING	1	FA	Ś	1 250 00	Ś	1 250 00
					Ť		· ·	_,
		SEWE	R COLLECTI	ON SYS	TEM S	UBTOTAL :	\$	302,610.00
STORM DR	AINAGE				Γ			•
4000	271	INSTALL ELEVATED CLEANOUT PER M.A.G. STD. DTL. 440-3.	4	EA	\$	950.00	\$	3,800.00
4010	511	INSTALL 12" DIA SMOOTH SRP (14 GA.) PER M.A.G. 510 AND SPEC. SECTION 621	18	LF	\$	90.00	\$	1,620.00
4020	501.1	CONSTRUCT U TYPE HEADWALL PER M.A.G. STD. DETAIL. 501.	2	EA	\$	6,700.00	\$	13,400.00
4030	511.1	INSTALL 18" DIA SMOOTH SRP (14 GA.)	592	LF	\$	115.00	\$	68,080.00
4040	511.2	INSTALL 24" DIA SMOOTH SRP (14 GA.)	829	LF	\$	128.00	\$	106,112.00
4050	511.3	INSTALL 30" DIA SMOOTH SRP	838	LF	\$	235.00	\$	196,930.00
4060	511.5	INSTALL 48" DIA SMOOTH SRP (14 GA.)	38	LF	\$	735.00	\$	27,930.00
4070	512.1	INSTALL 18" DIA RGRCP (CLASS 5)	49	LF	\$	165.00	\$	8,085.00
4080	512.2	INSTALL 24" DIA RGRCP (CLASS 5)	562	LF	\$	195.00	\$	109,590.00
4090	512.3	INSTALL 30" DIA RGRCP (CLASS 5)	103	LF	\$	205.00	\$	21,115.00
4100	520	INSTALL 48" DIA. STORM DRAIN MANHOLE	7	EA	\$	6,950.00	\$	48,650.00
4110	521	INSTALL 60" DIA. STORM DRAIN MANHOLE	14	EA	\$	8,950.00	\$	125,300.00
4120	523	CONSTRUCT TYPE "C" CATCH BASIN PER M.A.G. STD. DETAIL 532.	1	EA	\$	8,550.00	\$	8,550.00
4130	527	INSTALL CAP ON STORM DRAIN, FOR FUTURE USE.	1	EA	\$	1,250.00	\$	1,250.00
4140	530	CONSTRUCT TYPE "A" CATCH BASIN PER M.A.G. STD. DETAIL 530	8	EA	\$	6,950.00	\$	55,600.00
4150	532.1	INSTALL CONTECH HEL-COR TEE (30"x36"x48").	1	EA	\$	2,560.00	\$	2,560.00
4160	533	CONSTRUCT TYPE "D" CATCH BASIN PER M.A.G. STD. DETAIL 533-1., 3' WING	4	EA	\$	6,950.00	\$	27,800.00
4170	533.1	CONSTRUCT TYPE "D" CATCH BASIN PER M.A.G. STD. DETAIL 533-1.,DUAL 3' WINGS	3	EA	\$	7,550.00	\$	22,650.00
4180	533.6	CONSTRUCT TYPE "D" CATCH BASIN PER M.A.G. STD. DETAIL 533-1., DUAL 6' WING	2	EA	\$	8,750.00	\$	17,500.00
4190	534	CONSTRUCT TYPE "E" CATCH BASIN PER M.A.G. STD. DETAIL 534	1	EA	\$	7,950.00	\$	7,950.00
4200	535	INSTALL 4" PERFORATED HDPE UNDERDRAIN PIPE AND CLEANOUTS PER PLAN PER DETAIL '17' ON SHEET [	206	EA	\$	55.00	\$	11,330.00
4210	535.1	INSTALL 4" SOLID HDPE DRAIN PIPE AND CLEANOUTS PER PLAN PER DETAIL '17' ON SHEET DR01.	79	EA	\$	75.00	\$	5,925.00
4220	537	CONSTRUCT TYPE "G" CATCH BASIN PER M.A.G. STD. DETAIL 537.	1	EA	\$	8,750.00	\$	8,750.00
4230	576	CONNECT 48" STORM DRAIN PIPE TO EXISTING STORM DRAIN.	1	EA	\$	1,750.00	\$	1,750.00
4240	743	INSTALL 18" DIA SMOOTH SRP (14 GA.) ADOT - SLURRY BACKFILL	77	LF	\$	205.00	\$	15,785.00
4250	744	INSTALL 24" DIA SMOOTH SRP (14 GA.) ADOT - SLURRY BACKFILL	147	LF	\$	225.00	Ş	33,075.00
			STORN	1 DRAIN	AGE S	SUBTOTAL :	Ş	951,087.00
	IES		4 450		-	42.00	ć	co 000 00
4500		APS ELECTRIC & SHARED DRY UTIL (1 - 2.5" DB120; TRENCH S)	1,450		ļ\$	42.00	\$	60,900.00
4510		SUDDENLINK CABLE (ASSUME (2) 2" PVC SCH 40 PVC - FACILITIES IN APS TRENCH)	6,800		Ş	15.00	Ş	102,000.00
4520		CENTURYLINK COMINI (ASSUME (2) 4" SCH 40 PVC - FACILITIES IN APS TRENCH)	6,800		>	18.00	Ş	122,400.00
4530	70.4		2,600		>	18.00	Ş	46,800.00
4540	784	INSTALL ADUTINU. 7 PULL BUX	12	EA	>	1,250.00	Ş	15,000.00
4550	785	INSTALL (2) 3 INCH DIA. SCHEDULE 80 PVC CONDUIT PER C.O.F. ENGINEERING STANDARDS SECTION 13-16-	890		\$ \$	45.00	Ş	40,050.00
4500	780	INSTALL (1) 2 INCH DIA. SCHEDULE 80 PVC CONDULT PER C.O.F. ENGINEERING STANDARDS SECTION 13-10-	40		->	40.00	ې د	1,600.00
4570	802	INSTALL CUF IND. 3 FULL DUX FER C.U.F. STU. UTL. 10-03-010	0 2 6 1 2			7,800.00	ې د	172 276 00
4580	802	INSTALL (2 - 4 JUT OU WITH SWEEPS) - FIBER UPTIL	3,012		+>	48.00	Ş	1/3,3/0.00
				ייידוו עכ		URTOTAL	ć	624 526 00
					DE C	DTOTAL:	÷	0 700 010 50
		CITY TRANSP	ORIATIO	N SCOP	PE SU	BIOTAL:	Ş	9,726,618.50

WATER S	WATER SERVICES - SEWER OVERSIZING AND EXTENSION SCOPE PLUS WATER UPSIZE									
WATER CC	LLECTION U	PSIZING								
4700	304.3	UPSIZE PIPE FROM 8" TO 12" WATER WITH C.O.F. TRENCHING AND BACKFILL	1,712	LF	\$ 53.00	\$	90,736.00			
4710	305.5	UPSIZE PIPE FROM 8" TO 12" WATER WITH ADOT TRENCHING AND BACKFILL	147	LF	\$ 115.00	\$	16,905.00			
4720	305.5	UPSIZE PIPE FROM 10" TO 12" WATER WITH ADOT TRENCHING AND BACKFIL	384	LF	\$ 115.00	\$	44,160.00			
4730	310.1	UPSIZE 8" 22.50 DEG. HORIZONTAL BEND TO 12"	2	EA	\$ 750.00	\$	1,500.00			
4740	310.2	UPSIZE 8" 11.25 DEG. HORIZONTAL BEND TO 12"	4	EA	\$ 1,650.00	\$	6,600.00			
4750	310.4	UPSIZE 10" 45 DEG. HORIZONTAL BEND TO 12"	2	EA	\$ 750.00	\$	1,500.00			
4760	312	UPSIZE 8" GATE VALVE TO 12"	7	EA	\$ 1,950.00	\$	13,650.00			
4770	312	UPSIZE 10" GATE VALVE TO 12"	3	EA	\$ 750.00	\$	2,250.00			
4780	313.1	UPSIZE 10" 90 DEG. HORIZONTAL BEND TO 12"	1	EA	\$ 950.00	\$	950.00			
4790	330.1	ADD REDUCER FROM 12" TO 8"; 12" X 8" REDUCERS	1	EA	\$ 750.00	\$	750.00			
4800	333.1	UPSIZE 8" X 10" TEE TO 12" X 10" TEE	1	EA	\$ 1,225.00	\$	1,225.00			
4810	333.1	UPSIZE 10" X 10" TEE TO 12" X 10" TEE	1	EA	\$ 750.00	\$	750.00			
4820	333.2	UPSIZE 8" X 8" TEE TO 12" X 8" TEE	5	EA	\$ 1,650.00	\$	8,250.00			
4830	333.2	UPSIZE 10" X 8" TEE TO 12" X 8" TEE	2	EA	\$ 1,150.00	\$	2,300.00			
4840	363	UPSIZE 8" X 8" TEE TO 12" X 8" TEE & CONNECT EXT 8"	1	EA	\$ 1,850.00	\$	1,850.00			
4850	369	UPSIZE 8" VERTICAL RELIGNMENT TO 12" VERTICAL REALIGNMENT	4	EA	\$ 1,850.00	\$	7,400.00			
4860	369.1	UPSIZE 8" VERTICAL RELIGNMENT TO 12" VERTICAL REALIGNMENT	1	EA	\$ 1,850.00	\$	1,850.00			
4870	369.1	UPSIZE UPSIZE 10" VERTICAL RELIGNMENT TO 12" VERTICAL REALIGNMENT	2	EA	\$ 1,250.00	\$	2,500.00			
	WATER COLLECTION UPSIZING SUBTOTAL: \$ 205,126.00									





Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR					
Project #	:	COF# ST3040					
Dwgs:		SWI Engineering; stamped 8-25-222					
Submitte	ed:	11/9/2022					
EMC #	Kevnote	DESCRIPTION	QTY	Unit	Unit Cost	T	Total
SEWER CO	LLECTION U	PSIZING					
5000	400.4	12" DIP SEWER MAIN	354	LF	\$ 180.00	\$	63,720.00
5010	401.4	UPSIZE FROM 8" TO 12" PVC SEWER MAIN.	948	LF	\$ 95.00	\$	90,060.00
5020	401.4	12" PVC SDR 35 ADOT; SLURRY BACKFILL	293	LF	\$ 118.00	\$	34,574.00
5030	420.2	UPSIZE 48" MH TO 60" MH	3	EA	\$ 2,750.00	\$	8,250.00
5040	423	CONNECT EXT SEWER TO NEW MANHOLE	1	EA	\$ 1,450.00	\$	1,450.00
5050	441	INSTALL SEWER CLEANOUT PER MAG 441	1	EA	\$ 950.00	\$	950.00
						-	
		SEWER	COLLECTIO	N UPSIZ	ING SUBTOTAL :	Ş	199,004.00
		WATER SERVICES - SEWER OVERSIZING AND EXTENSION SCOPE PL	US WATE	R UPSIZ	LE SUBTOTAL :	\$	404,130.00
PEDESTR	IAN UNDE	RPASS SCOPE	-				
DEMOLITI	ON						
5200	101	SAWCUT EXISTING PAVEMENT	948	LF	\$ 3.00	\$	2,844.00
5210	102	REMOVE EXISTING AC PAVEMENT	27,431	SY	\$ 1.00	\$	27,431.00
5220	103	REMOVE AND DISPOSE OF EXISTING CONCRETE CURB	618	LF	\$ 3.00	\$	1,854.00
5230	113	REMOVE AND DISPOSE OF EXISTING VB&C	1	EA	\$ 185.00	\$	185.00
5240	115	REMOVE EXISTING WATER LINE PER COF 13-09-03-007(G) AND MAG 350	210	LF	\$ 25.00	\$	5,250.00
5250	123	REMOVE AND DISPOSE OF EXISTING SEWER MAIN PER MAG 350	126	LF	\$ 45.00	\$	5,670.00
5260	123.9	REMOVE EXISTING WATER LINE PER MAG 350	269	LF	\$ 30.00	\$	8,070.00
5270	150	REMOVE AND DISPOSE OF EXISTING TREE AND ROOTBALL	9	EA	\$ 750.00	\$	6,750.00
5280	158	REMOVE MONUMENT SIGN (Not Relocating!)	1	EA	\$ 750.00	\$	750.00
			D	EMOLIT	ION SUBTOTAL :	\$	58,804.00
UNDERPAS	SS INSTALL					<u> </u>	
5500		EXCAVATION (INCLUDES ROCK)	4,300	CY	\$ 58.00	\$	249,400.00
5505		EXPORT (INCLUDES HAULING FOR 30 MIN ROUND NO DUMP FEES)	4,945	LCY	\$ 9.00	<u> </u> \$	44,505.00
		CONSTRUCT AC SECTION (4 \12 ) DETAIL 3 ON DIO3 (TARGET PL; (Assumed to be 4 'AC; if match existing			÷ == 00		
5510	2000	sections are diferent, CMAR reserves rights to submit for additional costs)	1,136	SY	\$ 75.00	\$	85,200.00
5520	222B	CONSTRUCT SINGLE CURB TYPE B AND DETAIL / ON DWG DT03	483		\$ 28.00	>	13,524.00
5530	255	INSTALL UNDERPASS (STRUC SLABS, TOPPER SLAB; SOIL NAIL; NIGHT WORK COSTS)	1	EA	\$ 348,690.00	<u>}</u>	348,690.00
5540	256.1	SUIL NAIL WALL PER PRINTZ ENGINEERING (EAST & WEST RAMP RETAINING WALLS)	1		\$ 750,300.00	<u>}</u>	750,300.00
5550	250.2		1		\$ 361,910.00	<del>}</del>	561,910.00
5500	257		1	EA	\$ 56,300.00	÷	30,300.00
5570	258		1	EA	\$ 22,000.00	<u>}</u>	22,000.00
5580	633	PAINT 4" WHITE PARKING STRIPE	445	LF	\$ 3.00	>	1,335.00
5500	711	CONSTRUCT AC SECTION 6 AC ( 10 AB; DTL 1.1 ON DTOS (ASSUMED to be 6 AC; II match existing	742	CV	ć 05.00		70,400,00
5590	711		1 202	51	\$ 95.00 \$ 15.00	- <del>-</del>	70,490.00
5000	/55		1,392		\$ 15.00 \$ 215.000.00	2 6	20,880.00
5620	-		1		\$ 215,000.00	2 2	213,000.00
5620	-		1		\$ 118,000.00	4	24 000 00
5640	_		2	EA	\$ 12,445,000.00	2	24,000.00
5650			44		\$ 13,443.00	\$	20,890.00
5660			1	15	\$ 1 750.00	- Z	1 750 00
5000		100AMP 120/240V 1-PHASE 3 WIRE FLECTRICAL SERVICE ENTRANCE SECTION INCLUDING BREAKERS	-		÷ 1,750.00	Ť	1,750.00
5670			1	FΔ	\$ 13 500 00	Ś	13 500 00
5680	-		2	FA	\$ 8500.00	Ś	17 000 00
5690	-	#5 CONCRETE PUIL BOX	2	FA	\$ 2,400,00	Ś	4 800 00
5700	-	UNDERPASS LIGHT FIXTURE	20	FA	\$ 950.00	Ś	19 000 00
5710	-	UNDERPASS ENTRY LIGHT FIXTURE	2	EA	\$ 1.700.00	Ś	3,400.00
5720	-	TUNNEL WIRE & CONDUIT TO SES	1	LS	\$ 12.000.00	Ś	12.000.00
					, ,	† ·	,
			UNDERP	ASS INST	ALL SUBTOTAL :	\$	2,508,474.00
LANDSCAP	E/HARDSCA	PE/IRRIGATION					
5800		EMC - ROCK EX, CONSTRUCTION WATER, SERVICE LINE, SLEEVES	1	LS	\$ 7,350.00	\$	7,350.00
5810	3700	1' WIDE CONCRETE WALL W/ STONE CAP (UNDER 5' HEIGHT) - INCLUDED ABOVE	1,425	SF	\$ -	\$	-
5820	3701	TALL STRUCTURAL CONCRETE WALL PATTERNING ALLOWANCE - INCLUDED ABOVE	1	LS	\$-	\$	-
5830	3710	STANDARD GRAY CONCRETE FLATWORK (4" CONCRETE OVER 3" ABC) - INCLUDED ABOVE	3,970	SF	\$-	\$	-
5840	3713	STANDARD GRAY CONCRETE THICKENED EDGE (2' TALL MAX.) - INCLUDED ABOVE	150	LF	\$-	\$	-
5850	3714	STANDARD GRAY CONCRETE STEPS - INCLUDED ABOVE	280	SF	\$-	\$	-
5860	3715	STANDARD GRAY CONCRETE SEAT PLATFORM W/ STONE CAP	40	SF	\$ 195.00	\$	7,800.00
5870	3720	MONUMENT COLUMN	1	EA	\$ 18,940.00	\$	18,940.00
5880	3730	STAIR AND RAMP RAILING	581	LF	\$ 44.00	\$	25,564.00
5890	3731	GUARDRAIL	748	LF	\$ 65.00	\$	48,620.00
5900	3750	INSET WALL LIGHTS	31	EA	\$ 350.00	\$	10,850.00
5910	3810	STOCKPILE AND PLACE TOPSOIL FOR PLANTING MEDIUM IN ROCK CUT AREAS	15	CY	\$ 85.00	\$	1,275.00
5920	3830	ROCK MULCH BED W/ SHRUBS AND GROUNDVOVER 3" W/ WEED BARRIER	4,514	SF	\$ 4.50	\$	20,313.00
5930	3832	MALAPAI BOULDERS (1/2 TON AVERAGE)	9	TON	\$ 400.00	\$	3,600.00
5940	3850	(CANOPY TREE (2" CALIPER)	2	EA	Ş 510.00	\$	1,020.00

3852

3853

3854

ORNAMENTAL TREE (2" CALIPER)

SHRUBS (5 GAL.) SHRUBS (1 GAL.)

5950

5960

5970

7

68

170

EA \$

EA

\$

\$

455.00 \$

40.00 \$ 22.00 \$

3,185.00 2,720.00 3,740.00





Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR						
Project #	:	COF# ST3040						
Dwgs:		SWI Engineering; stamped 8-25-222						
Submitte	ed:	11/9/2022						
EMC #	Keynote	DESCRIPTION	QTY	Unit		Unit Cost		Total
5980	3901	DRIP ZONE VAVLE W/ BOX	2	EA	\$	1,000.00	\$	2,000.00
5990	3903	CONTROL WIRE (14G)	276	EA	\$	1.00	\$	276.00
6000	3904	4" SCH 40 PVC SLEEVE	500	LF	\$	15.00	\$	7,500.00
6010	3905	SCHEDULE 40 PVC MAINLINE 1-1/2"	46	LF	\$	15.00	\$	690.00
6020	3906	SCHEDULE 40 PVC LATERAL - 3/4"	2,132	LF	\$	6.00	\$	12,792.00
6030	3907	MULTIPORT EMITTERS	15	EA	\$	36.00	\$	540.00
6040	3910	QUICK COUPLER	1	EA	\$	400.00	\$	400.00
6050	3911	FLUSH END CAPS W/ BOX	13	EA	\$	58.00	\$	754.00
		LANDSCAPE/H/	ARDSCAPE/	IRRIGAT	TION	SUBTOTAL :	\$	179,929.00
WATER DI	STRIBUTION	SYSTEM			-			
6100	305.5	INSTALL 10" WATERLINE ADOT - SLURRY BACKFILL	384	LF	Ş	185.00	Ş	71,040.00
6110	310.4	INSTALL 10", 45 DEG	2	EA	Ş	1,850.00	Ş	3,700.00
6120	312	INSTALL 10" GATE VALVE WITH CLASS 250	3	EA	\$	2,550.00	\$	7,650.00
6130	312.1	INSTALL 8" GATE VALVE WITH CLASS 250	2	EA	Ş	2,350.00	Ş	4,700.00
6140	312.2	INSTALL 10" GATE VALVE WITH CLASS 250	1	EA	\$	2,650.00	\$	2,650.00
6150	313.1	INSTALL 10", 90 DEG	1	EA	\$	1,250.00	\$	1,250.00
6160	333.1	INSTALL 10"x 10" TEE DIP CLASS 250	1	EA	\$	1,950.00	\$	1,950.00
6170	333.2	INSTALL 10"x 8" TEE DIP CLASS 250	2	EA	\$	1,850.00	\$	3,700.00
6180	341.4	CONNECT TO EXISTING 10" WATERLINE. USE RESTAINED FITTINGS	1	EA	\$	1,550.00	\$	1,550.00
6190	341.5	CONNECT TO EXISTING 8" WATERLINE. USE RESTAINED FITTINGS	2	EA	\$	1,250.00	\$	2,500.00
6200	369.1	CONSTRUCT 10" DIP CLASS 350 RESTRAINED WATER MAIN VERTICAL REALIGNMENT	2	EA	Ş	6,500.00	Ş	13,000.00
		WATER			TEN		ć	112 600 00
SEWER CO		VAIER				I SUBIUTAL .	Ş	113,090.00
6300	401 3	INSTALL 10" SEWER MAIN	330	IF	Ś	115.00	Ś	37 950 00
6310	401.5		1	EA EA	ć	950.00	¢	950.00
6320	420	INSTALL 48" DIA SEWER PRE-CAST (WATER-TIGHT) MANHOLE	2	FA	Ś	7 250 00	Ś	14 500 00
0520	420				Ť	7,250.00	Ý	14,500.00
		SEWE	R COLLECT	ION SYS	TEM	I SUBTOTAL :	\$	53,400.00
STORM DR	RAINAGE							
6400	512.1	INSTALL 18" DIA RGRCP (CLASS 5)	126	LF	\$	165.00	\$	20,790.00
6410	537	CONSTRUCT TYPE "G" CATCH BASIN PER M.A.G. STD. DETAIL 537.	3	EA	\$	6,750.00	\$	20,250.00
6420	563	INSTALL TRENCH DRAIN K100-KLASSIKDRAIN-LOAD CLASS A	57	LF	\$	105.00	\$	5,985.00
6430	575	CONSTRUCT PUMP ASSEMBLY PER DETAIL ON UP02	1	EA	\$	64,250.00	\$	64,250.00
			STORM	DRAIN	IAGE	SUBTOTAL :	Ş	111,275.00
		PEDESTRIAN U	INDERPAS	SS SCO	PE S	UBTOTAL :	\$	3,025,572.00
MOUNTA	AIN LINE SC	COPE						

STREET WORK							
6500	6500 150 REMOVE AND DISPOSE OF EXISTING TREE AND ROOTBALL PER M.A.G. SPEC. SEC. 350		9	EA	\$ 750.00	) \$	6,750.00
6510	200A CONSTRUCT AC SECTION 6" \ 10"; DT03 - DTL 1 2,702 SY \$ 78.00		) \$	210,756.00			
6520	290 CONSTRUCT CONCRETE TURN DOWN PER DETAIL 11 ON THIS SHEET. INSTALL SALVAGED RAILING FROM EX 92 LF \$ 15.00		)\$	1,380.00			
6530	291	INSTALL 6' - 10" W X 25' - 8" L CONCRETE PAD AND SHELTER STOP LAYOUT PER EXHIBIT H-FIGURE 3, SHOW	176	SF	\$ 18.00	) \$	3,168.00
6540	292	INSTALL SALVAGED BUS SHELTER FROM EXISTING BUS STOP.	1	EA	\$ 3,500.00	) \$	3,500.00
6550	293	INSTALL NO TRESPASSING SIGN, NO PARKING/ROUTE SIGN, PEAK HOURS SIGN, AND NO SMOKING SIGN.	1	EA	\$ 550.00	) \$	550.00
6560	294	INSTALL CONCRETE PAD EXHIBIT H-FIGURE 3	720	SF	\$ 18.00	)\$	12,960.00
6570	668	INSTALL WHITE PREFORMED PAVEMENT MARKING "BUS ONLY" TYPE I PER ADOT DWGS	6	EA	\$ 450.00	) \$	2,700.00
6580	674	INSTALL "BUS LANE AHEAD" SIGN (R3-12f) PER MUTCD.	2	EA	\$ 500.00	) \$	1,000.00
6590	675	INSTALL "BUS LANE ENDS" SIGN (R3-12g) PER MUTCD.	2	EA	\$ 500.00	)\$	1,000.00
STREET WORK SUBTOTAL :						: \$	243,764.00
MOUNTAIN LINE SCOPE SUBTOTAL :						\$	243,764.00

MISCELLANEOUS							
7000		MOBILIZATION	1.00	LS	\$	145,000.00	\$ 145,000.00
7010		SURVEY & STAKING	1.00	LS	\$	225,000.00	\$ 225,000.00
7020		SWPPP INSTALLATION & MAINTENANCE	1.00	LS	\$	35,000.00	\$ 35,000.00
7030		TRAFFIC CONTROL & MAINTENACE	1.00	LS	\$	250,000.00	\$ 250,000.00
7040		AS-BUILTS\RECORD DRAWINGS	1.00	LS	\$	17,500.00	\$ 17,500.00
7050		PUBLIC RELATIONS	1.00	LS	\$	95,000.00	\$ 95,000.00
7060		TRENCH ROCK EXCAVATION	1.00	LS	\$	550,000.00	\$ 550,000.00
7070		UNSUITABLE MATERIAL FOR UTILITY TRENCHES	250	CY	\$	75.00	\$ 18,750.00
7080		SUBGRADE STABILIZATION	1,000	SY	\$	35.00	\$ 35,000.00
7090		TEMP AC PATCH	2,000	SY	\$	85.00	\$ 170,000.00
	MISCELLANEOUS SUBTOTAL :				\$ 1,541,250.00		
	Cost of Work Subtotal:				\$ 14,941,334.50		
GENERAL CONDITIONS							
9000	PE	PROJECT EXECUTIVE	6.00	MO	\$	10,000.00	\$ 60,000.00
9010	PM	PROJECT MANAGER	18.00	MO	\$	9,750.00	\$ 175,500.00





Total 105,000.00 186,000.00

132,000.00

30,000.00

45,000.00

49,600.00

14,000.00

60,000.00

67,200.00 92,400.00

20,400.00

120,000.00

2,500.00 10,000.00 1,169,600.00

Project:		Beulah Blvd. Extension & University Ave. Realignment - CMAR					
Project #:		COF# ST3040					
Dwgs:		SWI Engineering; stamped 8-25-222					
Submitted:		11/9/2022					
EMC #	Keynote	DESCRIPTION	QTY	Unit	ι	Jnit Cost	
9020	GS	GENERAL SUPERINTENDENT	12.00	MO	\$	8,750.00	\$
9030	PS	PROJECT SUPERINTENDENT	24.00	MO	\$	7,750.00	\$
9040	GF	GENERAL FOREMAN	24.00	MO	\$	5,500.00	\$
9050	8TPU	SUPER PICK-UP TRUCK	24.00	MO	\$	1,250.00	\$
9060	PA	PROJECT ADMIN	18.00	MO	\$	2,500.00	\$
9070	Lab	CLEAN UP, SNOW REMOVAL & MAKE SAFE LABOR	16.00	MO	\$	3,100.00	\$
9080	2C1001	CONSTUCTION WATER	3,500	MGAL	\$	4.00	\$
9090	8TWT 4K	4,000 GA WATER TRUCK	2,400	HR	\$	25.00	\$
9100	T03	DRIVER - WATER TRUCK	2,400	MH	\$	28.00	\$
9110	2CONEX	OFFICE, STORAGE & SITE FACILITIES	24.00	MO	\$	3,850.00	\$
9120	9Y0021	TEMP TOILETS (2 EA)	24.00	MO	\$	850.00	\$
9130	8BH420	SITE EQUIPMENT	24.00	MO	\$	5,000.00	\$
9140	3*LH	PPE SAFETY SUPPLIES	1.00	LS	\$	2,500.00	\$
9150	3*LH	PUNCH LIST & DEMOB	1.00	LS	\$	10,000.00	\$
			GENERAL O	ONDITI	ONS S	SUBTOTAL :	\$

BEULAH & UNIVERSITY CMAR SUMMARY							
ITEM DESCRIPTION				TOTAL			
1	COST OF WORK		\$	14,941,334.50			
2	GENERAL CONDITIONS (GC'S) (Percent of Cost of the Work)	7.83%	\$	1,169,600.00			
3	SUBTOTAL #1 - Cost of the Work + GC's		\$	16,110,934.50			
4	CONSTRUCTION FEE (Fee) (Percentage of Subtotal #1)	8.00%	\$	1,288,874.76			
5	SUBTOTAL #2 - Cost of the Work + GC's + Fee		\$	17,399,809.26			
6	PERFORMANCE & PAYMENT BOND (Percentage of Subtotal #2)	0.80%	\$	139,198.47			
7	SUBTOTAL #3 - Cost of the Work + GC's + Fee + Bonds		\$	17,539,007.73			
8	INSURANCE (Percentage of Subtotal #3)	0.80%	\$	141,171.47			
9	SUBTOTAL #4 - Cost of the Work + GC's + Fee + Bonds + Insurance		\$	17,680,179.21			
10	SALES TAX (Percentage of GMP)	5.968%	\$	1,055,153.80			
11	GUARENTEED MAXIMUM PRICE		\$	18,735,333.00			
12	CMAR CONTINGENCY & PRICE ESCALATION FUNDING	1.84%	\$	275,000.00			
13	OWNERS CONTINGENCY (Percentage of Cost of the Work)	2.00%	\$	299,000.00			
14 CONTRACT PRICE				19,309,333			

### Appendix R: Cost Estimate for Culvert

See the following page for culvert cost estimate.



2815 Riley Road * Portage, WI 53901

(608) 742-4464 * (800) 362-7220

Email: <u>markw@wieserconcrete.com</u> * <u>lorih@wieserconcrete.com</u> * Website: <u>www.wieserconcrete.com</u> March 15, 2024

Logan McFarland | Lsm252@nau.edu

### PRICE ESTIMATE

Locatio	on: Flagstaff, /	AZ 86401 (Assumed Freight Distance of 145 miles For Prices)	
1 EA	Preca	ast Concrete Box Culvert 46 LF of 8' Span x 3' Rise Twin Cell Max Weight: 65,167 lbs. 10 Sections (Assumed Standard Length of 7'-8") 12" Haunches	\$ 66,375.00 EA
2 EA	Inlet/Outlet	Headwall Attached to Outlet Section of Box Culvert 6-12" Tall Chamfered Edge	\$ 2,500.00 EA
4 EA	4 EA Flared Wingwalls Freestanding Design		\$ 3,750.00 EA
12 EA	Freig	nt	\$ 1,500.00 EA
Total P	rice		\$ 104,375 LS
All Prices Include:		Delivery Joint Sealant Joint Wrap Joint Ties Shop Drawings Precast Design	
Does Not Include:		Unloading of our Trucks Installation Toe Walls Apron	

Sales taxes are not included in these prices. Prices are an Estimate for Educational Purposes ONLY Adam Wieser, Project Engineer Office: 800-362-7220





## Appendix S: Proposed Gantt Chart

See the following page for the project's proposed scheduling.



### Appendix T: Final Gantt Chart

See the following page for the project's final scheduling.


## Appendix U: Final Timesheet

See the following pages for the timesheet used in the project's design phase.

Task	SENG	ENG	TECH	INT	Total Hours
1.0 Research and Data Collection					25
1.1 Review Codes and Standards	0	14	0	7	21
1.2 Identify Design Vehicle	1	1	0.5	1	3.5
1.3 Collect Existing Geotechnical Data	0	0.5	0	0	0.5
2.0 Site Investigation					47.15
2.1 Site Visit Planning	0	1	1.5	2	4.5
2.2 Land Survey	0	2.5	2.5	2.5	7.5
2.3 Traffic Counts	0	3	3	8	14
2.4 Photographs of Site Features	0	0.5	0.5	0.5	1.5
2.5 Collect Existing Hydraulic Structure Data	0	0	1.5	0	1.5
2.6 Geotech Analysis	0	1	0	0.5	1.5
2.7 Topographic Map	0	13.15	2	1.5	16.65
3.0 Hydrologic Analysis					12
3.1 Watershed Delineation	0	0	3	0	3
3.2 Time of Concentration	0	3	0	1	4
3.3 Storm Intensity	0	0	0	1.5	1.5
3.4 Calculate Peak Flow	0	3	0	0.5	3.5
4.0 Hydraulic Analysis					88.5
4.1 Existing Culvert Analysis	0	0	0	0	0
4.2 Existing Channel Analysis	0	9	4	8	21
4.3 Post-Improvement Hydrologic Analysis	0	4	5.5	7.5	17
4.4 Proposed Culvert and Channel Design	0	5	9	6	20
4.4.1 Determine Criteria	0	3	0	1	4
4.4.2 Develop Alternatives	0	3	9	1	13
4.4.3 Analyze Alternatives and Select Best	4.5	4	1	4	13.5
5.0 Roadway Design					124.2
5.1 Roadway Geometry	4	22	0	9	35
5.2 Intersection Design	5	18	0	7.5	30.5
5.2.1 Determine Criteria	0	2	0	2	4
5.2.2 Develop Alternatives	0	4	0	0	4
5.2.3 Analyze Alternatives and Select Best	3	1.5	1	0.5	6
5.3 Pavement Design	0	2	0	1	3

	_		_		
5.3.1 Determine Criteria	0	7.5	0	0	7.5
5.3.2 Develop Alternatives	0	5.7	0	0	5.7
5.3.3 Analyze Alternatives and Select Best	2	9	0.5	1.5	13
5.4 Sidewalk Design	0	8.5	0	1	9.5
5.5 Signage and Striping	1	2	0	3	6
6.0 Construction Plans					76.5
6.1 Cover Sheet	0	3	2	1.5	6.5
6.2 Existing Site Plan	0	0	5	3	8
6.3 Plans and Profiles	3	14	9	17	43
6.4 Details Sheets	1	3	13	2	19
7.0 Economic Analysis					16
7.1 Construcion Cost	1	5	5	5	16
7.2 Operation and Maintenance Cost	0	0	0	0	0
8.0 Impact Analysis	0	3	2	3	8
9.0 Deliverables					191.25
9.1 30% Submittal	7	24	17.25	15	63.25
9.2 60% Submittal	12.5	28	9	13.5	63
9.3 90% Submittal	0	10	11	18	39
9.4 Final Submittal	8	9	5	4	26
10.0 Project Management					60.3
10.1 Meetings	3	16.7	7.8	10.8	38.3
10.2 Schedule Management	4	1.5	2	3.5	11
10.3 Resource Management	1	7	3	0	11
Summary					
Total Hours	61	277.05	135.55	175.3	648.9