John Wesley Powell Blvd Extension - East

CENE486C Final Presentation May 3rd, 2024

Rainbow Road Engineering

"Let's-A-Go"

Delaney Phillips

Owen Allen

Bradon Schield

James Hollingsworth

Project Background

Project Purpose

- Design approximately 2.5 mile road extension to existing JWP Blvd
- Additional arterial to network
- Aids future development

Client

• City of Flagstaff & Metroplan Flagstaff

Technical Advisor

• Nathan Reisner & Edward Smaglik

Location

- Western terminus north of Pine Canyon subdivision
- Connect with Fourth Street intersection on east side of town

Project Area

- Rio de Flag & Arizona Trail
- Multiple landowners in area

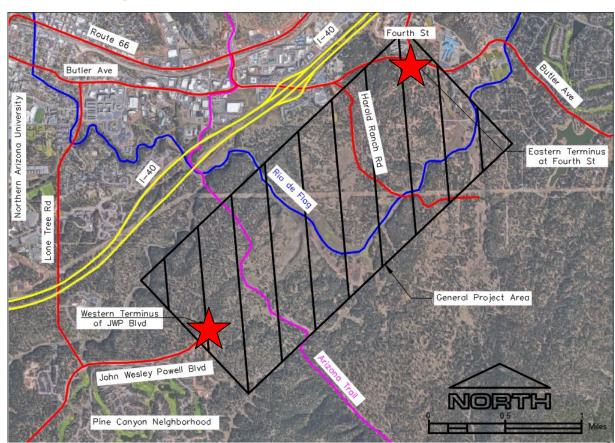


Figure 1, Project Location within Flagstaff [2]

Figure 2, East Terminus Culverts Credit: James H

Figure 3, East Terminus Sidewalk Credit: James H

Figure 4, East Terminus Cross Section Credit: James H

Figure 5, East Terminus Retention Basin Credit: James H

Existing Conditions Eastern Terminus

- Ignoring construction/development
- Butler Ave and Fourth St intersection to be redesigned
- No Topography/GIS for new construction

Figure 6, West Terminus Undeveloped Site Credit: James H

Figure 7, West Terminus Road Credit: James H

Figure 8, West Terminus View of East 1 Credit: James H

Figure 9, Western Terminus View of East 2 Credit: James H

Existing Conditions Western Terminus

- The Western Terminus is coned off from public access
- No further development
 - Leveled off land
 - Drainage
 - Culverts

Major Roadway Considerations

- Extension must cross Rio de Flag
- Intersection design with Herold Ranch Rd
- Adjustments to Arizona Trail

Figure 10, Rio de Flag Looking West at Herold Ranch Rd Credit: Owen Allen

Figure 11, Herold Ranch Rd Looking North at Rio de Flag Credit: Owen Allen

Figure 12, Arizona Trail Looking North Credit: Owen Allen

Preliminary Traffic Assessment - 2045 Traffic Projections

Equation 1, Directional Peak Hour Volume

DPHV = AADT * K * D

DPHV - Directional Peak Hour Volume (veh/hr) AADT - Average Annual Daily Traffic (veh/day) K - K-Factor: Percentage of AADT in an hour

D - D-Factor: Directional traffic volume ratio

Table 1, Road Segment Peak Hour Volume Calculations

PHV		Segment	
Calculations	West End	Middle	East End
AB Flow	7656	5644	8274
BA Flow	8437	5604	6970
Total Flow	16093	11248	15245
K-Factor	0.10	0.10	0.10
D-Factor	0.52	0.50	0.54
AB PHV	401	283	449
BA PHV	442	281	378

Figure 13, Network Volumes Segment ID Map

Road Segment Analysis - 2045 Traffic Projections

Table 2, LOS Calculations for Two Lane Highway

LOS Calcul	ations for	Two Lane	Segment			
Highway			West End	Middle	East End	
Road Type	Arterial	ATSd	30.1	23.5	30.5	
Road Class	III	PFFSd	75.3	78.4	76.2	
	LOS		С	С	С	

^{*}All calculations were done using Chapter 15 of the HCM 2010

38380	Class I H	ighways	Class II Highways	Class III Highways
LOS	ATS (mi/h)	PTSF (%)	PTSF (%)	PFFS (%)
Α	>55	≤35	≤40	>91.7
В	>50-55	>35-50	>40-55	>83.3-91.7
C	>45-50	>50-65	>55-70	>75.0-83.3
D	>40-45	>65-80	>70-85	>66.7-75.0
E	≤40	>80	>85	≤66.7

Intersection Analysis - 2045 Traffic Projections

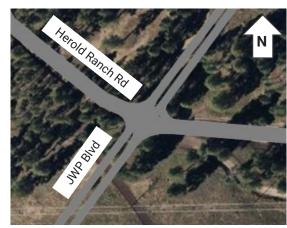


Figure 16, JWP Blvd & Herold Ranch Rd Intersection

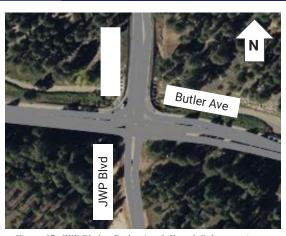
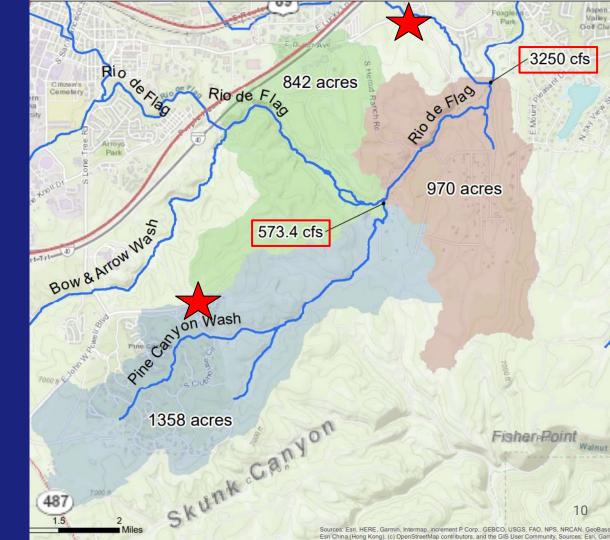


Figure 17, JWP Blvd at Butler Ave & Fourth St Intersection


Table 3, Intersection Level of Service Determined from Vissim

Intersection Level of Service Determined from Vissim					
Intersection Level of Service					
Lone Tree Intersection	Α				
Herold Ranch Intersection	А				
Butler and Fourth Intersection	С				

Preliminary Hydrologic Analysis

Identification of Watersheds and Determination of Peak Flows

- Delineate Watersheds
 - City of Flagstaff GISNatural Environment data
 - Rio de Flag
 - Pine Canyon Wash.
 - o 100-year flow rate
 - Rio de Flag FEMA study

Preliminary Hydraulic Analysis Cont.

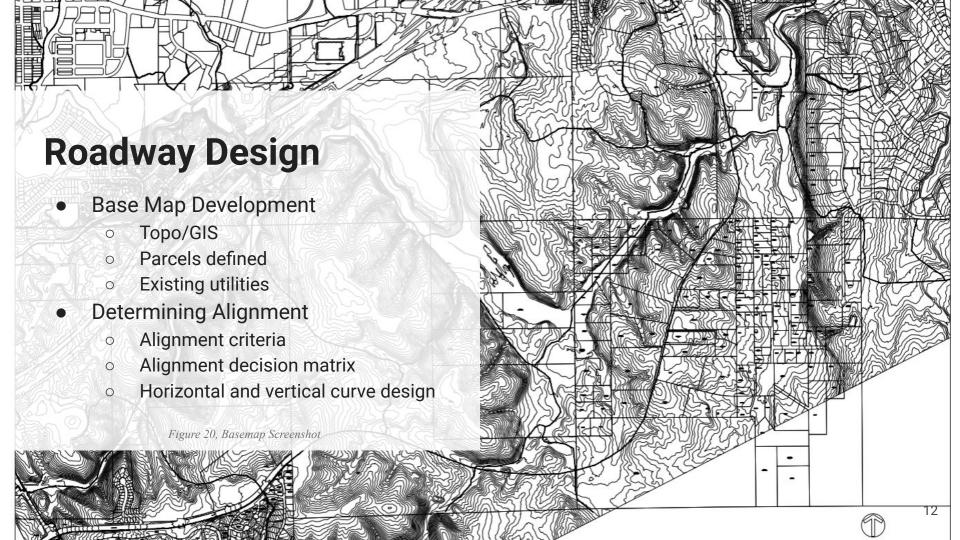
- SCS TR-55 Method
 - Unit peak discharge of watershed, watershed area, runoff, and pond/swamp correction factor.
 - Unit peak discharge related to time of concentration.
- Peak discharge of 573.4 cfs from Pine Canyon Wash.

Table 4 Peak Flow Values

idote 7, i can i tow ratties								
100-Year Peak Discharge (cfs)	Unit peak discharge (csm/in)	Area of watershed (mi²)	Runoff (in)	Pond/Swamp Adjustment Factor	100-year 24-hour Rainfall (in)	Potential maximum retention (in)		
573.4	140.0	2.12	2.10	0.92	4.56	3.33		

Equation 2, Peak Discharge [11]

$$q_p = q_u A_m Q F_p$$


q_p - Peak discharge of watershed q₁₁ - Unit peak discharge

A_m - Area of watershed

O - Runoff

Figure 19, Rio de Flag in Project Area

	LEGEND
	PARCEL BOUNDARIES
	EXISTING STORM DRAIN
20747042000000000	FUTS TRAIL
CONTOURS:	25' MAJOR, 5' MINOR

0 1000 2000 Feet

Figure 22, Alignment Alternatives

Water Crossings

Alignment Decision Matrix Criteria and Scoring

Table 5, Alignment Decision Matrix Criteria

	Alignment Criteria					
Criteria	% Weight	Description				
Existing Terrain	30	Topography will be assessed for least cut/fill				
Environmental Impacts	5	Least amount of demolition to existing foliage				
Hydraulic Considerations/Impacts	20	Number of crossings/ease of design				
Roadway Length	30	Shortest roadway for longterm operational expenses				
Property Aquisition	10	Least amount of private property impacted				
User Comfort	5	Least amount of horizontal and vertical curves				
Weighted Value Totals	100					

Table 6, Alignment Decision Matrix Scoring

Alignment Scoring									
Criteria	1	2	3	4	5				
Existing Terrain	Just Fill	Just Cut	More Cut than Fill	More Fill than Cut	Equal Cut/Fill				
Environmental Impacts	20,000 <x<17,500 th="" trees<=""><th>17,500<x<15,000 th="" trees<=""><th>15,000<x<12,500 th="" trees<=""><th>12,500<x<10000 th="" trees<=""><th><10,000 trees</th></x<10000></th></x<12,500></th></x<15,000></th></x<17,500>	17,500 <x<15,000 th="" trees<=""><th>15,000<x<12,500 th="" trees<=""><th>12,500<x<10000 th="" trees<=""><th><10,000 trees</th></x<10000></th></x<12,500></th></x<15,000>	15,000 <x<12,500 th="" trees<=""><th>12,500<x<10000 th="" trees<=""><th><10,000 trees</th></x<10000></th></x<12,500>	12,500 <x<10000 th="" trees<=""><th><10,000 trees</th></x<10000>	<10,000 trees				
Hydraulic Considerations/Impacts	5 Water Crossings	4 Water Crossings	3 Water Crossings	2 Water Crossings	1 Water Crossings				
Roadway Length	4 <x<4.5 mi<="" td=""><td>3.5<x<4 mi<="" td=""><td>3<x<3.5 mi<="" td=""><td>2.5<x<3 mi<="" td=""><td><2.5 mi</td></x<3></td></x<3.5></td></x<4></td></x<4.5>	3.5 <x<4 mi<="" td=""><td>3<x<3.5 mi<="" td=""><td>2.5<x<3 mi<="" td=""><td><2.5 mi</td></x<3></td></x<3.5></td></x<4>	3 <x<3.5 mi<="" td=""><td>2.5<x<3 mi<="" td=""><td><2.5 mi</td></x<3></td></x<3.5>	2.5 <x<3 mi<="" td=""><td><2.5 mi</td></x<3>	<2.5 mi				
Property Aquisition	Splits major and large parcels	Splits Major and Small parcels	Splits Minor and Big parcels	Minor and small splits	Doesn't split parcels				
User Comfort	Sharp Curves, require speed limit decrease	Inconvenient alignment path, Sharp curves	Inconvenient alignment path, Smooth curves	Smooth curves	Least amount of curves				

Alignment Decision Matrix

Table 7, Alignment Decision Matrix

Potential Alignments		Red	ed Alignment Yellow		w Alignment	Blue Alignment	
Criteria	% Weight	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value
Existing Terrain	30	4	1.2	1	0.3	3	0.9
Environmental Impacts	5	3	0.15	1	0.05	4	0.2
Hydraulic Considerations/Impacts	20	3	0.6	1	0.2	4	0.8
Roadway Length	30	3	0.9	5	1.5	2	0.6
Property Acquisition	10	5	0.5	2	0.2	1	0.1
User Comfort	5	4	0.2	5	0.25	2	0.1
Weighted Value Totals	100		3.55		2.5		2.7

Figure 23, Horizontal Curve Radii on Alignment

Vertical Curve Design

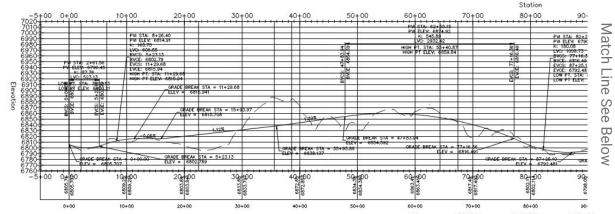


Figure 24, Alignment Vertical Curve Left

- Minimum Curve Length: 120'
- Minimum Rate of Vertical Curvature:
 - 44% Crest
 - o 64% Sag

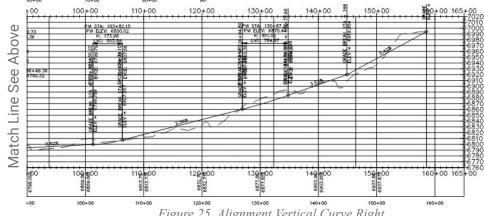
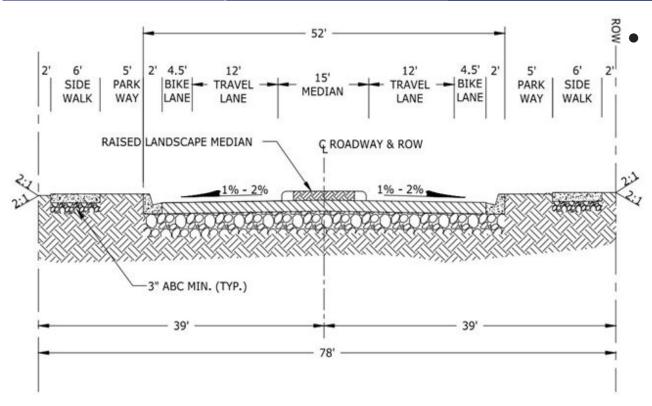



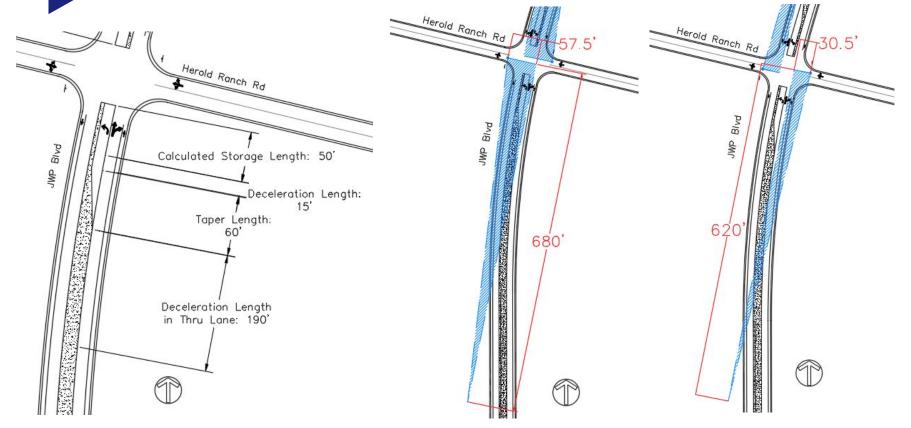
Figure 25, Alignment Vertical Curve Right

Roadway Cross-Section

Followed City of Flagstaff standard requirements

- o 6' wide sidewalks
- 5' wide parkways
- o 2' curb & gutter
- 4.5' wide bike lane
- o 12' wide travel lanes
 - One in each direction
- o 15' wide median

Signal/Intersection Design


JWP Blvd & Herold Ranch Rd Intersection

- Full geometric design
 - Realignment
 - Stop Control
 - Turning Lanes
 - Storage Lane Length
 - Intersection Sight Distance

Butler Ave & Fourth St Intersection

- S Leg JWP Blvd design
 - Turning Lanes
 - Storage Lane Length
 - Intersection Sight Distance
- Signal controller
 - Phasing

Herold Ranch Rd & JWP Blvd Intersection

Butler Ave & Fourth St Intersection

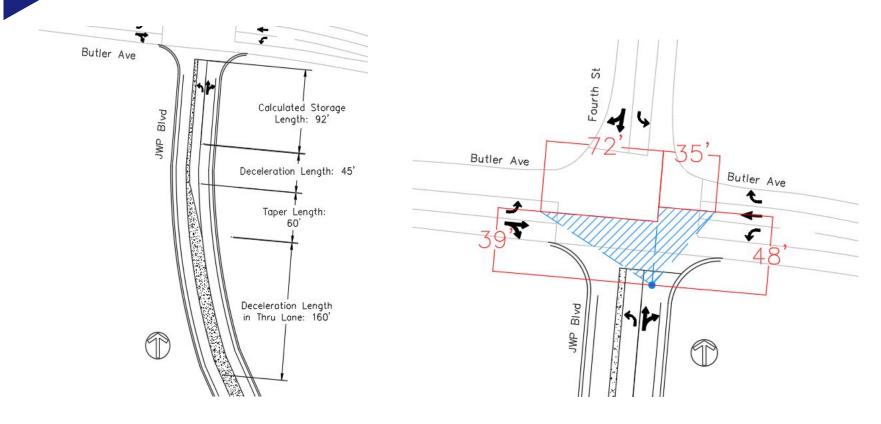
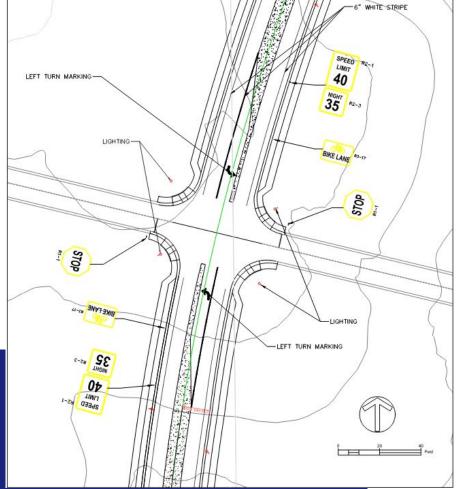


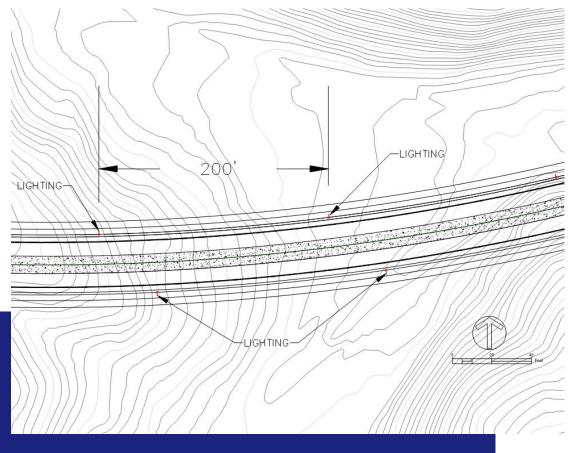
Figure 30, Butler Ave & Fourth St Storage Lane Dimensions

Figure 31, Butler Ave & Fourth St Sight Distance Triangles

Signage & Striping Plan


- Striping Plan
 - 6" white stripe
 - Bike lane
 - Turn lane
 - Left turn lane arrows
- Signage
 - After major geometric changes
 - Harold Ranch Rd
 - Butler Ave & Fourth St
 - Stop Sign
 - Harold Ranch Rd

SPEED LIMIT 40



Lighting Plan

- Lighting every 200 ft
 - More lights then necessary
 - Urban, 250 ft
 - Rural, 200 ft
 - One side only
 - Both sides of roadway
 - COF Standard light poles
- Intersection
 - Lights on every corner
 - Harold Ranch Rd.

Wildlife Mitigation Considerations

- Movement Map
 - Green dots Elk
 - o Purple Line Movement
- Crossing Map
 - Red is the highest amount of crossing per 1/10
 - 11-23 highest crossing
- Mitigation ideas
 - o Impermanent
 - Signage
 - Speed limit reduction
 - Fence
 - Additional lighting
 - Lighting plan meets criteria

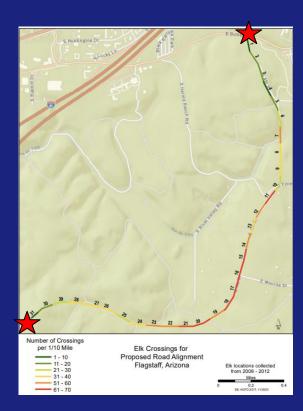


Figure 34, Elk Crossing Map [24]

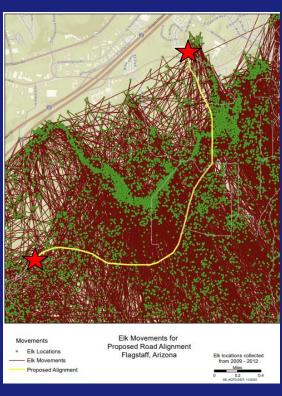


Figure 35, Elk Movements Map [23]

Wildlife Mitigation Plan for JWP

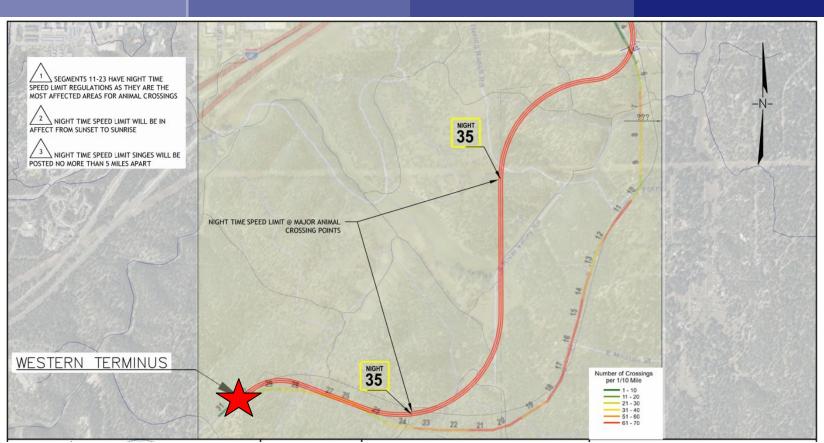


Figure 36, JWP Proposed Wildlife Mitigation Plan [24]

Post-Design Hydraulic Analysis/Design

Table 8, Water Crossing Criteria

Hydraulic Structure Criteria					
Criteria	% Weight	Description			
Cost	30	Structure material cost, number of sections, prefabrication ability			
Velocity	25	Outlet velocity of water			
Headwater Elevation	25	Elevation of water at the inlet			
Required Outlet/Inlet Protection 10 Required protection of th		Required protection of the culvert inlet/outlet due to velocity			
Aesthetic Apperance	10	Overall aesthetic apperance of the culvert			

Table 9, Water Crossing Scoring

Water Crossing Matrix Scoring										
Criteria	Criteria 1 2			4	5					
Cost	No available prefabricated sections	Uncommon prefabricated sections, expensive material	Uncommon prefabricated sections, cheap material	Prefabricated sections available, expensive material	Prefabricated sections available, cheap material					
Velocity	< 15 feet per second	12 - 15 feet per second	10 - 12 feet per second	4 - 10 feet per second	> 4 feet per second					
Headwater Elevation	> 10.0 ft	10.0 ft - 8.0 ft	8.0 ft - 7.0 ft	7.0 ft - 6.0 ft	< 6.0 ft					
Required Outlet/Inlet	Velocity too high for design	Wired tied riprap, energy								
Protection	per COF	dissipators	Wire tied riprap	Dumped riprap	No outlet protection					
Aesthetic Apperance	Unaesthetically pleasing	Slightly aesthetically pleasing	Aesthetically pleasing	Moderatly aesthetically pleasing	Most aesthetically pleasing					

- Two crossings, Rio de Flag & Pine Canyon Wash
- Decision matrix used to decide between three types of culverts.
- Cost, velocity, headwater elevation, required protection, and aesthetics were matrices criteria.
 - 5 considered best,1 considered worst
- Qualitative and quantitative justification

Post-Design Hydraulic Analysis/Design - Rio de Flag

Table 10	. Rio de	Flag	Crossing	Decision	<i>Matrix</i>
----------	----------	------	----------	----------	---------------

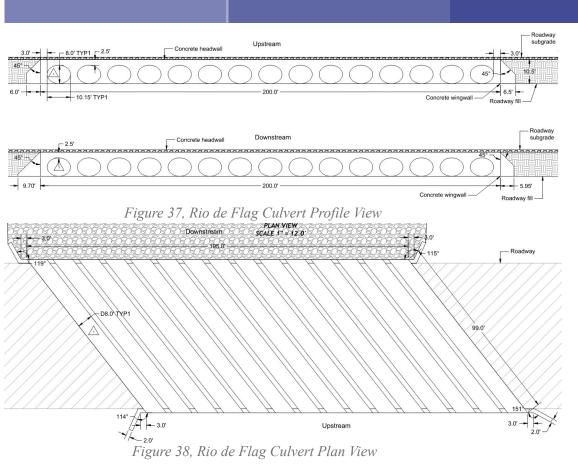

Rio de Flag - Water Crossing T	ype	Con	crete Box	CN	1P Pipe	Arch	n Culvert
Criteria	% Weight	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value
Cost	30	4	1.20	5	1.50	3	0.90
Velocity	25	3	0.75	4	1.00	4	1.00
Headwater Elevation	25	5	1.25	5	1.25	4	1.00
Required Outlet/Inlet Protection	10	3	0.30	4	0.40	3	0.30
Aesthetic Apperance	10	4	0.40	2	0.20	4	0.40
Weighted Value Totals	100		3.90		4.35		3.60

Table 11, Rio de Flag Culvert Analysis Result

Rio de Flag CMP Culvert				
Velocity (ft/sec)	9.56			
Headwater elevation (ft)	6793.94			
Headwater Depth/Height	0.74			
Control Type	Outlet control			
Flow regime	Subcritical			

- CulvertMaster used for analyses.
 - Determined velocity, headwater elevation, headwater depth/height ratio, control type.
- CMP Pipe scored high in cost, velocity, headwater elevation, and inlet/outlet protection.
- Headwater to match FEMA flood profile.

Post-Design Hydraulic Analysis - Rio de Flag Cont.

- 15, 8' diameter CMP pipes
- Outlet protection required due to velocity
 - Dumped riprap
- Wingwalls on both upstream and downstream section
- Concrete headwalls

Post-Design Hydraulic Analysis - Pine Canyon Wash

Table 12, Pine Canyon Wash Crossing Decision Matrix

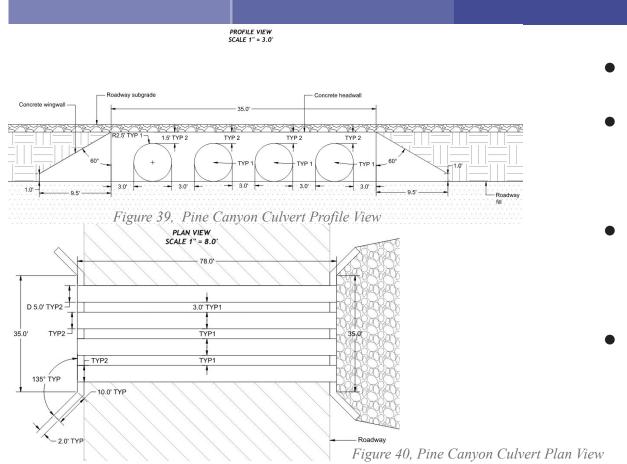

Pine Canyon - Water Crossing	Туре	Concret	e Box Culvert	Corrugat	ed Metal Pipe	Arci	n Culvert
Criteria	% Weight	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value
Cost	30	4	1.20	5	1.50	3	0.90
Velocity	25	2	0.50	4	1.00	2	0.50
Headwater Elevation	25	5	1.25	5	1.25	5	1.25
Required Outlet/Inlet Protection	10	3	0.30	4	0.40	3	0.30
Aesthetic Apperance	10	4	0.40	2	0.20	4	0.40
Weighted Value Totals	100		3.65		4.35		3.35

Table 13, Pine Canyon Culvert Analysis Result

Pine Canyon Wash CMP Culvert				
Velocity (ft/sec)	9.98			
Headwater elevation (ft)	6809.91			
Headwater Depth/Height	1.20			
Control Type	Outlet control			
Flow regime	Subcritical			

- CMP again scores
 highly in cost and
 velocity, as well as
 outlet/inlet protection.
- Scored lower in headwater elevation.
 - Lower headwater was necessary, but not as pertinent as Rio de Flag crossing.

Post-Design Hydraulic Analysis - Pine Canyon Wash Cont.

- 4 5' diameter CMP pipes
- Outlet protection required due to velocity > 4 fps.
 - Dumped riprap
- Wingwalls on both upstream and downstream section
- Concrete headwalls

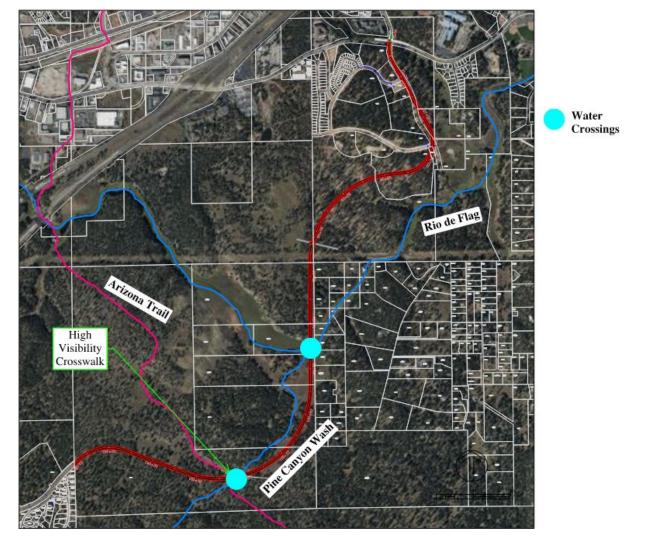


Figure 41, Major Crossings on JWP Alignment

Plan Set

Standard Detail Sheet

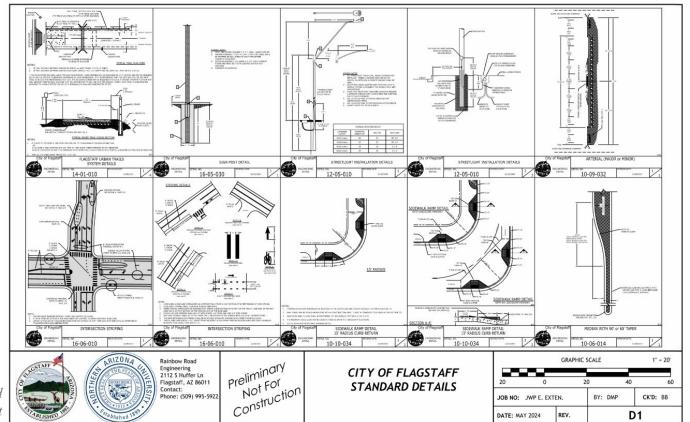


Figure 42, Plan and Profile Sheet

Plan and Profile Sheet

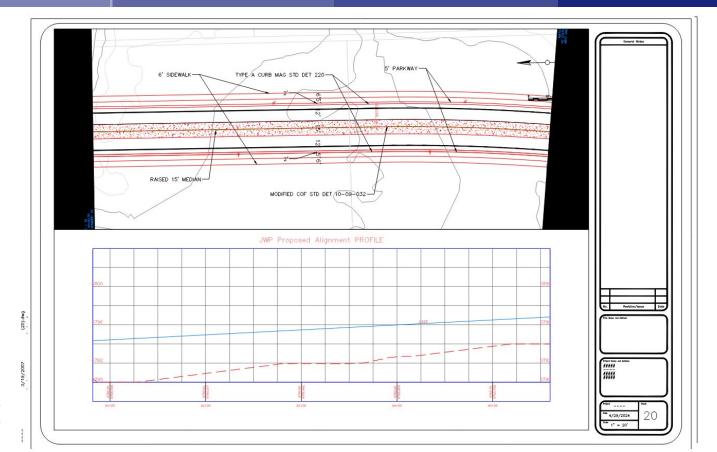
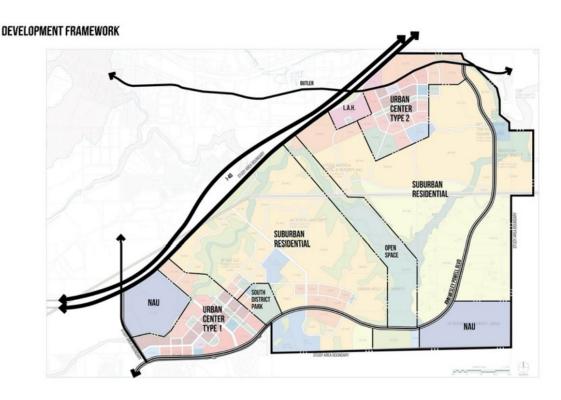


Figure 43, Example Plan Sheet

Construction Cost Estimate

Table 14, Construction Cost Estimate


Item Description	Quantity	Unit	Unit Price		Total
DEMOLITION		1,1000000			
Remove Trees	14080	EA	1000	\$	14,080,000
3			SUBTOTAL	\$	14,080,000
EARTHWORK					
General Excavation	417700	CY	30	\$	12,531,000
Borrow (In Place)	396200	CY	35	\$	13,867,000
Borrow (Off-Site)	21500	CY	250	\$	5,375,000
	Vi		SUBTOTAL	\$	31,773,000
ROADWAY					
Asphalt Pavement	10000	TON	150	\$	1,500,000
Aggregate Base Course	24000	CY	85	\$	2,040,000
Concrete Sidewalk	95130	SF	18	\$	1,712,340
Curb Ramp	600	SF	20	\$	12,000
Curb and Gutter	15855	LF	45	\$	713,475
·			SUBTOTAL	\$	5,977,815
SIGNING AND STRIPING			-		
6" Solid White Line Stripe	31710	LF	1	\$	31,710
Speed Limit Sign	4	EA	80	\$	320
Bike Line Sign	4	EA	80	\$	320
Stop Sign	2	EA	80	\$	160
Nighttime Speed Limit Sign	2	EA	80	\$	160
Sign Post	30	LF	35	\$	1,050
11 4 4 1 8 1 1	SUBTOTAL				
LANDSCAPING					
Hydroseeding	5.5	AC	10000	\$	55,000
			SUBTOTAL	\$	55,000
DRAINAGE					
8' CMP	1410	LF	500	\$	705,000
5' CMP	292	LF	400	\$	116,800
	90		SUBTOTAL	\$	821,800
		PRO	JECT TOTAL	\$	52,741,335

- Major cost categories include:
 - Demolition
 - Earthwork
 - Roadway
 - Signing and Striping
 - Landscaping
 - Drainage
- Total project cost \$52,741,335

Project Impacts

Economic

- Two urban centers
 - Restaurants
 - Shopping centers
 - Businesses
- Two large suburban areas
 - Additional housing
 - Increase real estate
- Large upfront cost
 - Large cut/fill
 - Funded by taxpayers

38

Environmental

- Land alterations with urbanization
 - o 14,080 trees removed
 - Loss of habitat
 - Disrupt existing wildlife
- Major wildlife crossing
 - Disrupt natural migration patterns
- Wildlife mitigation has been taken
 - Still fatalities from vehicle animal accidents
- Road alleviate traffic and pollution

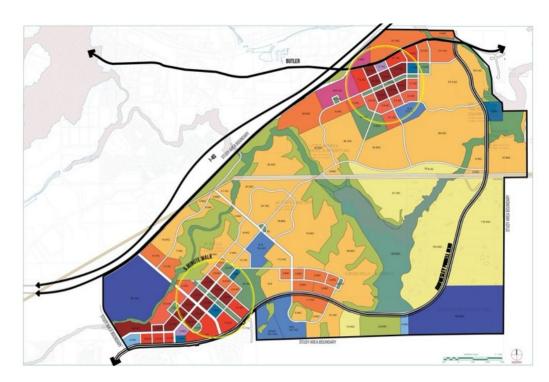
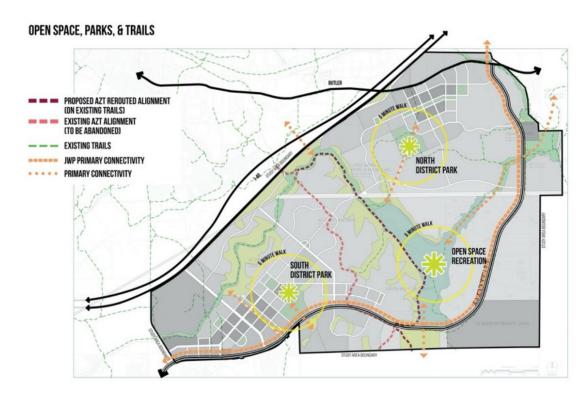



Figure 45, COF JWP Specific Plan Area Density[26]

Social

- Disruption to FUTS and AZ trail users
 - High visibility crosswalks
- Noise and dust with construction
- Lose of parcels to development
- More direct east-west bound travel path
- More urbanized areas
 - New parks

References

- [1] D. Bero, "Fall 2023 CENE 476 Capstone Projects," Flagstaff, 2023.
- [2] City of Flagstaff, "Flagstaff Regional Plan 2030," 6 January 2023. [Online]. Available: https://www.flagstaff.az.gov/DocumentCenter/View/49295/0-FullPlan_webreduced?bidId=. [Accessed 2 October 2023].
- [3] City of Flagstaff, "JW Powell Specific Plan," [Online]. Available: https://www.flagstaff.az.gov/4511/JW-Powell-Specific-Plan. [Accessed 3 October 2023].
- [4] "Google Maps," Google, [Online]. Available: https://www.google.com/maps. [Accessed 25 September 2023].
- [5] C. o. Flagstaff, JW Powell Specific Plan, Flagstaff: https://www.flagstaff.az.gov/4511/JW-Powell-Specific-Plan, 2018.
- [6] D. Peterson, J.W Powell Study Area, Flagstaff, 2021.
- [7] G. o. Arizona, "City of Flagstaff GIS," [Online]. Available: https://gis.flagstaffaz.gov/portal/apps/sites/#/opendata. [Accessed 2023].
- [8] USDA, "Web Soil Survey," USDA, 7 January 2019. [Online]. Available: https://websoilsurvey.nrcs.usda.gov/app/.
- [9] City of Flagstaff, "City of Flagstaff GIS Open Data Portal," [Online]. Available: https://gis.flagstaffaz.gov/portal/apps/webappviewer/index.html?id=9d54749f01de4713adaca98767462afb. [Accessed 8 February 2024].
- [10] Esri, ArcGIS Pro.
- [11] Federal Emergency Management Agency, "Flood Insurance Study Coconino County, Arizona," FEMA, Washington D.C., 2023.
- [12] United States Department of Agriculture, "Urban Hydrology for Small Watersheds," June 1986. [Online]. Available: https://www.nrc.gov/docs/ML1421/ML14219A437.pdf. [Accessed 8 February 2024].
- [13] City of Flagstaff, "City of Flagstaff Stormwater Management Design Manual," March 2009. [Online]. Available: https://www.flagstaff.az.gov/DocumentCenter/View/58133/SWMgmtDesignManual-3-09?bidId=. [Accessed 1 October 2023].
- [14] City of Flagstaff, "Transportation Impact Analysis Manual," Flagstaff, 2017.
- [15] Transportation Research Board, "Highway Capacity Manual," Transportation Research Board, Washington D.C., 2010.
- [16] Federal Highway Administration, "Traffic Data Computation Method POCKET GUIDE," Federal Highway Administration, Washington D.C., 2018.
- [17] American Association of State Highway and Transportation Officials, "A Policy on Geometric Design of Highways and Streets, 7th Edition," American Association of State Highway and Transportation Officials, 2018.
- [18] Transportation Research Board, "Highway Capacity manual, 6th Edition," Transportation Research Board, 2016.
- [19] National Committee on Uniform Traffic Control Devices, Federal Highway Administration, "Manual on uniform Traffic Control Devices. 11th Edition," Federal Highway Administration, 2023.
- [20] Arizona Department of Transportation, "Roadway Design Guidelines," Arizona Department of Transportation, 2012.
- [21] Federal Highway Administration (FHWA), Manual on Uniform Traffic Control Devices for Streets and Highways, Federal Highway Administration (FHWA), 2011.
- [22] Federal Highway Administration, "Bicycle Lanes," 1998. [Online]. Available: https://safety.fhwa.dot.gov/PED_BIKE/univcourse/pdf/swless19.pdf. [Accessed 25 April 2024].
- [23] D. Peterson, Elk Movements Map, Flagstaff: City of Flagstaff, 2023.
- [24] D. Peterson, Elk Crossing Map, Flagstaff: City of Flagstaff, 2023.
- [25] Arizona Department of Transportation, "Construction Standard Drawings," May 2012. [Online]. Available: https://azdot.gov/business/engineering-and-construction/roadway-engineering/roadway-design/construction-standard. [Accessed 23 April 2024].
- [26] City of Flagstaff, J.W Powell Boulevard Specific Plan Study, Flagstaff: City Council of Flagstaff, 2020.
- [27] JWP East Team, "John Wesley Powell Blvd Extension East Final Proposal," Northern Arizona University, Flagstaff, 2023.
- [28] City of Flagstaff Transportation Engineering Division, "Transportation Impact Analysis Manual," City of Flagstaff, Flagstaff, 2017.

Questions?