

2024 ASCE CONCRETE CANOE COMPETITION

MAY 3RD

CENE 486C

DYLAN CONDRA DECLAN GELTMACHER KEVIN TAUTIMER DEREK VECCHIA

Mar

U.S.S Pinecone

PROJECT BACKGROUND

- Design and construct a prototype canoe for the client
 - Prototype will be used to design 100 canoes
- Location: Utah State University, Logan, UT
 - Intermountain Southwest Symposium
- Created to give technical civil engineering skills

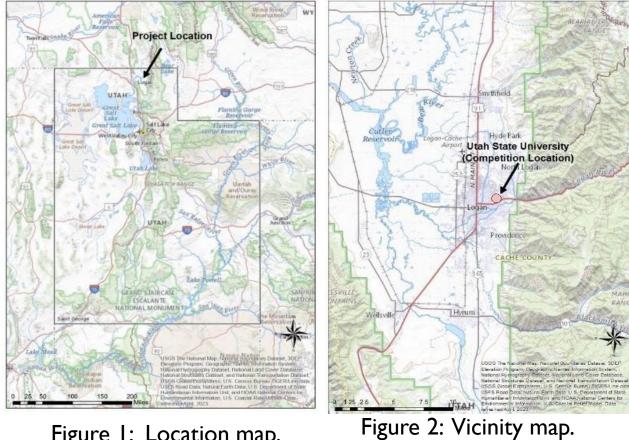
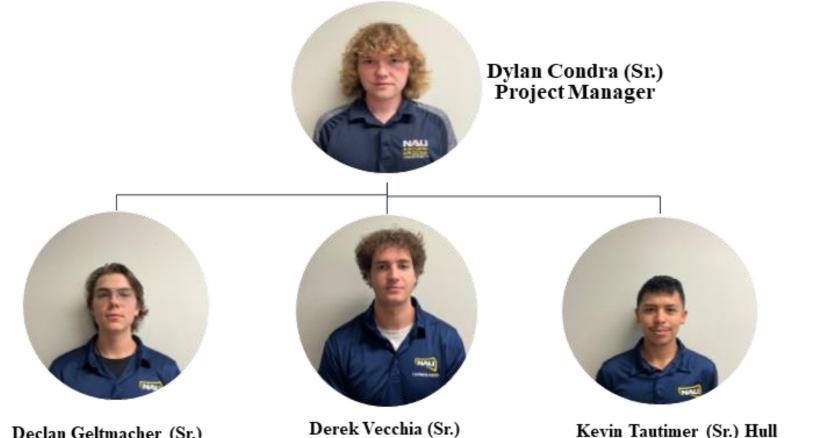



Figure I: Location map.

PROJECT MANAGEMENT

ASCE FACULTY ADVISOR: Mark Lamer, P.E.

> 2023-2024 Mentees: Jessica Hillman Kylie Hanson Trevion Booker

Declan Geltmacher (Sr.) Mixture Design Lead Derek Vecchia (Sr.) (QA/QC) lead Kevin Tautimer (Sr.) Hull Design and Structural Design Lead

Table 1: Mix Design Proportions

MIX DESIGN

- Aggregates
 - Aero aggregate ¹/₂"
 - KI glass bubbles
 - Red Cinder Sand
- Fibrous Materials
 - PC4
- Secondary Reinforcement
 - MasterFiber MAC Matrix
- Density of water
 - 62.4 pcf

Figure 5: Concrete cylinder

Figure 6: Slump test

Materials	Specific Gravity	Mix 1 (Ib/cu. yd)	Mix 2 (lbs/cu. yd)	Mix 3 (lb/cu. yd)
Calport Type 1 Cement	3.2	150	150	150
Fly Ash Class F	2.8	122	122	122
Slag Grade 120	3	214	214	214
ChemStar Type S Lime	0.6	125	125	125
MasterFiber M35	2.6	6	6	6
Aero Aggregate	0.4	223	223	223
Crushed Carpet (PC4)	1.3	45	33	33
Red Ciner Sand (3/16)	2	200	0	0
K1 Glass Bubbles	0.4	51	67	0
Poraver Glass Bubbles	0.06	0	0	22
Water	1	414	408	415
Total		1610	1451	1421

Table 2: Mix Design Results

Properties	Mix 1	Mix 2	Mix 3
Compression Strength (psi)	1010	660	1890
Tension Strength (psi)	140	100	220
Dry Density (pcf)	47.6	41.7	54.2
Slump (in)	2	1.9	3
Air Content (%)	1	1.4	0.25

FINAL MIX DESIGN

Table 3: Concrete Mixture Decision Matrix.

	Dry Weight		Comp	pression	Ter	ision	Wor	kability	Cı	racking	G	ireen	Weighted Total
	30%		2	25%	25%		10%		10%		5%		
Weight	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	
Mix #1	2	0.6	2	0.5	2	0.5	3	0.3	3	0.3	2	0.1	2.3
Mix #2	3	0.9	1	0.25	1	0.25	2	0.2	1	0.1	3	0.15	1.85
Mix#3	1	0.3	3	0.75	3	0.75	1	0.1	2	0.2	1	0.05	2.15

Figure 7: Concrete Testing Cylinders

Figure 8: Concrete Tensile Testing

Figure 9: Flexural Testing Bricks

REINFORCEMENT DESIGN

Table 4: Reinforcement Decision Matrix Reinforcement Decision Matrix									
	Weight 30%		Tensile Stre	ength	Availa				
Reinforcement			50%		20%		Total		
	Value	Weighted Score	Value	Weighted Score	Value	Weighted Score	iotai		
Carbon Mesh	3	0.9	2	1	3	0.6	2.5		
1/2" Galvanized Mesh	1	0.3	3	1.5	2	0.4	2.2		
FG50 Alkali Mesh	2	0.6	1	0.5	1	0.2	1.3		

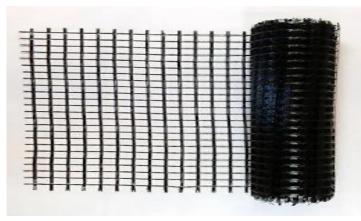


Figure 10: FG50 Alkali Mesh

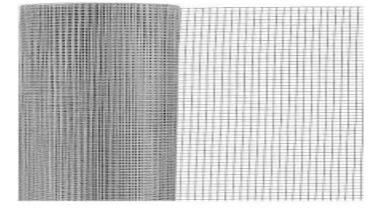


Figure 11: Carbon Mesh

Figure 12: Galvanized Mesh

HULL DESIGN

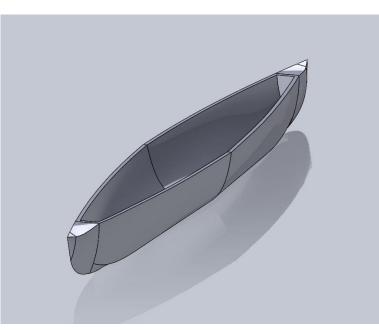


Figure 13: Canoe Design 1 [1] <u>Design 1:</u> Length = 19 ft Bow = Traditional Bottom=V- Hull Sides = Straight

Figure 14: Canoe Design 2 [1]

Design 2:

Length = 16.5 ft Bow = Moderate Recurve Bottom = Rounded Sides = Flared

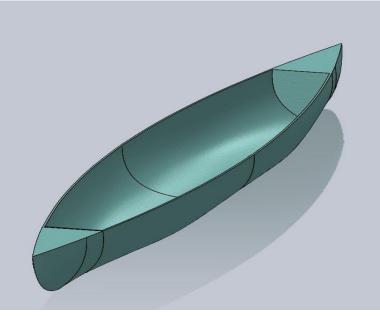


Figure 15: Canoe Design 3 [1]

Design 3:

Length = 18 ft Bow = Moderate Recurve Bottom = Shallow Arch Sides = Flared

FINAL HULL DESIGN

Table 5: Hull Design Decision Matrix

Design	Aest	hetics	Sp	eed	Buoyancy		Maneuverability		Stability		Total
	15%		15%		20%		20%		30%		
Weight	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	
Design #1	2	0.3	3	0.45	1	0.2	1	0.2	1	0.3	1.45
Design #2	1	0.15	1	0.15	2	0.4	3	0.6	2	0.6	1.9
Design #3	3	0.45	2	0.3	3	0.6	2	0.4	3	0.9	2.65

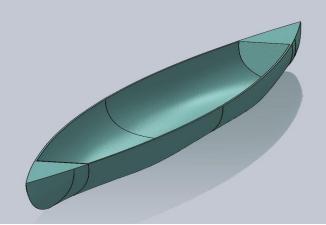


Figure 16: Final Hull Design [1]

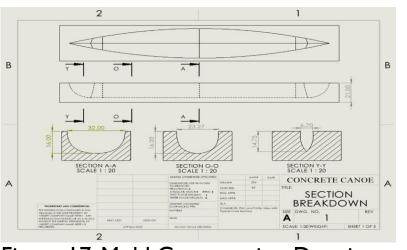


Figure 17: Mold Construction Drawings

STRUCTURAL ANALYSIS 2D

Table 6: Male Tandem Loading

Load	Max Shear Magnitude (Ibs.)	Max Shear Location (ft)	Max Moment Magnitude (Ibs.*ft)	Max Moment Location (ft)
Male Loading	88	13.5	131	9

Table 7: Free Body Diagram Results

Load Condition	Demand	Capacity
Shear Force (lbs.)	88	194
Moment (lbsft)	131	5,999
Punching Shear (psi)	10	66

Table 8: Free Board

Load Case	Freeboard (in)		
Male Loading	2.3		

Bending Moment Diagram

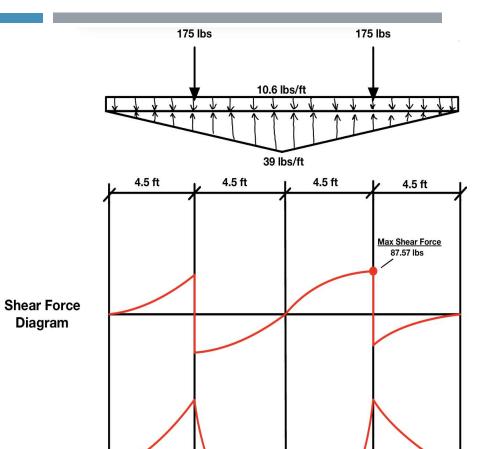


Figure 18: Free Body Diagram w/ Shear Force & Bending Moment

Max Bending Moment 1,576.8 in-lbs

STRUCTURAL ANALYSIS 3D

 Table 9: Compressive & Tensile Capacities

Max Compressive Strength	Max Tensile Strength
(psi)	(psi)
1000	140

Table 10: Principal Stress States

Max Compressive	Max Tensile Stress	Slope of Tangent
Stress (psi)	(psi)	Line
21.5	43.24	y = -1.0494x + 194.68

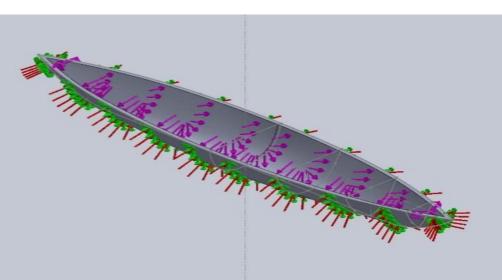
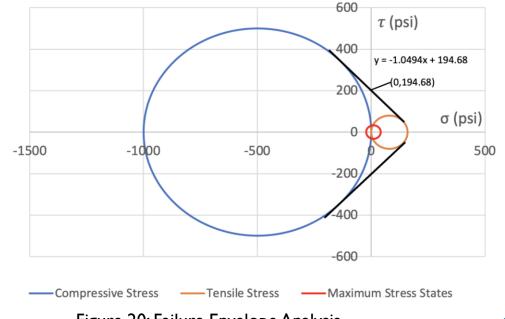



Figure 19: SolidWorks Display

Failure Envelope Analysis

PRE-CANOE FABRICATION

Figure 21: Mold Pickup

Figure 25: Releasing Agent Application

Figure 22: Mold Assembly

Figure 26: Curing Chamber

Figure 23: Final Mold Assembly

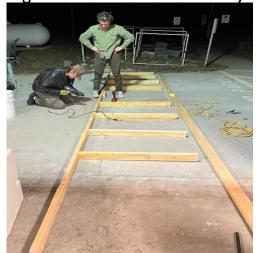


Figure 27: Curing Table Construction

Figure 24: Mold Sanding

Figure 28: Curing Table

CANOE FABRICATION

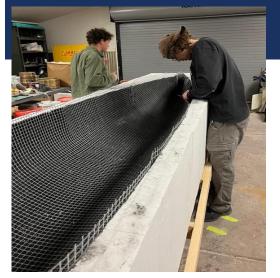


Figure 29: Reinforcement Fitting

Figure 30: First Layer Application

Figure 33: Bulkhead Construction

Figure 34: Finished Product

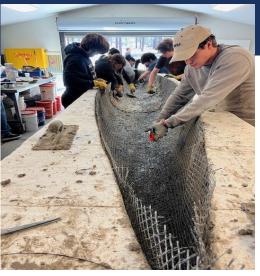


Figure 31: Reinforcement Placement Figur

Figure 32: Second Layer Application

Figure 35: Curing Process

PRE-COMPETITION PREPARATION

Figure 36: Mold Removal

Figure 37: Patch Work

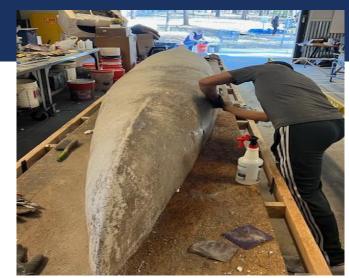


Figure 38: Final Sanding

Figure 39: Sealant Application



Figure 40: Final Product

CONFERENCE COMPETITION

- Display
 - All materials
 - Poster explaining structural, hull, mix components
 - Canoe prototype displayed
- Presentation
 - Five-minute technical slideshow
- Race
 - Slalom
 - Sprint

Figure 42: ISWS Presentation (Credit Kylie Handson)

Figure 43: ISWS Display (Credit Kylie Handson) Fig

Figure 44: Male Tandem Race (Credit Kylie Handson)

COMPETITION RESULTS

Best In State!

Figure 45: Swamp Test

Table 11: Race Results from Competition

Race Results								
Womans SlalomMen's SlalomWomans SprintMen's Sprint4 Person-Coe								
Time	5 mins 9 sec	6 min 45 sec	2 min 53 sec	2 min 11 sec	2 min 51 sec			
Place	4th	7th	4th	3rd	4th			

IMPACTS

- Social Impacts
 - Building interest in engineering
 - Canoe's performance
- Economic Impacts
 - Use of alternative materials
 - Hard to replace concrete as material
- Environmental Impacts
 - 70% materials used were alternative
 - Concrete greenhouse gases

Figure 46: Canoe Display (Credit Kylie Handson)

REFERENCES

[1] Solidworks. Solidworks, 2024.

[2] A. International, "Standard Test Method for Determining the Flexural Strength of a Geosynthetic Cementitious Composite Mat (GCCM) Using the Three-Point Bending Test," 01 March 2023. [Online]. Available: https://compass.astm.org/document/?contentCode=ASTM%7CD8058-19%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true. [Accessed 06 Feb 2024].

[3] A. International, "SLUMP OF HYDRAULIC CEMENT CONCRETE," January 2024. [Online]. Available: https://www.wsdot.wa.gov/publications/manuals/fulltext/M46-01/t119.pdf. [Accessed 06 Feb 2024].

[4] A. C. 318, Building Code Requirements for Structural Concrete, American Concrete Institute , 2024.

[5] A. S. o. C. Enigneers, "2024 ASCE Concrete Canoe Competition Request for Proposals-Rules," ASCE, 2023.

[6] M. L. Wilson and P. D. Tennis, Design And Control of Concrete Mixtures, EB001, 17th Edition, Skokie, Illinois: Portland Cement Association, 2021.

[7] A. International, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens," 15 Dec 2023. [Online]. Available: https://compass.astm.org/document/?contentCode=ASTM%7CC0039_C0039M-21%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true. [Accessed 06 Feb. 2024].

[8] "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens," 16 Aug 2017. [Online]. Available: https://compass.astm.org/document/?contentCode=ASTM%7CC0128-22%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true. [Accessed 06 Feb 2024].

[9] A. International, "DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) FOP FOR AASHTO T 121," January 2024. [Online]. Available: https://wsdot.wa.gov/publications/manuals/fulltext/m46-01/t121.pdf. [Accessed 06 Feb 2024].

[10] A. International, "Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate," 05 Jan 2023. [Online]. Available: https://compass.astm.org/document/?contentCode=ASTM%7CC0128-22%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true. [Accessed 6 Feb 2023].

[11] A. International, "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates," 11 Feb 2015. [Online]. Available: https://compass.astm.org/document/?contentCode=ASTM%7CC0136-06%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true. [Accessed 6 Feb 2023].

[12] A. International, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method," 25 OCt 2023. [Online]. Available: https://compass.astm.org/document/?contentCode=ASTM%7CC0173_C0173M-16%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true. [Accessed 06 Feb 2024].

[13] Concrete Canoe s. [Film].

[14] P. T. Raistrick, Director, Concrete Canoe Structural Calculations Webinar. [Film]. United States of America: ASCE International, 2023.

QUESTIONS?