FLAGSTAFF-SHADOW MOUNTAIN DRAINAGE DESIGN

Sydney Wilson, Carleigh Jones, Shanya Whitehorse

CENE 486C

April 28, 2023

AB Stormwater Management Co.

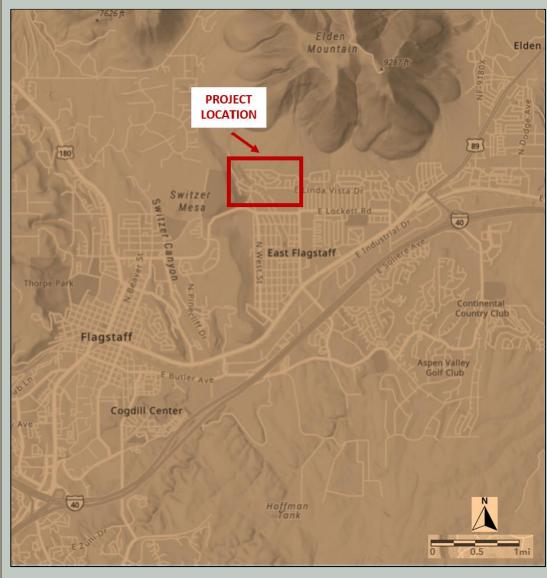


Figure 1 – Map of the City of Flagstaff

INTRODUCTION

- <u>Purpose</u>: Alter the terrain to reduce the impact of flooding
- <u>Client</u>: Chase McLeod Flagstaff Stormwater Department

Background:

- Built in the late 1970's
- Minimal existing stormwater infrastructure
- Annual floods, sediment deposits, and destruction to property

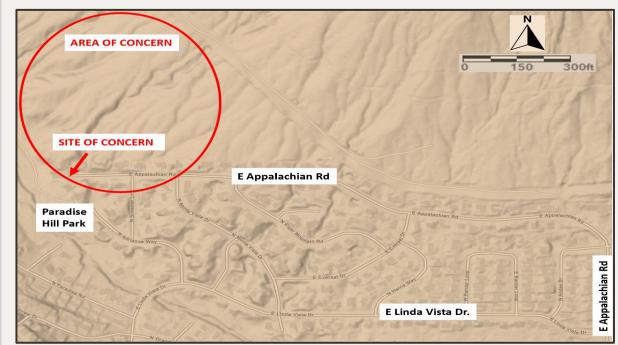


Figure 2 – Map of the Shadow Mountain Community

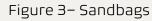


Figure 4 – Site flooding in Summer 2022

RESEARCH FEMA FLOODPLAIN

- Shadow Mountain community is categorized as an AE flood zone
- Project area is categorized as Zone X

Figure 5 – FEMA Floodplain Map of Shadow Mountain Community

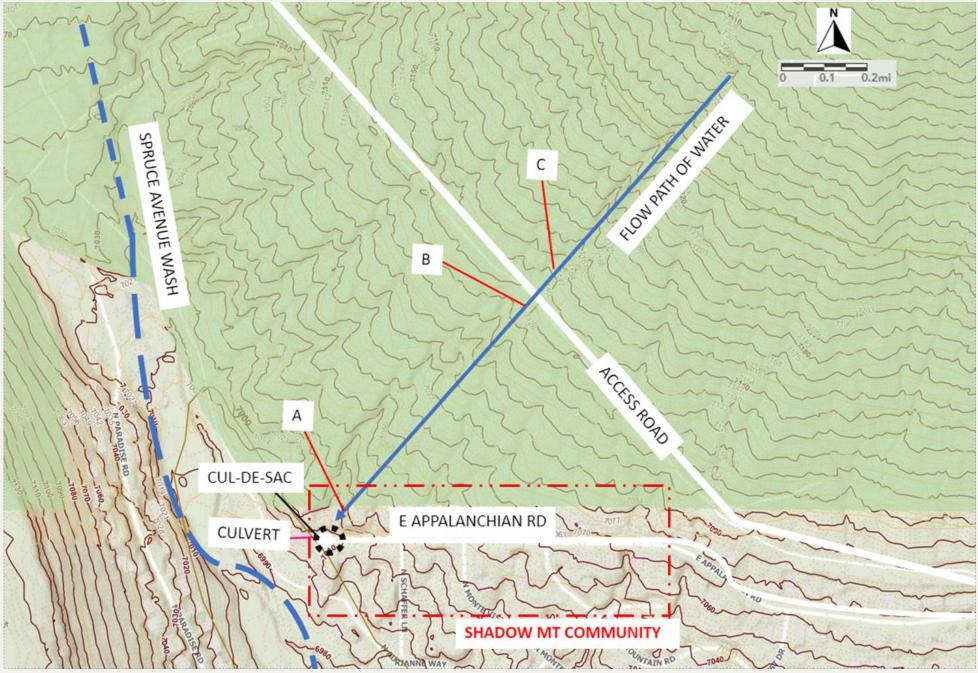



Figure 6 – FEMA Floodplain Map of Flagstaff

FIELD SITE INVESTIGATION: Conditions in the Community

Natural stormwater runoff channel above community
Shallow terrain slope North of community up to the access road
Steep terrain sloped above access road
Access road is owned by gas company
National Forest manages land

Figure 8- View of Access Point where Mt. Elden runoff enters Shadow Mountain

Figure 9– Image of Natural Channel's path

Figure 10 – Consistent ground of the Channel

FIELD SITE INVESTIGATION: Potential Design Locations

Figure 11 – Location A, directly North of Community

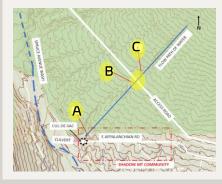

Figure 12 – Location B, southwest of pipeline access road

Figure 13 – Location C, area northeast of access road

Figure 14 – Access road, dirt road covered in snow

Site Identifier

HYDROLOGIC ANALYSIS

Table 1 – Watershed inputs				
WATERSHED INPUTS				
Landform Type:		Mountain, with rough rock and boulder cover		
Flow Type:		Overland Flow		
Watershed Resistance Coefficient:		0.25		
Longest Flow Path Length (miles):		1.643		
Watershed Slope (ft/mile):		1253.8		
	Table 2 – Watershed and subarea inputs			
SUB-AREA INPUTS				
Sub- Area	Area (acres)	Subbasin Type		
1	121.747	Mountain Ponderosa Pine		
2	141.88	Mountain Ponderosa Pine		
З	76.6	Mountain Juniper Grass		

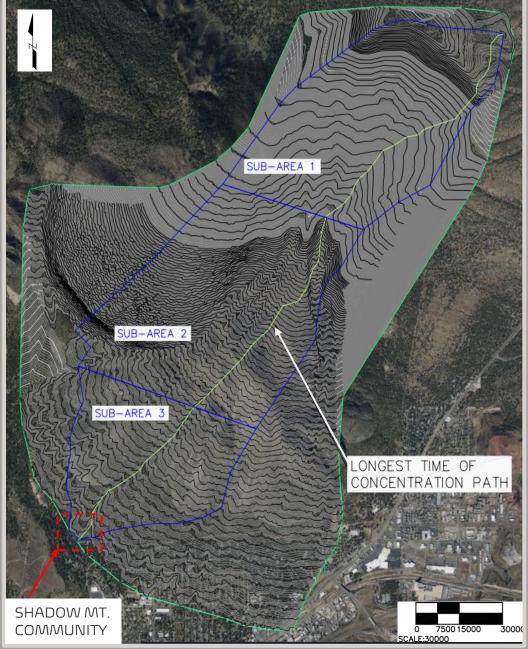


Figure 15 – Subareas of watershed

HYDROLOGIC ANALYSIS

Table 3 – ADOT Rational Method Tool Results

ADOT RATIONAL METHOD TOOL RESULTS

Parameter:	100-Үеаг
Discharge, Q (cfs):	308.7
Rational Coefficient, C (unitless):	0.20
Rainfall Intensity, i (in/hr):	4.54
Subbasin Total Area, A (acres):	340.23
Time of Concentration, Tc (min):	26.4

HYDRAULIC ANALYSIS

Existing structures composed of a combined catch basin

- Two 24-inch steel corrugated pipes
- Discharging into Spruce Ave. Wash

Table 4 – Hydraulic Analysis

Under Inlet ControlDischarge, Q (cfs)58Under Outlet ControlDischarge, Q (cfs)44

Figure 16 – Map of annotations of existing culvert

ANALYSIS OF ALTERNATIVES: Design Criteria Standards

Table 6 – Category standards

Alternative De	sign Standards
DESIGNING CRITERIA	STANDARD
CONSTRUCTION COST	Under \$100,000
TIME OF CONSTRUCTION	9 - 12 MONTHS
DESIGN EFFECTIVENESS	 Decrease velocity Prevent flooding Improve water quality
ANNUAL MAINTENANCE	Low maintenance under \$1,500

Table 5 – Scoring criteria

	Scoring (1-3)
1	Poor performance
2	Average performance
З	Excellent performance

ALTERNATIVE DESIGN 1: Retention Basin

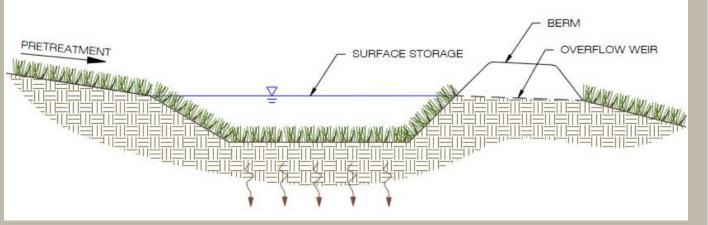


Figure 17 – Retention basin

Construction Cost:

\$105,000

Time of Construction:

12 months

Design Effectiveness:

- Hold and distribute rain runoff
- Improve water quality
- Prevent flooding

Maintenance:

- Starts at \$150 \$1,000
- Semi-annual inspection

ALTERNATIVE DESIGN 2: Bioswale

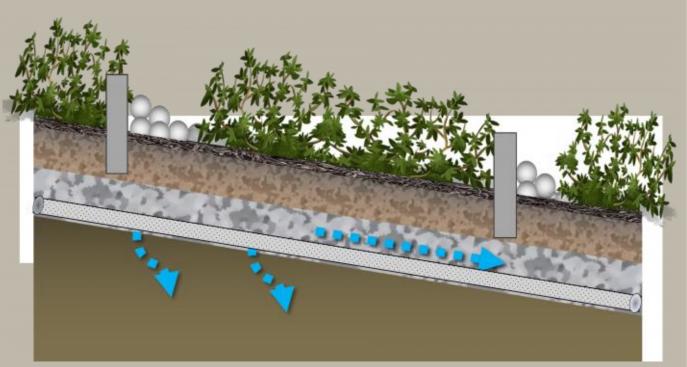


Figure 18 - Bioswales

Construction Cost:

\$36,000

Time of Construction:

9 months

Design Effectiveness:

- Slowing runoff velocity
- Improves the quality of surface water
- Helps recharge the groundwater

Maintenance:

- Semi-annual (Spring and Fall)
- About \$4.31 per linear ft

ALTERNATIVE DESIGN 3: Retention Basin+ Bioswale

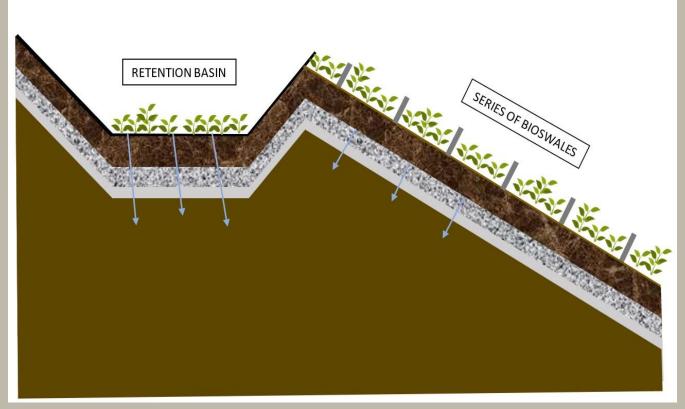


Figure 19 – Retention basin + bioswales

Construction Cost:

\$141,000

Time of Construction:

15 months

Design Effectiveness:

- Successful reduced runoff
- Reduced pollutants
- Improved energy efficiency

Maintenance:

Quarterly-annual inspection

ALTERNATIVE DESIGN 3: Rip Rap + Retention Basin

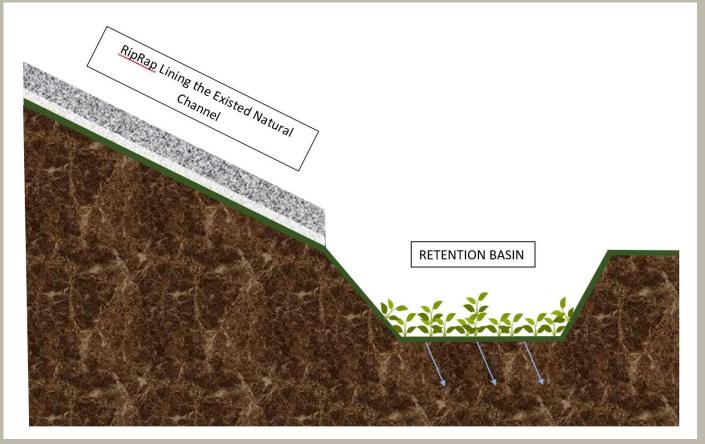


Figure 20 – Riprap + retention basin

Construction Cost:

\$130,000

Time of Construction:

13 months

Design Effectiveness:

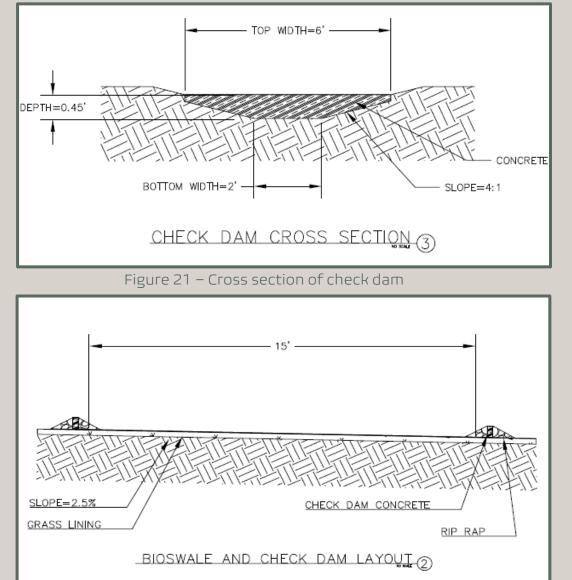
- Protecting slopes from erosion
- Increasing roughness and decreasing velocity
- Easy to install and maintain

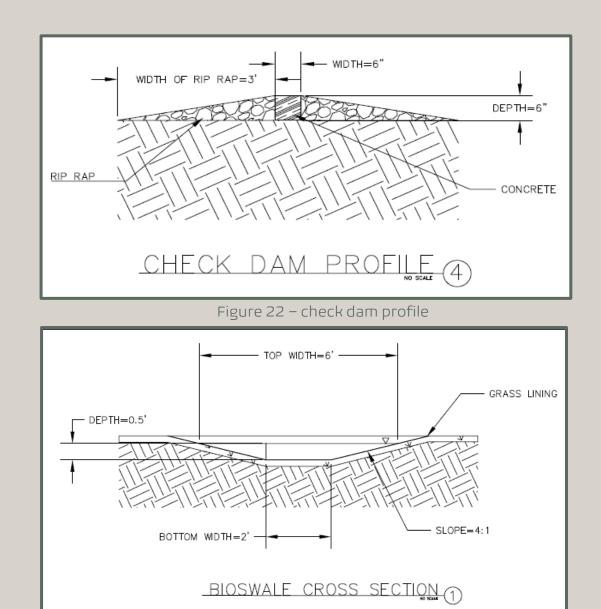
Maintenance:

- Annual, after every major storm
- High maintenance cost

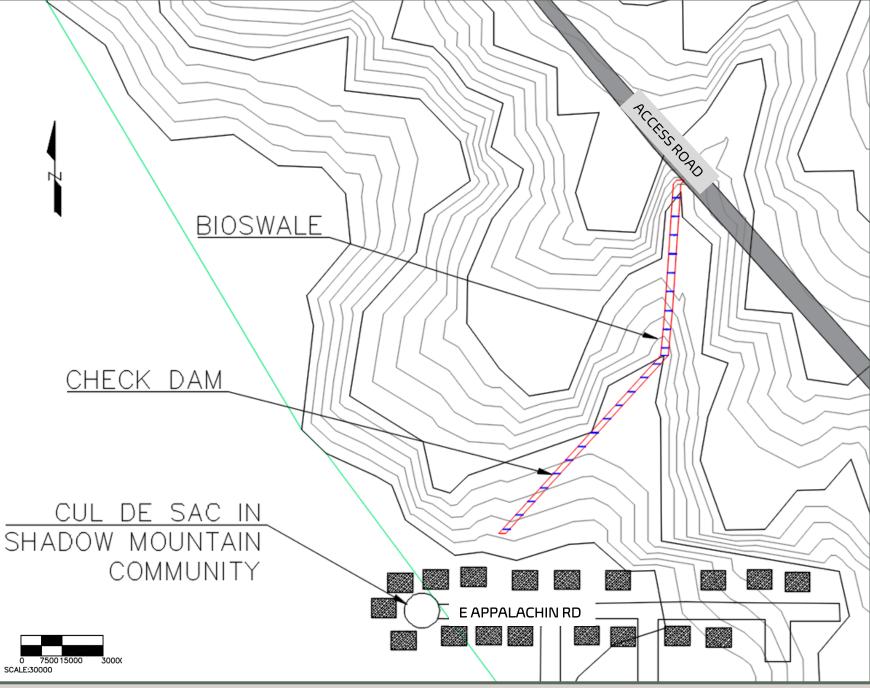
ANALYSIS OF ALTERNATIVES: Design Selection

Table 7– Design decision matrix


Final Score design					
Design Criteria	Retention Basin	Bioswale	Retention Basin + Bioswale	Rip Rap + Retention Basin	
Construction Cost (35%)	2	З	1	1	
Design Effectiveness (28%)	2.7	1.3	2.3	2	
Time of Construction (22%)	2.7	З	2	2	
Annual Maintenance (15%)	2	З	1.3	1.7	
TOTAL WEIGHTED SCORES	2.3	2.5	1.7	1.6	


FINAL DESIGN:

Parameters


Table 8 – Summary of final design parameters				
Final Design Parameters				
Parameter	Value	Units		
Determined Q for Design Storm Q_{100}	309	cfs		
Manning's coefficient, n	0.240	unitless		
Bottom Width, B	2	ft		
Length of Bioswale,L	341	ft		
Longitudinal slope minimum, S _m	0.025	ft/ft		
Depth, y		ft		
Cross Sectional Area, A	З	ft ²		
Wetter Perimeter of Trapezoid, P	9.416	ft		
Velocity, v	103	ft/s		
Hydraulic Retention Time, HRT	3.31	S		
		3		

FINAL DESIGN: Design Details

FINAL DESIGN: Complete Design Plan View

Figure 25 – Plan view of bioswale design

CONSTRUCTION COST

Table 9 – Excavate cost							
	St	Stage		Quantity	Total Cost		
	Ехс	Excavate		7 yd3	\$4,200		
	Table 10 – Installation cost						
	Type of Astructure			Quantity	Total installa	Total installation costs	
Bi	oswales	swales \$20 per ft^2		345 ft2	\$20,C	010	
Che	Check dams \$10		2 per dam	23 dams	\$3,7	\$3,726	
	Table 11 – Total cost						
	Materia	ls	Cost	Quantity	Total		
	Riprap sto	one	\$55/ton	22 tons	\$1,184		
	Woven geotextile		\$6/ <i>ft</i> ²	345 <i>ft</i> ²	\$2,070		
	Bioswale mix		\$37/yd ³	10 <i>yd</i> ³	\$367		
	Mulch		\$130/yd ³	10 <i>yd</i> ³	\$1,290		
	Top soil		\$32/yd ³	10 <i>yd</i> ³	\$317		
	TOTAL	-			\$33,165		

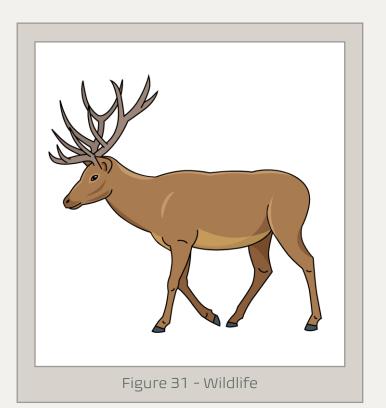
Design Impacts

ECONOMIC

Cost of Implementation

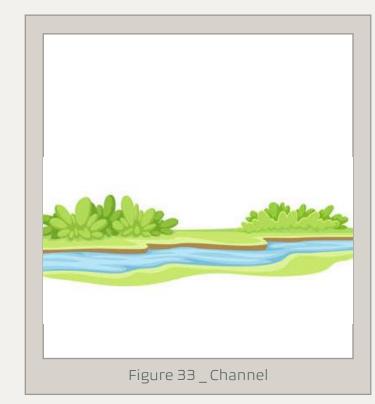
Time of Construction

SOCIAL


Noise Pollution

Taxpayer Cost

Land Use


ENVIRONMENTAL

Disruption of Local Wildlife

Erosion Potential

Natural Channel Usage

Questions

REFERENCES

(1) City of Flagstaff, "City of Flagstaff Stormwater Management Drainage Design Manual," 2009.

(2) Hamilton County Gov, "Wet Detention Basin," Chattanooga.

(3) California Department of Transportation HQ Division of Design, "Detention Basins Design Guidance," (Online). Available: https://dot.ca.gov/-/media/dot-media/programs/design/documents/4_dg-detention-basins_ada.pdf. (Accessed 02 2023).

(4) City of Flagstaff, "Northeast Area Master Drainage Study," Flagstaff 2010.

(5) J. Tanet, "Flagstaff Sees Record Snowfall this January," 21 01 2023. (Online.) Available: Available: https://www.12news.com/amp/article/weather/flagstaff-record-snowfall-january/75-7e82ff42-ab83-4f03-be70-369af3f2712c. (Accessed 02 2023).

(6) National Oceanic and Atmospheric Administration, "NOAA Atlas 14 Point Precipitation Frequency Estimates: KS," 21 04 2014 (Online.) Available: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html. (Accessed 15 9 2022).

(7) ADOT, "ADOT Hydrology Manual," Arizona Department of Transporation, 2014.

(8) ADOT, "ADOT Rational Method Tool," 2016.

(9) Sustainable Technologies, "Bioswales" 2020. (Online). Available: https://wiki.sustainabletechnologies.ca/wiki/Bioswales. (Accessed 03 2023).

(10) Rivanna Stormwater, "BMP Photos & Descriptions," 2021. (Online). Available: https://rivanna-stormwater.org/what-happens-to-the-rain/bmp-photos-descriptions/. (Accessed 03 2013).

(11) "Implementation and Costs." *Terrascope 2024*, (Online.) Available: https://terrascope2024.mit.edu/?page_id=657#:~:text=Under%20a%20Bioswale-,Bioswales,per%20linear%20foot%20in%20length.

(12) "BULK MATERIALS PRICING AND *PICTURES." *Bulk Rock Pricing* | *West Valley Rock* | *Phoenix, Buckeye, Avondale AZ*,(Online.) Available: https://www.westvalleyrock.com/pricing.php#prettyPhoto.

(13) "San Pasqual Valley Soils." *SPVS Printable Price List*, San Pasqual Valley Soils, https://spvsoils.com/wp-content/uploads/2022/06/SPVS-Printable-Price-List-6.11.2022.pdf.