John Wesley Powell West Road Extension Proposal

Cristine Aguila, Elijah Begay, Logan McFarland, Steven McKimmey CENE 476 - 12/8/23

Stakeholders

- Client: Jeff Bauman
 - PE, PTOE, Traffic Engineer with City of Flagstaff
- City of Flagstaff
 - Owners/Maintainers
 - Local Residents

City of Flagstaff, City of Flagstaff Crest. 2020

Introduction

- Connect South Pulliam Dr. to Lake Mary Road
- Enhance accessibility to local communities and users

Figure 1: View from South Pulliam Dr. Image from Google Maps

Figure 2: View from Lake Mary Rd. Image from Google Maps

Project Location

Figure 3: State Map of Arizona [1]

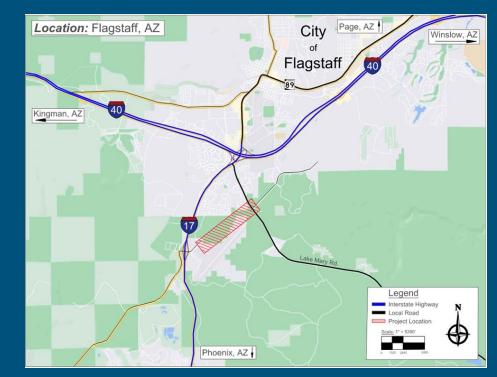
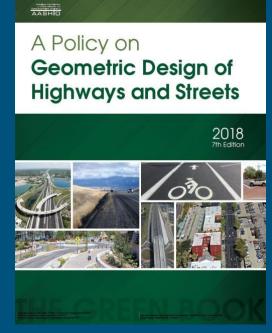


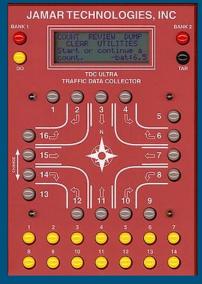
Figure 4: Project Vicinity Map


Project Site

- Located between South Pulliam Dr. & Lake Mary Rd
- Approximately 1.5 miles
- Rugged and forested terrain
- Flagstaff Pulliam Airport lies South of site

Task 1.0: Research and Data Collection

- 1.1 Research and Data Collection
- 1.2 Identify Design Vehicle
- 1.3 Collect Existing Geotechnical Data


AASHTO Journal, A Policy on Geometric Design of Highways and Streets. 2018

Task 2.0: Site Investigation

- 2.1 Site Visit Planning
- 2.2 Land Survey
- 2.3 Traffic Counts
- 2.4 Photographs of Site Features
- 2.5 Collect Existing Hydraulic Structure Data
- 2.6 Geotech Analysis
- 2.7 Topographic Map

J. Peterson, Total Station. 2023

Task 3.0: Hydrologic Analysis

- 3.1 Watershed Delineation
- 3.2 Time of Concentration
- 3.3 Storm Intensity
- 3.4 Calculate Peak Flow

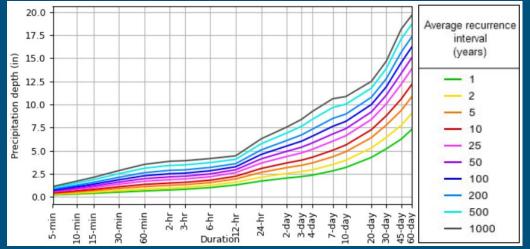
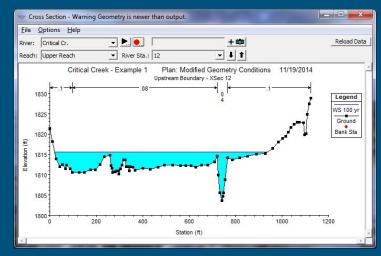



Figure 6: Depth Duration Frequency Curves [2]

Task 4.0: Hydraulic Analysis

- 4.1 Existing Culvert Analysis
- 4.2 Existing Channel Analysis
- 4.3 Post-Improvement Hydrologic Analysis
- 4.4 Proposed Culvert and Channel Design
 - 4.4.1 Determine Criteria
 - 4.4.2 Develop Alternatives
 - 4.4.3 Analyze Alternatives and Select Best

US Corps of Engineers. HEC-RAS. 2016

Task 5.0: Roadway Design

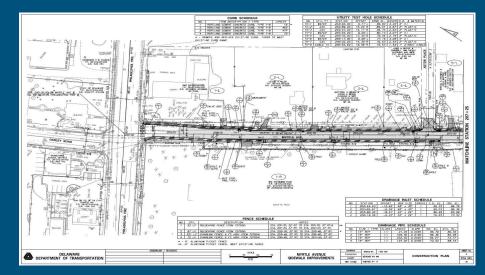
5.1 Roadway Geometry

5.2 Intersection Design

- 5.2.1 Determine Criteria
- 5.2.2 Develop Alternatives
- 5.2.3 Analyze Alternatives and Select Best

5.3 Pavement Design

- 5.3.1 Determine Criteria
- 5.3.2 Develop Alternatives
- 5.3.3 Analyze Alternatives and Select Best


5.4 Sidewalk Design5.5 Signage and Striping

Kimley Horn, Roadway and Bridge. 2018

Task 6.0: Construction Plans

- 6.1 Cover Sheet
- 6.2 Existing Site Plan
- 6.3 Plans and Profiles
- 6.4 Details Sheets

University of Delaware, Construction Plan Reading. 2021

Task 7.0: Economic Analysis

- 7.1 Construction Cost
- 7.2 Operation and
 - Maintenance Cost

Task 8.0: Impact Analysis

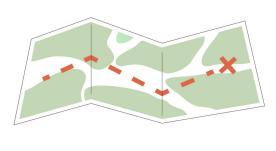
Photo Credit by Elijah Begay

Task 9.0 Deliverables

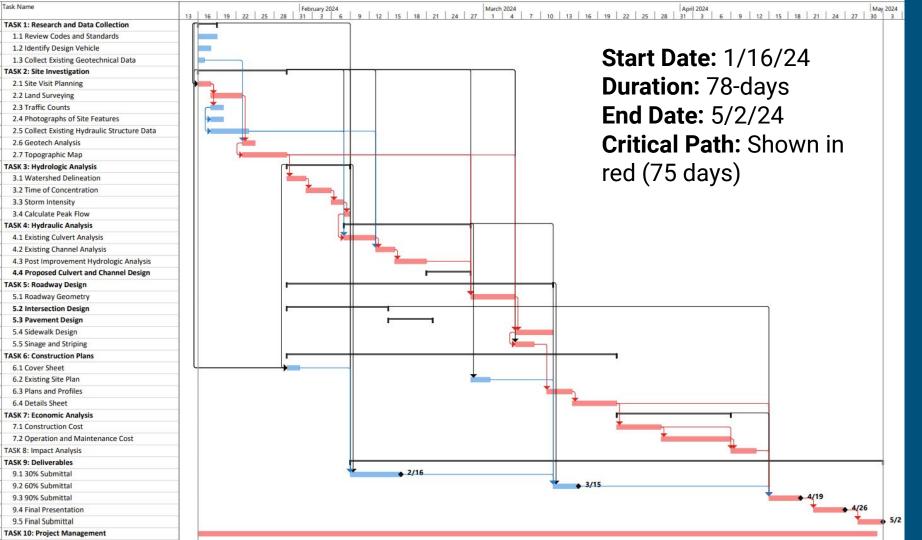
- 9.1 30% Submittal
- 9.2 60% Submittal
- 9.3 90% Submittal
- 9.4 Final Submittal

Task 10.0 Project Management

- 10.1 Meetings
- 10.2 Schedule Management
- 10.3 Resource Management


Exclusions

• Utilities


- Sanitary Sewer, Water, Storm, Gas, Electrical, etc.
- Geotech Sampling
- Flagstaff Urban Trail System (FUTS)

Techno, Home Utilities, 2013

Vecteezy, Trail Maps. 2017

Staffing Plan

Senior Engineer (SENG)

- Civil Engineering Degree (Master's preferred)
- Licensed PE
- 10+ years of experience

Engineer (ENG)

- Civil Engineering Bachelor's Degree
- EIT Certification
- 5+ years of experience

Lab Technician (TECH)

- Civil/Environmental Bachelor's Degree
- Prior experience in similar fields

Intern (INT)

- Senior studying Civil/Environmental Engineering
- Good academic standing

Vecteezy. 2023

Task	SENG	ENG	TECH	INT	Total Hours
1.0 Research and Data Collection					9
1.1 Review Codes and Standards	0	3	0	1	4
1.2 Identify Design Vehicle	0	1	0	1	2
1.3 Collect Existing Geotechnical Data	0	0	3	0	3
2.0 Site Investigation					68
2.1 Site Visit Planning	1	2	1	0	4
2.2 Land Survey	0	2	6	6	14
2.3 Traffic Counts	0	2	6	6	14
2.4 Photographs of Site Features	0	0	0	3	3
2.5 Collect Existing Hydraulic Structure Data	0	3	5	6	14
2.6 Geotech Analysis	0	2	2	0	4
2.7 Topographic Map	0	2	10	3	15
3.0 Hydrologic Analysis					18
3.1 Watershed Delineation	0	3	2	1	6
3.2 Time of Concentration	0	4	0	1	5
3.3 Storm Intensity	0	2	1	1	4
3.4 Calculate Peak Flow	0	3	0	0	3
4.0 Hydraulic Analysis					93
4.1 Existing Culvert Analysis	1	5	12	2	20
4.2 Existing Channel Analysis	1	5	10	1	17
4.3 Post-Improvement Hydrologic Analysis	1	3	6	1	11
4.4 Proposed Culvert and Channel Design	4	10	5	3	22
4.4.1 Determine Criteria	1	4	0	1	6
4.4.2 Develop Alternatives	0	3	5	1	9
4.4.3 Analyze Alternatives and Select Best	3	4	0	1	8
5.0 Roadway Design					234
5.1 Roadway Geometry	0	14	2	12	28
5.2 Intersection Design	0	25	0	5	30

5.2.1 Determine Criteria	1	4	0	1	6	
5.2.2 Develop Alternatives	0	12	14	3	29	
5.2.3 Analyze Alternatives and Select Best	3	10	0	1	14	
5.3 Pavement Design	3	20	8	5	36	
5.3.1 Determine Criteria	1	2	0	1	4	
5.3.2 Develop Alternatives	0	8	8	3	19	
5.3.3 Analyze Alternatives and Select Best	2	10	0	1	13	
5.4 Sidewalk Design	1	5	3	1	10	
5.5 Signage and Striping	3	10	12	2	27	
6.0 Construction Plans		6			49	
6.1 Cover Sheet	2	3	0	3	8	
6.2 Existing Site Plan	2	5	0	5	12	
6.3 Plans and Profiles	2	10	0	7	19	
6.4 Details Sheets	2	5	0	3	10	
7.0 Economic Analysis					31	
7.1 Construcion Cost	4	8	0	5	17	
7.2 Operation and Maintenance Cost	2	10	0	2	14	
8.0 Impact Analysis	1	6	0	5	12	
9.0 Deliverables					111	
9.1 30% Submittal	2	18	4	6	30	
9.2 60% Submittal	2	20	5	6	33	
9.3 90% Submittal	2	15	3	6	26	
9.4 Final Submittal	2	12	2	6	22	
10.0 Project Management					177	
10.1 Meetings	26	52	26	52	156	
10.2 Schedule Management	2	4	1	4	11	
10.3 Resource Management	3	3	1	3	10	
Summary						
Total Hours	84	354	177	187	802	

Cost of Engineering Services

Cost of Engineering Services								
1.0 Personnel	Classification	Hours	Rate,	\$/hour	Cost			
	SENG	84	\$	200	\$	16,800		
	ENG	354	\$	120	\$	42,480		
	LAB	177	\$	75	\$	13,275		
	INT	187	\$	25	\$	4,675		
	Total	802			\$	77,230		
2.0 Travel	Classification	Miles/Trip	Rate, \$/Mile		Cost			
	5 1-Day Trips	7	\$	0.40	\$	14		
3.0 Supplies	Classification	Days	Rate, \$/Day		Cost			
	Surveying	3	\$	100	\$	300		
	JAMAR Board	2	\$	75	\$	150		
	Camera	2	\$	50	\$	100		
	Computer Lab	20	\$	100	\$	2,000		
Total					\$	79,794		

References

[1] B. Jones, "Arizona US State PowerPoint Map," Maps for Design, 1 January 2023. [Online]. Available: https://www.mapsfordesign.com/product/arizona-us-state-powerpoint-map-highways-waterways-c apital-and-major-cities/. [Accessed 26 September 2023].

[2] N. N. W. Service, "NOAA Atlas 12 Point Precipitation Frequency Estimates: AZ," HDSC webmaster, Silver Spring, MD, 2017.