Harquahala Mine PA/SI CENE 486

Client: Bureau of Land Management

Prepared by:

VIPERIDAE TECH

Sierra Binney, Bohao Liu, Jack Priniski, Elda Silva 05/03/2024

Introduction

Fig. 2: Site with reference to US-60 and I-10. [2]

Introduction

- Preliminary assessment: identify & evaluate areas of possible contamination to determine human health and ecological risks
- Site investigation: sampling and ecological survey
- Harquahala Mine has been mined for silver & gold since 1888
- Site is currently in operation under Bonanza Mining Company

Fig. 3: Private mine practices kicking up dirt. Photo: SB

Site Background

- Sampling & Analysis Plan (Work Plan) prepared before site visit, changed during visit
- No fences for private land area
- Tailings pile on BLM land is 45,000 ft² and 20 ft tall
- 1,800 ft of wash highlighted

Project Background - Conditions in 2018

Table 1: Site conditions in 2018. [3]

Contaminant	Lead	Arsenic
AZ Non-residential standard (ppm)	800	10
HARQ-1	3467	<lod< td=""></lod<>
HARQ-2	1228	56
HARQ-3	2519	196
HARQ-4	2517	133
HARQ-5	2522	160
HARQ-6	1764	82
HARQ-7	4578	356
HARQ-9	693	<lod< td=""></lod<>
HARQ-10	1885	99

Fig. 5: Sample locations from 2018. [2] [3]

Site Visit 1/19-1/20

Fig. 6: Mine (top) and tailings pile (center). Photo: JP

Site Visit 1/19-1/20

Fig. 7: Potential leach pond by tailings. Photo: JP

Fig. 8: Impacted wash south of mine. Photo: SB ⁷

Floodplain impact discovered

Fig. 9: Apparent downstream impact from mine (top). Photo: JP

Fig. 10: Site layout, with Fig. 9 region circled in red. [2]

Soil Sampling 01/2024

Table 2: Sampling methods and amounts per type. (ISM = Incremental Sampling Method)

Decision Unit & Sampling Type		Samples Collected / # of Duplicates
1:	Transect down wash	18/3
2:	Random on tailings pile	6/2
3:	ISM surrounding tailings pile	4
4:	ISM south of tailings pile	4
	Hot spots	9/1
	Background	3/1

Fig. 11: Summary of site decision units (DU). [2]

Fig. 12: Sampling sections and types. [2]

Fig. 12a: Transect sampling along the wash (DU-1).

Fig. 12b: Random sampling on tailings pile (DU-2).

Fig. 12c: Incremental Sampling Method (ISM) surrounding DU-2 (DU-3).

Fig. 12d: ISM south of tailings pile (DU-4).

Sample Analysis

In-lab soil analysis included:

- Drying in oven
- Sieving to 250 µm particle size
- X-ray fluorescence (XRF) for 9 sub-samples of each sample

Fig. 13: Sample drying. Photo: ES

Fig. 14: Sample sieving. Photo: SB

Fig. 15: XRF preparation. Photo: JP

Fig. 16: XRF reading. Photo: SB

Precision Analysis

Equation 1: Precision.

$$\% RPD = \frac{2|O_i - D_i|}{(O_i - D_i)} \bullet 100\%$$

% RPD < 50% meets the criteria for data quality

Where:

%*RPD* - Relative percent difference for the compound *i* O_i - Value of compound *i* in the original sample D_i - Value of compound *i* in the duplicate sample

Table 3: Precision analysis results.

Sample ID	As original (ppm)	As duplicate (ppm)	As RPD	Pb original (ppm)	Pb duplicate (ppm)	Pb RPD
H-T6	42.90	35.5	19%	775.4	738.8	5%
H-T11	66.40	51.9	25%	1437.7	1612.4	11%
H-T18	50.40	44.30	13%	1037.3	914.5	13%
H-G5	171.40	160.50	7%	2936.9	2764.4	6%
H-HS7	82.00	74.90	9%	963.9	985.9	2%
H-BG2	10.30	9.90	4%	32.7	29.3	11%

Sample Analysis Results

Table 4: Summary of human health contaminants of concern (COCs) found onsite.

Minimum and Maximum Values of Human COCs by Section						
Human COCs	Arsenic	: (ppm)	Lead (ppm)			
AZSRS (Res/Non-res)	10/10 40		400/	/800		
Section	Min	Max	Min	Max		
DU-1 (Wash)	11	81	79	2006		
DU-2 (Tailings)	171	269	2937	4705		
DU-3 (Around tailings)	91	91 125		2288		
DU-4 (South of tailings)	of tailings) 24 46		379	844		
Hotspots	7	217	30	3846		
Background	9	11	29.3	39.1		

Spatial Distribution Map of Arsenic

Non-residential standard **10 ppm**

Minimum concentration **11.0 ppm**

Maximum concentration **268.5 ppm**

Fig. 17: Arsenic contamination distribution map. [2]

Spatial Distribution Map of Lead

- Non-residential standard 800 ppm
- Minimum concentration **78.8 ppm**
- Maximum concentration **4704.8 ppm**

Fig. 18: Lead contamination distribution map

Exposure Point Concentrations (EPCs)

Table 5: Arsenic EPCs in mg/kg, or ppm.

Arsenic	50% (mg/kg)	95% (mg/kg)
DU-1 (wash)	49	61
DU-2 (tailings)	196	227
DU-3	109	142
DU-4	30	51

Table 6: Lead EPCs in mg/kg, or ppm.

Lead	50% (mg/kg)	95% (mg/kg)
DU-1 (wash)	1125	1356
DU-2 (tailings)	3353	3915
DU-3	2042	2503
DU-4	544	959

50% EPC: Average exposure concentration

95% EPC: Maximum exposure concentration

Evidence of Recreation Onsite

Fig. 19: ATVs driving to the tailings pile. Photo: JP

Fig. 20: Campsite next to tailings. Photo: SB

Exposure Scenarios

Incidental Ingestion & Dermal Exposures

- Worker: 40 hours/week, 50 weeks/year, 3 years, Adult only
- Recreational camping: 2 weeks/year, Ages 0-6, 6-12, & Adult
- Recreational ATV: 40 hours/year, Ages 0-6, 6-12, & Adult

Fig. 21: Soil on tailing pile. Photo: SB

Fig. 22: Site layout and decision units. [2]

Exposure Scenarios, cont.

Incidental Ingestion

- Contact rate (mg soil/day)
 - Adult: 100 mg/day
 - Child: 200 mg/day
- Exposure frequency (hr/day)
- Exposure duration (days)
- Average body weight (kg)

Dermal

- Skin exposed (cm²)
- Dust adherence (mg dust/cm²)
- Absorption factor
- Exposure frequency (events/day)
 - Worker and Camping: 4 events
 - ATV: 2 events
- Average body weight (kg)

Fig. 23: ATVs kicking up dust. [4]

Characterization of Risk (Arsenic)

ARSENIC INGESTION RISK					
Risk Scenario	Carcinogeni	c Risk (E-06)	Non-Carcino In		
	50% EPC	95% EPC	50% EPC	95% EPC	
Worker Exposure Scenario	4.12	4.77	0.21	0.25	
Recreational Camping Exposure Scenario (Child 0-6 years)	1.65	2.81	0.04	0.07	
Recreational Camping Exposure Scenario (Child 6-12 years)	0.48	0.82	0.01	0.02	
Recreational Camping Exposure Scenario (Adult)	1.06	1.81	0.01	0.01	
Recreational ATV Exposure Scenario (Child 0-6 years)	0.71	0.71 0.93 0.02		0.03	
Recreational ATV Exposure Scenario (Child 6-12 years)	0.21	0.27	0.01	0.007	
Recreational ATV Exposure Scenario (Adult)	0.46	0.60	0.002	0.003	

Table 7: Health risk from arsenic ingestion at each scenario.

Table 8: Health risk from arsenic on skin at each scenario.

ARSENIC DERMAL RISK					
Risk Scenario	Carcinogeni	c Risk (E-06)	Non-Carcinogenic Hazard Index		
	50% EPC	95% EPC	50% EPC	95% EPC	
Worker Exposure Scenario	10.44	12.08	0.54	0.63	
Recreational Camping Exposure Scenario (Child 0-6 years)	5.92	10.08	0.15	0.26	
Recreational Camping Exposure Scenario (Child 6-12 years)	3.68	6.27	0.10	0.16	
Recreational Camping Exposure Scenario (Adult)	0.90	1.53	0.01	0.01	
Recreational ATV Exposure Scenario (Child 0-6 years)	15.32	19.96	0.40	0.52	
Recreational ATV Exposure Scenario (Child 6-12 years)	9.53	12.42	0.25	0.322	
Recreational ATV Exposure Scenario (Adult)	2.32	3.03	0.01	0.02	

Elevated carcinogenic risk >10⁻⁶

Elevated non-carcinogenic hazard index >1

Lead Risk

Environmental Protection Agency lead models:

- Integrated Exposure Uptake Biokinetic Model (IEUBK) for ages 0 7
- Adult Lead Model (ALM) for adolescents & adults
- Heightened risk: blood lead content > 5 μ g/dL

Table 9: IEUBK model results. [5]

Blood lead concentration (µg/dL)						
Exposure Scenario	Camping		ATV			
Age	50% EPC	95% EPC	50% EPC	95% EPC		
0.5-1	1.1	1.3	1.0	1.0		
1-2	1.3	1.5	1.2	1.3		
2-3	1.2	1.4	1.2	1.2		
3-4	1.2	1.3	1.1	1.1		
4-5	1.2	1.2	1.1	1.1		
5-6	1.1	1.2	1.1	1.1		
6-7	1.1	1.1	1.0	1.0		

Exposure Scenario	Probability blood lea exceeds 5	/ that fetal d content μg/dL (%)	Blood lead concentration of adult (μg/dL)			
	50% EPC	95% EPC	50% EPC	95% EPC		
Worker	89.54%	93.41%	11.6	13.5		
Camping	0.02%	0.04%	0.7	0.8		
ATV	0.01%	0.01%	0.6	0.7		

Table 10. AIM results [5]

Arsenic and Lead Health Effects

Arsenic

<u>Carcinogenic</u>

- Skin cancer
- Bladder cancer
- Lung cancer

Non-Carcinogenic

- Vascular complications
- Abdominal pain
- Heart attacks

- Lower fertility/ fetal complications and death
- Damage to nervous system
- Anemia
- Kidney and brain damage
- Stomach & abdominal complications
- Stunted growth

Ecological Risk Assessment

Fig. 26: Plant diversity onsite. Photo: JP

Fig. 27: Many animal tracks in wash. Photo: SB

Table 13: Species identified for this site.

Scientific Names	Common Name (* = endangered)
Inv	ertebrates
Euproserpinus wiesti	Prairie Sphinx Moth*
Aphonopelma chalcodes	Western Desert Tarantul
Avia	an Wildlife
Toxostoma bendirei	Bendire's Thrasher*
Athene cunicularia	Burrowing Owl
Mamm	nalian Wildlife
Canis latrans	Coyote
Gopherus agassizii	Desert tortoise*
	Plants
Purshia subintegra	Arizona Cliff-rose*
Carnegiea gigantea	Saguaro

Table 11: Identification of ecological COCs. [7]

	Range of	EPA E	cological Soil	Screening	Levels
Contaminant	(ppm)	Plant	Invertebrate	Avian	Mammal
Arsenic	7 – 270	18	NA	43	46
Cobalt	20-310	13	NA	120	230
Chromium (III)	20-40	NA	NA	26	34
Copper	30 – 1330	70	80	28	49
Manganese	120 – 1290	220	450	4300	4000
Nickel	20-80	38	280	210	130
Lead	30–4700	120	1700	11	56
Selenium	3–260	0.52	4.1	1.2	0.63
Vanadium	2-110	NA	NA	7.8	280
Zinc	30 - 1090	160	120	46	79

Potential Remediation Alternatives

Remedial Action Objectives (RAOs):

- Eliminate migration of contaminants in public land.
- **Reduce direct contact** with contaminated soil/water on public land.
- Reduce COCs concentrations in DU-1, DU-2, & DU-3 TO Arizona nonresidential soil remediation standards.

Alternatives:

- 1. No Action
- 2. Fence, Sign, & Monitor
- **3. Excavate to Hazardous Waste Landfill**
- 4. Excavate to Private Mine
- 5. Capping
- 6. Solidification/Stabilization

Decision Matrix

Table 12: Decision sub-matrix of alternatives meeting all Remedial Action Objectives (RAOs).

Option	Remedial Option	Cost (-/+/0)	Implementability (-/+/0)	Effectiveness (-/+/0)	Total
3c	Full excavation and off-site disposal at hazardous waste landfill.			+ +	
4b	Full excavation and move to private land repository and berm to be processed.	0	0	+ +	+ +
5b	Excavate hot spot area & wash, move to tailings pile; cap tailings pile in place.	+	-	+	+
5c	Excavate hot spot area & wash, move to private land repository and berm. Cap tailings pile.	+	-	+	+
6b	Excavate hot spot area & wash to tailings pile; solidify in place and cover with native soil.	-	_	+	-

Selected Alternative

Excavation of contamination to Private Mine to be processed by Bonanza Mining Co. for metals.

Table 13: Cost breakdown for remedial action.

Excavation	
Volume of soil (ft ³)	4,455,804
Unit Price	\$4.00
Total Excavation Cost	\$17,823,216
Berm	
Perimeter (ft)	3,000
Height (ft)	2.5
Width (ft)	4.0
Volume of soil (ft ³)	30,000
Volume of soil (CY)	1,100
Unit Price	\$8.00
Total Cost of Berm Construction	\$8,890
Total Cost of Remediation	\$17,832,106

Impacts

	NO ACTION	REMEDIAL ACTION
Environmental	 Risk for plant and wildlife health 	 + Long-term plant and wildlife health - May destroy habitats in the process
Economic	 Healthcare cost from treating disease Tax dollars not being spent 	 + Creating jobs - Decreased tourism to Salome - Cost of remediation comes from government (taxes)
Social	 Exposing unknowing visitors to permanent health effects 	 Increased awareness about the dangers of contamination in Arizona Deserts

Table 14: Breakdown of project impacts.

References

- [1] Maps for Design. *Powerpoint Map of Arizona*. [Online]. [Accessed September 2023]. Accessible at: www.mapsfordesign.com
- [2] Google Earth, Harquahala Mine. [Online]. [Accessed September 2023]. Accessible at: earth.google.com/web
- [3] B. B. R. F. D. H. V. Beresford, "Harquahala Mine," 2018.
- [4] UTV Driver. Best Used UTVs. [Online]. [Accessed May 2024]. Accessible at: <u>https://www.utvdriver.com/best-used-utvs/</u>
- [5] United States Environmental Protection Agency, "Lead at Superfund Sites: Software and Users' Manuals," US EPA, 23 October 2023. [Online]. Available: <u>https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals</u>. [Accessed April 2024].
- [6] Safety Emporium, [Online]. [Accessed February 2024]. Accessible at: <u>https://www.safetyemporium.com/z-2665s</u>.
- [7] EPA, "Ecological Soil Screening Level," United States Environmental Protection Agency, [Online]. Available: <u>https://www.epa.gov/chemical-research/ecological-soil-screening-level</u>. [Accessed 24 April 2024].
- [8] Anderson Engineering, "Site Remediation: Conventional Technologies for Pollution Treatment", [Online]. Available: https://www.andersoneng.com/site-remediation-conventional-technologies-for-pollution-treatment/ [Accessed April 2024].

Questions?