2024 ASCE Concrete Canoe Competition

CENE 476

12/08/2023

Dylan Condra, Jon Duran, Declan Geltmacher, Kevin Tautimer, Derek Vecchia

Project Information and Purpose:

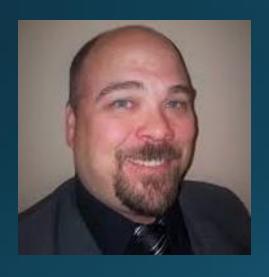


Figure 1: Mark Lamer [1]

- Purpose: Develop a prototype for 100 future canoes.
- Competition: Participate in the April 2024 Intermountain Southwest (ISWS) conference.
- Client: Mark Lamer and American Society of Civil Engineers (ASCE).

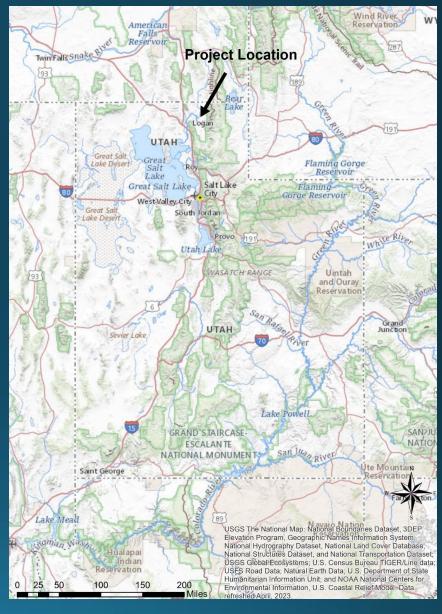


Figure 2: Utah State Map [7]

Project Locations:

Northern Arizona University

Figure 3: Northern Arizona University Location [7]

Utah State University

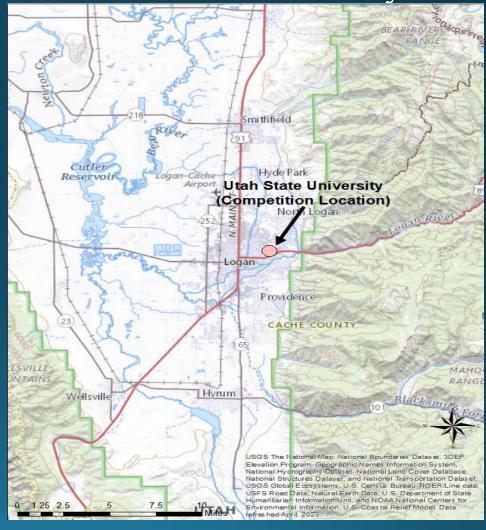


Figure 4: Utah State University Location [7]

Task 1: Project Scope of Services

- Task 1.1: Material Research
- Task 1.2: Competition Rules Research
- ► Task 1.3: NAU CE Lab Access
- ➤ Task 1.4: Software Training

Figure 5: Different types of aggregates & Fibers - Courtesy of Jon Duran.

Task 2: Mix Design

- ➤ Task 2.1: Concrete Design Criteria
- ➤ Task 2.2: Aggregates Testing
 - Sieve analysis
 - Fineness modulus
- ➤ Task 2.3: Concrete Testing
 - Quality Control
 - Slump
 - Air density
 - Compression strength
 - Flexural and Tensile strength
 - Workability

Figure 6: Stacked sieves used for a gradation & size test.
-Courtesy of Jon Duran.

Figure 7: Concrete Cylinder for Compression Test.
-Courtesy of Jon Duran.

Task 3: Hull Design

- Task 3.1: Hull Design Criteria
- Task 3.2: Hull Modeling and Analysis
- Task 3.3: Analysis Alternative

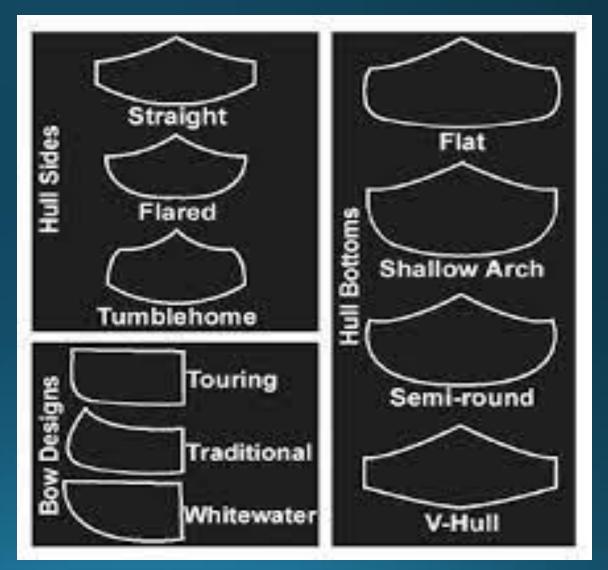


Figure 8: Canoe Hull Designs [2].

Task 4: Decision Matrix

- Task 4.1:Canoe Decision Matrix
 - Includes 3 designs
 - Scored on
 - o Speed
 - Maneuverability
 - Buoyancy

Figure 9: Concrete cylinder break.
-Courtesy of Dylan Condra.

- Task 4.2: Concrete Decision Matrix
 - Includes 3 designs
 - Scored on
 - o Compression strength
 - o Flexural Strength
 - o Tensile Strength
 - Workability
 - o Renewables

Task 5: Analysis of final Design

- ➤ Task 5.1: 2D Analysis
 - Longitudinal Analysis
 - Punch Shear Analysis

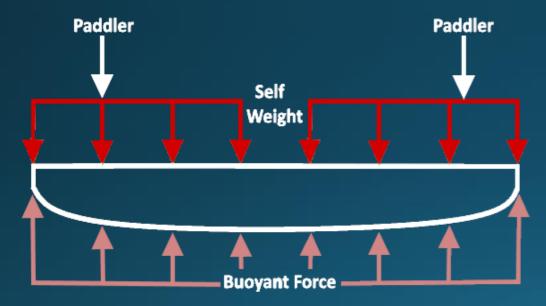


Figure 10: 2D Canoe Force Analysis.
-Courtesy of Kevin Tautimer.

- ➤ Task 5.2: 3D Analysis
 - Principal Stress State Analysis
 - Buoyancy Analysis

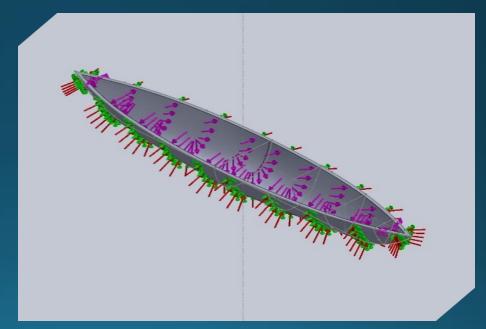


Figure 11: 3D Canoe Force Analysis.
-Courtesy of Derek Vecchia.

Task 6: Canoe Fabrication

- Task 6.1: Lab Approval and Compliance
- ➤ Task 6.2: Mold Acquisition
- Task 6.3: Shop Drawings of Final Hull Design
 - Plan view
 - Profile view
 - Section view

Figure 12: Section of Canoe mold.
-Courtesy of Jon Duran.

Figure 13: Multi-axis Router[4].

Task 7: Pre-competition Preparation

➤ Task 7.1: Race Practice

Figure 15: Canoe flipping [5].

➤ Task 7.2: Transportation

Figure 14: University of Indiana Transporting Canoe [8].

Task 8: Deliverables

CENE 486

- >30% Submittal (Tasks 1-3)
- >60% Submittal (Tasks 1-6)
- >90% Submittal (Tasks 1-10)
- Final Submittal

Competition

- > Material Notebook
- ➤ Project Proposal
- Canoe Race
- > Project Presentation
- >Static Display

Task 9: Project Impacts

- ➤ Task 9.1: Environmental
- ► Task 9.2: Economical
- ► Task 9.3: Social

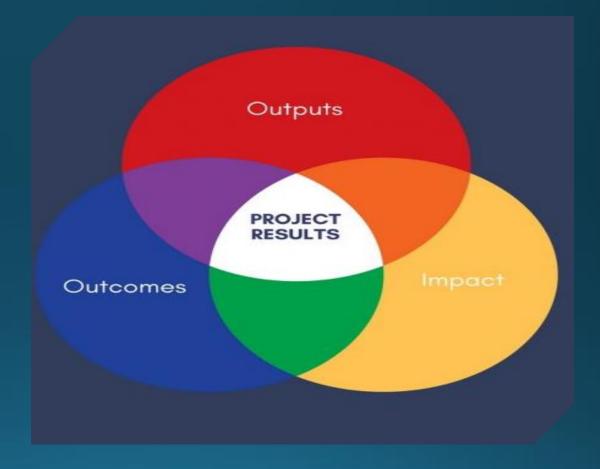


Figure 15: Project Impacts [6].

Task 10: Project Management

- Task 10.1: Meetings
 - Client Meetings
 - Grading Instructor Meetings
 - Technical Advisor Meetings
- ➤ Task 10.2: Resource Management
- Task 10.3: Schedule Management

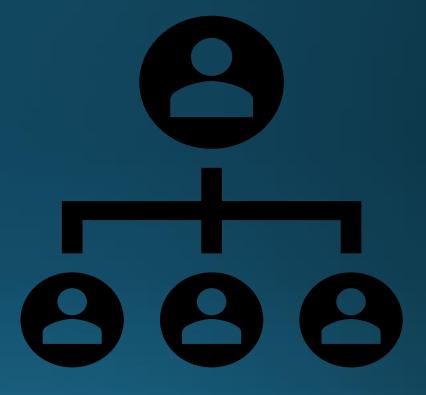
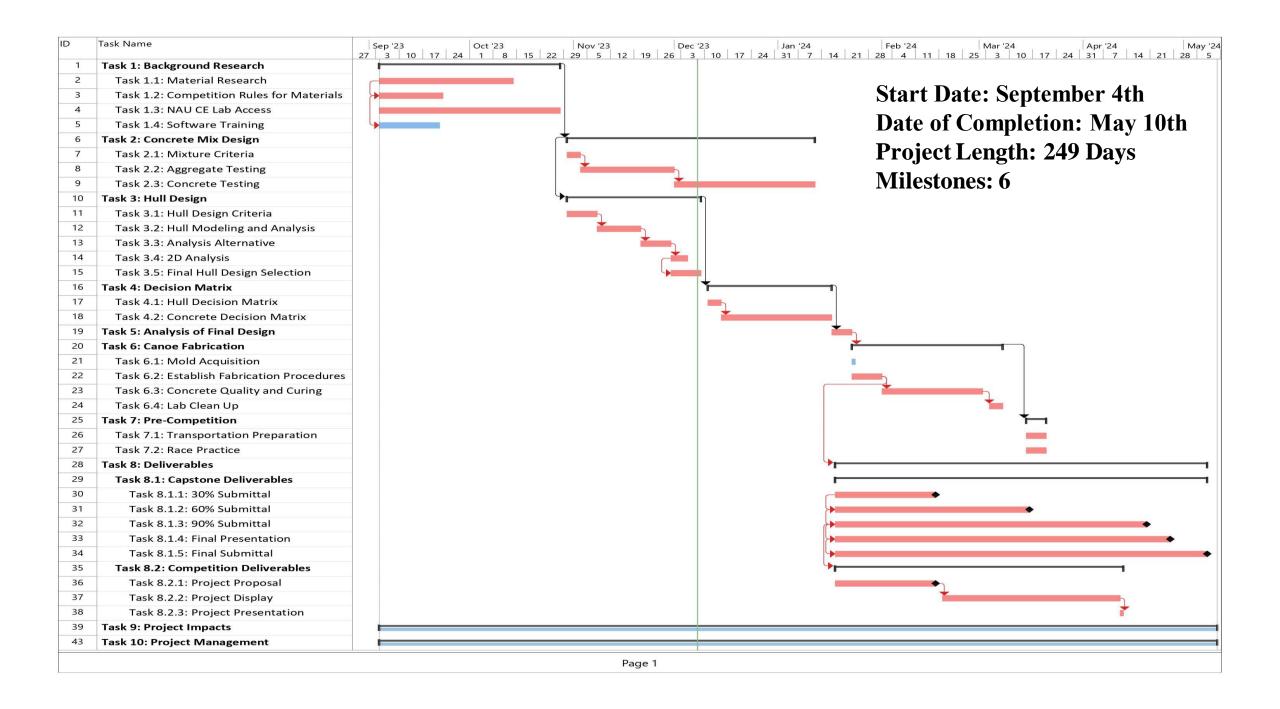


Figure 16: Project Management Icon

Exclusions:


- ➤ ASCE Student Chapter Annual Report
- The construction of the 100 canoes

Staffing Positions:

- ➤ Principle Design Engineer (PDE) Client's relationships, time management, hydrostatic and hydrodynamic concepts, concrete mix design, structural analysis, and finalizer
- Technician/Drafter (TD) Hydrostatic and hydrodynamic concepts, codes, calculations, overseers, structural analysis
- ➤ Quality Manager (QM) PPE procurement, material pickup, and ASTM testing
- ➤ Project Construction Manager (PM) Safety laboratory protocols, safety agreement, and PPE procurement, and concrete mix design
- ➤ Gradate Field Engineer (EIT) General duties reporting to ENG & TECH, including driving, material management, and racing

Table 1: Staffing base and Billing

	Billing Rate		
Classification	\$/hr		
Principal Design Engineer	\$120		
Project Construction Manager	\$88		
Quality Manager	\$87		
Graduate Field Engineer	\$38		
Technician/Drafter	\$62		

Project Staffing Hours:

Table 2: Staffing hours

Task Name	PDE Hours	PM Hours	TD Hours	EIT Hours	QM Hours
Task 1: Background Research	20	58	49	24	46
Task 1.1: Material Research	2	40	10	7	15
Task 1.2: Competition Rules	6	6	6	6	6
Task 1.3: NAU CE Lab Access	2	2	18	4	10
Task 1.4: Software Training	10	10	15	7	15
Task 2: Concrete Mixture Design	10	48	34	17	31
Task 2.1: Concrete Design Criteria	0	30	5	0	10
Task 2.2: Aggregate Testing	0	6	6	0	12
Task 2.3: Concrete Testing	0	0	5	2	5
Task 3: Hull Design	26	7	17	9	42
Task 3.1: Hull Design Criteria	2	2	2	2	2
Task 3.2: Hull Modeling and analysis	10	0	5	0	20
Task 3.3: Analysis Alternatives	14	5	10	7	20
Task 4: Decision Matrix	13	9	11	11	16
Task 4.1: Final Hull Design Selection	1	1	1	1	1
Task 4.2: Punch Shear Analysis	10	4	5	5	10
Task 4.3: Principal Stress State Analysis	2	4	5	5	5
Task 5: Analysis of Final Decision	4	9	15	22	30
Task 5.1: Structural Design Criteria and Analysis	2	5	5	10	10
Task 5.2: 3D Analysis	2	4	5	10	10
Task 5.3: 2D Analysis	0	0	5	2	10

Table 3: Staffing hours

Task Name	PDE Hours	PM Hours	TD Hours	EIT Hours	QM Hours
Task 6: Canoe Fabrication	20	16	16	28	28
Task 6.1: Lab Approval and Compliance	8	8	8	8	8
Task 6.2: Mold Acquisition	0	0	0	16	16
Task 6.3: Establish Fabrication Procedures	4	4	4	0	0
Task 7: Pre-Competition Preparation	8	4	4	4	4
Task 7.1: Transportation Preparation	4	0	0	0	0
Task 7.2: Race Practice	4	4	4	4	4
Task 8: Deliverables	40	40	40	40	40
Task 8.1: Capstone Deliverables	20	20	20	20	20
Task 8.2: ASCE Competition Deliverables	20	20	20	20	20
Task 9: Project Impact Analysis	6	6	6	6	6
Task 9.1: Social	2	2	2	2	2
Task 9.2: Economical	2	2	2	2	2
Task 9.3: Environmental	2	2	2	2	2
Task 10: Project Management	40	30	20	20	20
Task 10.1: Meetings	20	20	20	20	20
Task 10.2: Resource Management	20	10	0	0	0
Subtotal:	187	227	212	181	263
Total:					1070

Table 4: Total Cost Estimate

Project Costs

	Table 1. Total Soft Estimate						
	Enginee	ring Servi	ces Cost Estim	ate			
Cost Type	Description	Quantity	Unit of Measure	Rate (USD)	Cost		
Personnel							
	PDE	187	Hr.	\$120	\$17,880		
	PM	227	Hr.	\$88	\$13,464		
	TD	212	Hr.	\$62	\$8,742		
	EIT	181	Hr.	\$87	\$12,006		
	QM	263	Hr.	\$38	\$7,942		
	Total Personnel				\$60,034		
Travel							
	Material Acuisition						
	Transportation		Miles	\$0.40	\$120		
	Van Rental	3	Van/Day	50	150		
	Competition						
	Transportation	1,206	Miles	\$0.40	\$482		
	Van Rental	1	Van/Week	\$340	\$340		
	Hotel Rooms	'					
1	(3 rooms)	3	Nights	\$600	\$1,800		
1	Meals	1	Meals/Day/				
1	Meals (5 People, 4 Days)	1 3	Meals/Day/ Person	\$20.00	\$1,200		
1	Total Travel		I erson	\$20.00	\$4,092		
Manufacturing					V1,55 2		
Manufacturing	Lab Access						
	Farm	10	Days	\$200	\$2,000		
	Geotech Lab		Days	\$200	\$2,000		
ı	Water/Concrete Lab		Days	\$200	\$2,000		
	Subcontracting		Days	9200	J2,000		
	Mold Manufacturer	5	Days	\$200	\$1,000		
ı	Western Tech		Days	\$200	\$1,000		
	Materials		Days	72	V-,		
	Cement	10	Cubic Feet	\$8	\$80		
	Aggregate		Cubic Feet	\$22	\$264		
	Sand		Ton	\$10	\$1		
	Admixtures		GAL	\$20	\$20		
	Reinforcement		Square Yard	\$15	\$300		
	Total Materials		oquare 1 m.o		\$8,665		
Project Total					\$72,791		

References

- [1] Https://Www.Ceias.Nau.Edu/Capstone/Projects/CENE/2020/SinclairWash/. NAU, 2020.
- [2] 9/27, Hull Design Kickstart. New Jersey: The College of New Jersey, 2018.
- [3] Mohr's Circle. Prepineer, 2023.
- [4] Xycorp's, 2023.
- [5] A Stock Market "Tipping Point" Has Been Reached, According to Morgan Stanley. Business Insider, 2018.
- [6] A. Alonzi, Project Results. 2023.
- [7] "ArcGIS Streetmap USA." ESRI, 2001.
- [8] Grainger Engineering Office of Marketing and Communications. "Illinois to Host 2013 National Concrete Canoe Competition." *Civil & Environmental Engineering | UIUC*, cee.illinois.edu/news/illinois-host-2013-national-concrete-canoe-competition. Accessed 7 Dec. 2023.

