Fanning Wash Flood Prevention CENE 486C

Fanning Four Water Design (F4) : Maria Jauregui, Sneha Joshi, and Caleb Smith

Date: 4/25/2023

Introduction

Client: City of Flagstaff, Sharon Lopez (Hydrologist)

.Urn Dr N Steves Blvd 90 Degree Bend Even N Hemberg Charlie's E Linda Visla Dr. Heating-Cooling z NUIICISI NBernst Pa son Blvd E Swiss Rd N Jar Starlight Pines Manor N Park Di Cut Rite Forestry Bed & Breakfast Leading Edge Academy Flag Rd Coconino Auto Glass 90 Degree Bend E Miller Dr E Miller Dr **Siler Homes Bushmaster** Blvd Park Audria Smith 3 Mike & Ronda's Th ۵ 200 m L Pie Guy's Pies 🚻 r Mt Fldon Dr

Fig 2: Fanning Wash Problem Points Credit: Client, Sharon Lopez

Fig 1: Project Location Credit: Google Maps

Research

<u>City of Flagstaff Stormwater Management</u> <u>Design Manual</u>

For Hydrologic Analysis: Rational equation, Runoff coefficient, Time of concentration For Open channel & Culvert

Existing Topography

USGS maps and the ArcGIS program used to develop a 1-foot contour line map

Existing Plans/Studies

FEMA Floodplain Research

Fig 3: FEMA Floodplain, Credit: FEMA Website

Site Investigation

•Area Surveyed was behind the Bushmaster Park

Hydrologic Analysis

Table 1: Time of concentration for 25 year and 100 year

	25-Year Design Storm		100-Year Check Storm		
Flow Path	Time (min)	I (in/hr)	Time (min)	I (in/hr)	
	45	2.37	37	3.61	
	44	2.41	36	3.66	
Line path	43	2.45	35	3.71	
1	42	2.48	34	3.76	
	41	2.52	33	3.81	
	40	2.56	32	3.86	
	40	2.56	30	3.96	
Line path	39	2.59	29	4.09	
	38	2.63	28	4.22	
2	37	2.67	27	4.34	
			26	4.47	
	25	4.54	25	4.6	
	24	4.58	24	4.73	
Line path	23	4.62	23	4.86	
3	22	4.66	22	4.98	
	21	4.69	21	5.11	
	20	4.73	20	5.24	

Equation 4-1: Time of Concentration Estimation Equation [1]

$$T_C = 11.4 \times L^{0.5} \times k_b^{0.52} \times S^{-0.31} \times i^{-0.38}$$

Where,

- $T_c = time of concentration (hours)$
- L = length of the longest flow path (miles)
- $\underline{K}_{\underline{b}}$ = watershed resistance coefficient
- S = slope for the longest flow path (ft/mile)
- \underline{i} = average rainfall intensity for a duration of rainfall equal to T_{c} (in/in)

Figure 4: Flow paths of Watershed Credit: Google Earth

Rainfall Intensity and Runoff

Table 3: Rainfall Intensity

Rainfall Intensity						
	Flow PathResultant Tc (min)Rainfall Intensity (in/hr)					
	Line path 1	41	2.52			
25-Year Design Storm	Line path 2	40	2.56			
	Line path 3	23	4.62			
	Line path 1	35	3.71			
100-Year Check Storm	Line path 2	30	3.96			
	Line path 3	23	4.86			

Table 4: Runoff

Runoff				
Parameter	25-Year	100-Year		
Discharge Q (cfs)	439.1	701.3		
Rational Coefficient-C	0.2	0.22		
Computed Tc (min)	40.3	35		

Figure 3: Subbasin and Subareas Credit: Google Earth

Hydraulic Analysis of Existing Structures Open Channel Analysis

LV	Linda Vista Culvert
BC	Box Culvert
SH	Siler Homes Culvert

				Compliance		Compliance
River Station		Flow Rate (cfs)	Velocity (ft/s)		Freeboard	
10+35	25 yrs	439.1	14.99	<18 ft/s	1.8	>1 ft
	100 yrs	701.3	16.97	<18 ft/s	2.3	>1 ft
10+05	25 yrs	439.1	18.74	<18 ft/s	2.1	>1 ft
	100 yrs	701.3	20.75	<18 ft/s	2.6	>1 ft
8+34	25 yrs	439.1	21.9	<18 ft/s	2.5	>1 ft
	100 yrs	701.3	24.8	<18 ft/s	3.1	>1 ft
6+50	25 yrs	439.1	20.13	<18 ft/s	2.6	>1 ft
	100 yrs	701.3	22.82	<18 ft/s	3.3	>1 ft
5+72	25 yrs	439.1	24.08	<18 ft/s	2.9	>1 ft
	100 yrs	701.3	26.65	<18 ft/s	3.5	>1 ft
4+82	25 yrs	439.1	28.8	<18 ft/s	3.6	>1 ft
	100 yrs	701.3	32.04	<18 ft/s	4.5	>1 ft

Table 5: Open Channel analysis

Culvert Analysis

		Flow Rate (cfs)	Velocit	y (ft/s)
Culvert		Data	Data	Compliance
Linda Vista	25 yrs	439.1	21.27	<20 ft/s
(LV)	100 yrs	701.3	23.49	<20 ft/s
Box Culvert	25 yrs	439.1	7.65	<20 ft/s
(BC)	100 yrs	701.3	8.35	<20 ft/s
Siler Homes	25 yrs	439.1	48.2	<20 ft/s
Siler Homes (SH)	100 yrs	701.3	53.85	<20 ft/s

Table 6: Culvert Analysis

Develop Design Alternative

Alternative 1: Drainage System from Linda Vista Drive to the existing Detention Basin on Route 66

Existing New

Alternative 2: Detention Basin at Bushmaster Park

Existing New

Alternative 3: Channel Rehabilitation

Existing New

Alternative 4: Detention Basin and Channel Rehabilitation

MITEIGEN M 1A Flagstaff Ranger Station N -Pipeline-BLIN'S **Detention Basin** N STEVES BLVD E HEMBERG DR WAYMAN ST TTERSON BLVD MANOR RD N WALKER S N PINE DR PARK DR INIER DYER ST 4TH ST KING ST INDUSTRIAL DR ATRA CLUB DR LOOP Z N 2 E Z 2 E-LOCKETT RD MOTEL DR No > E MILLER DR EVy 2 BLV COCONINO 000 BL NATIONAL **JAMISON** N'TINDLE FOREST JUNTINGTON de Flag 2 E TH AVE 0

Alternative 5: Drainage system and Channel Rehabilitation

Existing New

Figure 12: Drainage System and Channel Rehabilitation Credit: USGS & Caleb Smith

Identify Constraints and Criteria

Table 7: Decision Matrix Criteria

	Flood Prevention	Societal Impact	Easements	Maintenance	Cost
1	Floods at 100-year storm	Impacts Negatively	>5	Continuous maintenance needed	>10,000,000
2	Minimal flooding	Minimal Impact	>1	Does not change	>5,000,000
3	Alleviates all flooding	Impacts Positively	0	Little to no maintenance	>1,000,000

Select Best Alternative

Table 8: Decision Matrix

	Weight (%)	Alternative 1: Drainage system through Linda Vista	Alternative 2: Detention Basin @ Bushmaster	Alternative 3: Channel Rehabilitation	Alternative 4: Detention Basin and Channel Rehabilitation	Alternative 5: Drainage system & Channel Rehabilitation
Flood						
Prevention	40%	2	1	1	2	3
Societal						
Impact	10%	1	2	2	1	3
Easements	5%	3	3	3	3	2
Maintenance	15%	3	2	3	1	3
Cost	30%	2	3	3	2	2
Total	100%	2.1	2.0	2.1	1.8	2.7

Final Design Decision - Drainage system & Channel Rehabilitation

Final Design Plan

Channel Rehabilitation

LINDA VISTA

Figure 13: Comparison Cross-Sections for Open Channel Analysis

				Compliance		Compliance
River Station		Flow Rate (cfs)	Velocity (ft/s)		Freeboard	
10+35	25 yrs	391.09	14.36	<18 ft/s	1.69	>1 ft
	100 yrs	531.3	15.67	<18 ft/s	1.61	>1 ft
10+05	25 yrs	391.09	17.23	<18 ft/s	1.63	>1 ft
	100 yrs	531.3	18.56	<18 ft/s	1.72	>1 ft
8+34	25 yrs	391.09	24.2	<18 ft/s	2.75	>1 ft
	100 yrs	531.3	25.71	<18 ft/s	3.09	>1 ft
6+50	25 yrs	391.09	20.69	<18 ft/s	2.04	>1 ft
	100 yrs	531.3	23.11	<18 ft/s	2.52	>1 ft
5+72	25 yrs	391.09	15.75	<18 ft/s	1.56	>1 ft
	100 yrs	531.3	17.14	<18 ft/s	1.14	>1 ft
4+82	25 yrs	391.09	12.18	<18 ft/s	1.10	>1 ft
	100 yrs	531.3	13.52	<18 ft/s	1.31	>1 ft

Channel Details

STORM WATER GRAVITY PIPELINE

E SWISS RD

Structure N

g

ANNING

old R Winged Headwall

E LINDA VISTA DR

FANNING WASH

PRIVATE RESIDENCES

> THOMAS ELEMENTARY SCHOOL

too do so de para marca en de super

Figure 20: Storm Water Gravity Sewer Pipeline Plans

- 100-year flood carrys 701.3 cfs
- Stormwater Pipe will carry 30% of 100- year storm at 206 cfs
- 1,949 ft long

Construction Plan

Culvert Inlet Detail

Figure 24: Culvert Inlet Detail

Elevation View of Culvert Outlet

Plan View of Culvert Outlet

Construction Cost

Table 10: Construction Cost Estimate

			Ma	terials	Installation		Total
Description	Qty	Units	\$/Unit	Total	\$/Unit	Total	
Pipe:							
Pipe Bedding	2,000	LF	15.6	31,210	10.0	19,952	\$51,161
Gravity Storm Drain Trench Backfill (Import)	48,000	CF	28.4	1,361,880	11.3	544,752	\$1,906,632
Pavement Removal & Disposal-8"	8,000	SF	11.3	90,792		-	\$90,792
Pavement Replacement Over Trench - Asphalt - 8' Wide	16,000	SF		-	85.1	1,361,880	\$1,361,880
Pipe (42" Diameter 5x1 and 3x1 Steel and Aluminum Corrugation)	40	SF	166.3	6,651		-	\$6,651
Land Excavation Labor, Basic	360	/hr.		-	208	74,880	\$74,880
Land Excavation Equipment Allowance	1	EA	221	221			\$221
Land Excavation Debris Disposal	2700	СҮ	54	145,800			\$145,800
Manhole:							
Inlet Manhole, 6' Diam. x 10' deep	5	EA	7,150	35,750	3291.2	16,456	\$52,206
Haul and Dispose Excess Excavated Material	10	CF		-	20.4	204	\$204
Land Excavation Labor, Basic	360	/hr.		-	208	74,880	\$74,880
Land Excavation Equipment Allowance	1	EA	221	221			\$221
Land Excavation Debris Disposal	13	СҮ	54	702			\$702
Channel:							
Channel Construction	84,000	CF	11.3	953,316		-	\$953,316
Smooth Rocks (Bricks)	5,328	SF	4.5	24,187		-	\$24,187
Land Excavation Labor, Basic	360	/hr.		-	208	74,880	\$74,880
Land Excavation Equipment Allowance	1	EA	221	221			\$221
Land Excavation Debris Disposal	3120	CY	54	168,480			\$168,480
	Total						\$4,987,315

Impact Analysis

Economic Impact	Environmental Impact	Social Impact		
 Eliminate home-owner flood repair Increase in property value Improve access to business Increase stormwater fee 	 Emission during construction (Short term) Increase in sedimentation going into the detention basin from erosion at the end of the pipe Promote wildlife's access to water 	 Improve quality of life with no flooding Noise pollution (Short term) Detours during construction (Short term) Improve access to business 		

Figure 26: Fanning Wash Flooding

References

[1] ADOT. Arizona Department of Transportation Highway Drainage Design Manual. 2nd Edition. Phoenix, AZ, US. ADOT, 2014

[2] City of Flagstaff. (2023, April). Flagstaff City Code. Flagstaff, Arizona: Code Publishing Company.

[3] Coconino County Public Works. Coconino County Drainage Design Manual. Flagstaff, AZ, US. 2020.

[4] Google Maps [online] Available: https://www.google.com/maps/@35.2002321,-111.602334 3,12.32z

[5] Google Maps [online] Available: https://www.google.com/maps/@35.2194301,-111.6029503,16z

[6] The City of Flagstaff Utilities Division. CITY OF FLAGSTAFF STORMWATER MANAGEMENT DESIGN MANUAL. Flagstaff, AZ, US. City of Flagstaff Engineering Division Stormwater Management Section. 2009.

[7] Northeast Area Master Drainage Study, 28-Jul-2010. [Online]. Available: https://www.flagstaff.az.gov/DocumentCenter/View/54860/Master_Plan_-Phase_-3_-Report?bidId=. [Accessed: 13-Feb-2023].

[8] The Rio de Flag Drainage Through the City of Flagstaff. [Online]. Available: https://friendsoftheriodeflag.org/wp-content/themes/FC12-child/pdf/subwatersheds_3Dview.pdf. [Accessed: 13-Feb-2023].

 [9] "Steady vs. Unsteady Flow Modeling", HEC-RAS 2D User's Manual, available online:
 https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/6.0/steady-vs-unsteady-flow

 and-1d-vs-2d-modeling/steady-vs-unsteady-flow
 modeling#:~:text=So%2C%20the%20use%20of%20a,the%20system%20during%20the
 %20event.

[10] "Stormwater and Drainage Master Plan", Kennedy Jenks, Available[online]: <u>https://www.ashland.or.us/SIB/files/City_of_Ashland_Final_Draft_Storm_Water_and_Drainage_Master_Plan.pdf</u> [Published: 19-Nov-2020]

[11] CPI Inflation Calculator, U.S. Economy, Available [online]: https://www.in2013dollars.com/us/inflation/2020?amount=1&future_pct=0.02#:~:text=Chained%20inflation%20averaged%205.00%25%20per,of%20%240.17%20for%20All%20Items).)

[12] Homewyse "Cost to excavate land", Available [online]: https://www.homewyse.com/services/cost_to_excavate_land.html [Update: Feb-2023]

[13] "Manholes ASTM C-478 & Components", Northern Concrete Pipe, Inc. - Durable, Reliable, Infrastructure, Available [online]: <u>https://www.ncp-inc.com/price3.html</u> [Accessed: 2020]

Questions?