Mother Road Brewing Company Wastewater Pre-Treatment Design

CENE 486C - STILL WATER TREATMENT ENGINEERING: DANIEL KENNEDY, SERENITY HELM, ALEXANDER (ALEC) MURPHY

Client: Michael Marques, CEO of Mother Road Brewing Company

1

Project Purpose

Reduce contaminant of concern (COC) concentrations in the Mother Road Brewing Company (MRBC) wastewater effluent

Lower MRBC's monthly expenditures

Increase MRBC's environmental sustainability

Figure 1: City Location of MRBC Brewery [1]

Site Location

Figure 2: Street Location of MRBC Brewery [1]

Table 1:	Current Concentrations and Regulations [2	2]

Contaminant	Current Concentration (mg/L)	Standards for Discharge (mg/L)
BOD	3,108 – 21,075	10,323*
TSS	120 – 1,860	1,917*
ΤΚΝ	104 – 211	173

*Limit changes based on discharge rate [2] Brown: In Exceedance BOD: Biochemical Oxygen Demand

 Amount of oxygen used by organisms in water

TSS: Total Suspended Solids

• Amount of solids in water that do not settle

TKN: Total Kjeldahl Nitrogen

 Sum of organic nitrogen and ammonia

4

Figure 3: BOD Concentration Graph

Figure 4: TSS Concentration Graph

Figure 5: TKN Concentration Graph

Lab Testing

- Lab analysis conducted to confirm provided COC data
- Max COC accepted for modeling parameters
- Additional COCs tested to better understand wastewater characteristics

		Still Water Treatment		
		Engineering		
		Concentration Data		Accepted Maximum
	Sample Size	(Average mg/L ±		Concentration Values
COC	(n)	Standard Deviation)	IBE Data Range (mg/L)	(mg/L)
BOD (mg/L)	19	824 ± 811	3108-21075	21075
TKN (mg/L)	4	113 ± 0	104-211	211
TSS (mg/L)	6	690 ± 330	120-1860	1860
VSS (mg/L)	6	630 ± 307	N/A	937
COD (mg/L)	6	10210 ± 5703	N/A	14916
PO4 (mg/L)	4	5 ± 2	N/A	7

The Brewing Process

Figure 6: Brewery Process Wastewater Process Flow Diagram

Treatment Alternatives (BOD)

- BOD: 50% removal
- Rely on stratification of solids

Treatment Alternatives (BOD)

- BOD: 25-35% removal
- Rely on stratification of solids

HIGHLIGHTS

• BOD: 80% removal

• Suitable for high organic loading rates

Treatment Alternatives (TKN)

HIGHLIGHTS

- TKN: 99% removal
- Highly reliant on natural light

Figure 12: Microalgae Photobioreactor

- TKN: 99% removal
- Highly reliant on natural light

Treatment Alternatives (TKN)

WW H₂O₂ H₂O₂

Figure 13: Electro-Fenton Sequencing Batch Reactor (EF-SBR)

HIGHLIGHTS

- TKN: 98% removal
- High maintenance and installation cost

- TKN: 90% removal
- High maintenance and installation cost

Treatment Alternatives (BOD & TKN)

Figure 15: Hybrid Fixed Bed Membrane Bioreactor

HIGHLIGHTS

- BOD: 95% removal, TKN: 49% removal
- Suitable for high organic loading rates

- BOD: 95% removal, TKN: 70% removal
- Proven in brewery wastewater applications

Treatment Alternatives (BOD & TKN)

HIGHLIGHTS

- BOD: 80% removal, TKN: 40% removal
- Suitable for high organic loading rates

Figure 18: Upflow Anaerobic Sludge Blanket (UASB)

- BOD: 80% removal, TKN: 98.3% removal
- Separation of gas, solids, and liquids

Screening Decision Matrix Scoring

Table 3: Quantitative Scoring

Score	Capital/Installation	Removal	Table 4: Qualitative Scoring			
	Cost	Efficiency Range	Score	0	5	10
1	\$90,000+	1-9%	Dhysical	Normally	Can be	Normally
2	\$80,001-\$90,000	10-19%	Footprint	$8' \times 20'$ in	decreased in	less than 8' x
3	\$70,001-\$80,000	20-29%	lootprint	area	area	20' in area
4	\$60,001-\$70,000	30-39%	Environmental	More than	One	Zero
5	\$50,001-\$60,000	40-49%	Dependency	one	dependency	dependency
6	\$40,001-\$50,000	50-59%		dependency	acpendency	
7	\$30,001-\$40,000	60-69%	Reliability	Has not been	N/A	Has been
8	\$20,001-\$30,000	70-79%	Kendomey	practice		practice
9	\$10,001-\$20,000	80-89%		·		
10	\$5,000-\$10,000	90%+				

Screening Decision Matrix Scoring

Table 5: Scoring Percentages				
	Quantitative Data	Qualitative Data		
Percent of Total Score	75%	25%		
Capital/Installation				
Cost	40%	N/A		
Researched Efficiency	60%	N/A		
Physical Footprint	N/A	50%		
Environmental				
Dependency	N/A	10%		
Reliability	N/A	40%		

BOD Technologies Screening Decision Matrix

Table 6: BOD Removal Technologies Screening Decision Matrix

	Quantitative Subtotal	Weighted Score (75%)	Qualitative Subtotal	Weighted Score (25%)	Grand Total
Hybrid Fixed Bed Membrane Bio-Reactor	8.4	6.30	7	1.75	8.05
Anaerobic CSTR	9	6.75	7	1.75	8.50
Upflow Anaerobic Sludge Blanket	6.6	4.95	6.5	1.63	6.58
Trickling Filter	10	7.50	9.5	2.38	9.88
Dissolved Air Floatation	6.8	5.10	4.5	1.13	6.23
Membrane Filtration	8.4	6.30	7.5	1.88	8.18
Settling Tank	4.8	3.60	7	1.75	5.35
Aerobic Sequencing Batch Reactor	8.6	6.45	7	1.75	8.20

TKN Technologies Screening Decision Matrix

Table 7: TKN Removal Technologies Screening Decision Matrix

	Quantitative Subtotal	Weighted Score (75%)	Qualitative Subtotal	Weighted Score (25%)	Grand Total
Hybrid Fixed Bed Membrane Bio-Reactor	5.4	4.05	7	1.75	5.80
Anaerobic CSTR	6.6	4.95	7	1.75	6.70
Upflow Anaerobic Sludge Blanket	7.2	5.40	6.5	1.63	7.03
Trickling Filter	8.8	6.60	9.5	2.38	8.98
Electro-Fenton Sequential Batch Reactor	6.4	4.80	3.5	0.88	5.68
LEAPmbr	6.4	4.80	3.5	0.88	5.68

Selected Alternatives

20

Reactor Microbial Activity

Original Microbes

Increased Microbe Numbers

BOD CH₄ and CO₂ TKN Sludge

Slide 21

DK0 Make more professional Daniel Brian Kennedy, 2023-04-28T00:41:56.829

DK0 0 Add that microbes work at various rates, temperature, oxygen amounts, etc. Daniel Brian Kennedy, 2023-04-28T00:42:37.721

Modeling Results

ANAEROBIC PROCESSES

Table 8: Anaerobic Modeling Results

Parameter	Value
Hydraulic Retention Time (Days)	0.275 √
Minimum Required Solids Residence Time (Days)	2.15 (Requires Recirculation)
Minimum Required Substrate (mg/L)	0.018 🗸

TRICKLING FILTER RESULTS

Table 9: Trickling Filter Modeling Results

Parameter	Value	Typical Values
Hydraulic Loading (ft/d)	22 (Low)	131
Surface Loading (mg/ft ² *d)	15,800 (High)	654
Volumetric Loading (mg/ft ³ *d)	962,000 (High)	11

Final Design

- Model calculated theoretical treatment of MRBC wastewater
 - BOD Effluent: 2.84 mg/L
 - TKN Effluent: 84 mg/L
- Required Return Flow Rate:
 - 4,114 gal/day
- Methane Production:
 - 2,043 m3/day
 - 846 kW

WW

8,125 gal / day 21,075 mg BOD / L 211 mg TKN / L 937 mg VSS / L

RETURN

4114 gal / day 52,146 mg VSS / L

TREATED WW

7,846 gal / day 2.84 mg BOD / L 84 mg TKN / L 903 mg VSS / L

WASTE

279 gal / day 52,146 mg VSS / L

Final Design (Continued)

Methane Control Options

1. Flaring/Burning

• Methane burned in a flare stack to convert methane to carbon dioxide

2. Cogeneration

• Methane is converted to renewable energy using a gas engine and generator [3] (Saves \$3,250.05/day of electricity)

3. Capture and Refine

• Methane is captured in a column and is sent to be refined by reacting with steam in the presence of a catalyst

Pricing For Design Materials

Table 10: Design Pricing

Design Equipment	Price Range
CSTR Tank and Impeller	\$15,000-\$25,000 [4]
Clarifier	\$10,000-\$35,000 [5]
Shipping Container (Per Container)	\$1,500-\$3,000 [6]
Pump	\$1,000-\$2,000 [7]
Total	\$29,000-\$68,000

Project Impacts

Table 11: Project Impacts

Pros	Cons
Improve Rio De Flag WWTP performance	Design maintenance and construction costs
Remove MRBC's monthly fine	Increased electricity usage
Sludge production can be used as fertilizer	Concentration of contaminants in sludge
Possible energy production using methane	Permitting of methane flare/gas emissions management
Promote sustainable local businesses	Poor aesthetics and odor

Final Process Design

References

[1] Google, "Google Earth," The Alphabet Company, 2022

- [2] City of Flagstaff, "Chapter 7-02 Wastewater Regulations," 2022 [Online].
- [3] D. Moldal, "Wastewater Treatment, Powered by Biogas," WaterWorld, 2021.
- [4] "stirred tank reactor continuous stirred tank reactor 50000l vacuum stirred tank reactor," Alibaba.
- [5] "How Much Does a Wastewater Treatment System Cost? (Pricing, Factors, Etc.)," SAMCO, 2016.
- [6] "California Shipping Container Homes," We Will Transport It.
- [7] "Centrifugal Pump: 1 hp, 115/230V AC, 85 ft Max Head, 1 1/4 in , 1 in Intake and Disch," Grainger.
- [8] B. E. Rittman, "12 Aerobic Biofilm Processes," in Environmental Biotechnology: Principles and Applications, Second Edition, New York, McGraw Hill, 2020, pp. 475-500.

Thank you! Are there any questions?

Chemical Equations

 $R = f_e R_a + f_s R_c - R_d$

Where:

$$\begin{split} R &= \text{General stoichiometric reaction (unitless}) \\ f_e &= \text{The percentage adjustment factor for the energy generation (unitless}) \\ f_s &= \text{The percentage adjustment factor for the synthesis reaction (unitless}) \\ R_d &= \text{Electron Donor Half Reaction (unitless}) \\ R_a &= \text{Electron Acceptor Half Reaction (unitless}) \\ R_c &= \text{Cell Synthesis Half Reaction (unitless)} \end{split}$$

Chemical Equations

Aerobic

$$\frac{21}{793}NH_4 + \frac{21}{793}HCO_3 + \frac{1}{40}O_2 + \frac{1}{54}C_{13}H_{23}O_9N = \frac{19}{450}CO_2 + \frac{9}{200}C_5H_7O_2N + \frac{73}{600}H_2O_8N + \frac{1}{200}H_2O_8N + \frac{1}{200}$$

Anaerobic

$$\frac{1}{54}C_{13}H_{23}O_9N + \frac{19}{300}H_2O = \frac{55}{613}CO_2 + \frac{1}{74}NH_4 + \frac{1}{74}HCO_3 + \frac{9}{80}CH_4 + \frac{1}{200}C_5H_7O_2N$$

[8]

Chemical Equation Results

Table 12: Stoichiometric Yield Factors

Yield Factors					
Description	Unit	Value			
Growth Yield Factor (Y)	(g VSS / g BOD)	0.09			
Substrate Yield Factor	(g O2/g Substrate)	0.13			
Methane Yield Factor	(g sub/g CH ₄)	3.47			
CO2 Yield Factor	(g sub/g CO2)	4.35			

Table 13: Stoichiometric Gas Production

Gas Production					
Description	Unit	Value			
Mathana Dua duation	g CH ₄ /day	1.46E+06			
Methane Floduction	m3 CH ₄ /day	2.04E+03			
CO2 Production	g CO2/day	1.16E+06			
CO2 Flouuellon	m3 CO2/day	6.35E+02			

Biological Kinetic Constants

Table 14: Stoichiometric Gas Production [3]

TABLE 6.1 Estimated f_s^0 , Y, \hat{q} , $\hat{\mu}$, and b Values for Key Microbial Types in Environmental Biotechnology										
Organism Type	Electron Donor	Electron Acceptor	End Products	C-Source	f_s^0	Gram Donor/ e ⁻ eq	Ŷ	Ŷ	μî	b
Aerobic heterotrophs	Carbohydrate BOD	02	CO2	BOD	0.7	8	0.49 g VSS/g BOD _L	27 g BOD _l /g VSS-d	13.2	0.8
	Other BOD	02	CO2	BOD	0.6	8	0.42 g VSS/g BOD	20 g BOD _L /g VSS-d	8.4	0.5
Denitrifiers	BOD	NO ₃ -	CO ₂ , N ₂	BOD	0.5	8	0.35 g VSS/g BOD	16 g BOD _L /g VSS-d	5.6	0.3
	H ₂	NO ₃	N ₂	CO2	0.2	1	1.13 g VSS/g $\rm H_2$	1.25 g H ₂ /g VSS-d	1.4	0.08
	S(s)	NO ₃ ⁻	SO42-, N2	CO2	0.2	5.33	0.21 g VSS/g S	6.7 g S/g VSS-d	1.4	0.08
Nitrifying	NH ₄ ⁺	02	NO ₂	CO2	0.14	3.5	0.23 g VSS/g NH ₄ +-N	4.1 g NH ₄ +-N/g VSS-d	0.94	0.06
autotrophs	NO_2^-	02	NO_3^-	CO2	0.10	14	0.04 g VSS/g NO ₂ -N	15.6 g $NO_2^{-}N/g$ VSS-d	0.62	0.04
Methanogens	Acetate BOD	Acetate	CO2, CH4	Acetate	0.05	8	0.035 g VSS/g BOD	8.4 g BOD _L /g VSS-d	0.3	0.02
	H ₂	CO2	CH ₄	CO2	0.08	1	$0.45~{ m g}~{ m VSS/g}~{ m H_2}$	1.1 g H ₂ /g VSS-d	0.5	0.03
Sulfide-oxidizing autotrophs	H ₂ S	02	S042-	CO2	0.2	4	0.28 g VSS/g H ₂ S-S	5 g S/g VSS-d	1.4	0.08
Sulfate	H ₂	SO42-	H ₂ S	CO ₂	0.05	1	0.28 g VSS/g H ₂	1.05 g H ₂ /g VSS-d	0.29	0.02
reducers	Acetate BOD	S042-	CO2, H2S	Acetate	0.08	8	0.057 g VSS/g BOD	8.7 g BOD _L /g VSS-d	0.5	0.03
Fermenters	Sugar BOD	Sugar	CO_2 , BOD	Sugar	0.18	8	0.13 g VSS/g BOD	9.8 g BOD _l /g VSS-d	1.3	0.08

Notes: • Y is computed assuming a cellular VSS composition of $C_5H_7O_2N$.

• \hat{q} is computed using $\hat{q}_e = 1e^- \text{ eq/g VSS}_a \text{-d.}$

• $\hat{\mu}$ and b have units of d⁻¹.

Anaerobic Modeling Equations

Hydraulic Retention Time [8]

 $\theta = \frac{\theta_x Y(S_0 - S)}{X(1 + b\theta_x)}$

Minimum Required Substrate [8] $S_{min} = \frac{Kb}{Yq - b}$

Table 15: Anaerobic Modeling Input Values

Variable Notation	Variable Meaning	Fixed Input Value
К	Half Saturation Constant (mgBOD/L)	10
S ⁰	Influent BOD Concentration (mgBOD/L)	21075
Y	Growth Yield Factor (gVSS/gBOD)	0.091
q	Maximum Specific Rate of Substrate Utilization (gBOD/gVSS*day)	8.4
b	Monod Decay Constant (day-1)	0.02

Trickling Filter Modeling Equations

Table 16: Trickling Filter Modeling Input Values

Variable Notation	Variable Meaning	Fixed Input Value
Q	Incoming Flow Rate (ft ³ /d)	1086
Qr	Return Flow Rate (ft ³ /d)	1000
A _{pv}	Cross-Sectional Area of Filter (ft ²)	96
S ⁰	Incoming BOD Concentration (mg/ft ³)	590,000
d	Depth of Filter (ft)	7
а	Approximate Media Surface Area (ft ⁻¹)	61

CSTR Design Modeling Results

Table 17: CSTR Modeling Results

Parameter	Description	Units	Value
θ	Hydraulic Retention Time	(day)	0.62
$[\theta_x^{min}]_{lim}$	Organism Washout SRT	(day)	1.35
SF _{selected}	Input Safety Factor	(unitless)	5.00
$\theta_{x-selected}$	Selected SRT	(day)	6.75
S^4	Reactor Effluent Substrate	(mg/L)	2.84
X _a ³	Reactor Active Biomass	(mg VSS/L)	18344
X_i^3	Reactor Inert Biomass	(mg VSS/L)	10722
X_v^3	Reactor Total Biological Solids	(mg VSS/L)	29065
X_a^{-1}	Input Active Biomass	(mg VSS/L)	16663
TKN ⁴	Effluent TKN	(mg/L)	84.40

System Mass Balance

Table 18: CSTR Mass Balance (Pt 1, 2)

Iteration 1: Assume No Return Flow							
Step 1: Calculate Mass Rates							
Variable	Description	Description Units					
m_a^{1}	WW Influent Active Mass Rate	(mg/d)	0.00E+00				
m_a^2	CSTR Influent Active Mass Rate	(mg/d)	5.12E+08				
m_a^3	CSTR Effluent Active Mass Rate	(mg/d)	5.64E+08				
m_a^4	Effluent WW Active Mass Rate	(mg/d)	1.69E+07				
m_a^{5}	Settled Active Mass Rate	(mg/d)	5.47E+08				
Iteration 2: Assume Mass Rate CSTR Influent = Mass Rate Return							
	Step 1: Calculate Reminin	g Mass Rates					
VariableDescriptionUnitsVa							
m _a ⁷	Return Active Mass Rate	(mg/d)	5.12E+08				
m _a ⁶	Waste Active Mass Rate	(mg/d)	3.48E+07				

System Mass Balance

Iteration 3: Balance Flow and Concentration By Iterating						
Step 1: Given All Mass Rates, Balance Flow & Active Concentration						
Location	Variable	Description	Units	Value		
	m_a^{-1}	WW Influent Active Mass Rate	(mg/d)	0.00E+00		
	Q^1	Influent Flow Rate	(L/d)	30757		
1	X_a^{-1}	Influent Active Biomass	(mg/L)	0		
	ma ^{1-CHECK}	CHECK WW Influent Active Mass Rate	(mg/d)	0		
	m_a^2	CSTR Influent Active Mass Rate	(mg/d)	5.12E+08		
2	Q^2	CSTR Influent Flow	(L/d)	46329		
2	X_a^2	CSTR Influent Active Biomass	(mg/L)	11062		
	ma ^{2-CHECK}	CHECK CSTR Influent Active Mass Rate	(mg/d)	5.12E+08		
	m_a^3	CSTR Effluent Active Mass Rate	(mg/d)	5.64E+08		
2	Q^3	CSTR Effluent Flow	(L/d)	46329		
3	X_a^3	CSTR Effluent Active Biomass	(mg/L)	12178		
	ma ^{3-CHECK}	CHECK CSTR Effluent Active Mass Rate	(mg/d)	5.64E+08		
4	m_a^4	Effluent WW Active Mass Rate	(mg/d)	1.69E+07		
	Q^4	Effluent WW Flow	(L/d)	29700		
	X_a^4	Effluent WW Active Biomass	(mg/L)	570		
	m _a ^{4-CHECK}	CHECK Effluent WW Active Mass Rate	(mg/d)	1.69E+07		

Table 19: CSTR Mass Balance (Pt. 3)

5	ma ⁵	Settled Active Mass Rate	(mg/d)	5.47E+08
	Q ⁵	Settled Flow	(L/d)	16629
	X_a^5	Settled Active Biomass	(mg/L)	32910
	ma ^{5-CHECK}	CHECK Settled Active Mass Rate	(mg/d)	5.47E+08
	m_a^7	Return Active Mass Rate	(mg/d)	5.12E+08
	Q^7	Return Flow	(L/d)	15572
7	X_a^7	Return Active Biomass	(mg/L)	32910
	ma ^{7-CHECK}	CHECK Return Active Mass Rate	(mg/d)	5.12E+08
6	m_a^{6}	Waste Active Mass Rate	(mg/d)	3.48E+07
	Q^6	Waste Flow	(L/d)	1056
	X_a^{6}	Waste Active Biomass	(mg/L)	32910
	ma ^{6-CHECK}	CHECK Waste Active Mass Rate	(mg/d)	3.48E+07

