

Flag Environmental Solutions

CENE 486C Canyon City Mill Team 4/28/23

Presented By: Chloe Blackhurst, Evan Downs, Claire Griffiths, Frankie Martinez

Project Introduction Purpose:

- Preliminary Assessment / Site Investigation Report
- Arsenic (As) contamination
- Determine...
 - Risk to human and environmental health
 - If further remedial action is needed
- **Client**: Bureau of Land Management (Eric Zielske)

Figure 1: Geographical Location [1]

Project Site

Figure 2: Aerial View of Project Site

Work Plan

- Work Plan
 - Sampling and Analysis
 Plan (SAP) and Health and
 Safety Plan (HASP)
- Original SAP included taking ~110 samples
 - \circ 60+ grid samples
 - 30 transect samples in wash
 - Background and hotspots

Figure 3: Original Grid Sampling Layout

Figure 4: Original Transect Sampling Layout

Adjustment of Sampling and Analysis Plan (SAP)

- Site was difficult to access
- Client recommended Incremental Sampling Method (ISM)
 - Decision Units (DU)
 - o Minimum 30 subsamples per DU
 - Statistically valid estimate of the mean concentration within the DU

Site Investigation

- Conducted Jan. 20 Jan. 21
- Team had difficulty reaching site
- Bags were labeled A-D
- 17 total soil samples taken
- Desert flora and fauna were observed

Figure 7: Driving Video Video Credit: Evan Downs

Figure 8: Sampling Equipment Photo Credit: Frankie Martinez

Site Investigation

Figure 10: Tarantula Molt Photo Credit: Claire Griffiths

Figure 11: Sampling Flag and Gridding Process Photo Credit: Frankie Martinez

Figure 9: Site Terrain Photo Credit: Claire Griffiths

Site Investigation

Figure 12: Location of Road and Background Samples

Sample Preparation Drying Soil

 Samples dried at 110°C for 17 hours

Soil Crushing

• Breaking up dried samples

Figure 13: Samples in Oven Photo Credit: Claire Griffiths

Figure 14: Soil Crushing Photo Credit: Frankie Martinez

Sieving

- #60 Sieve for 6 minutes
- Collected fines

Figure 15: Sieving Process Photo Credit: Frankie Martinez

Figure 16: Bagged Fine material Photo Credit: Evan Downs

Figure 17: Bagged Fine material Photo Credit: Evan Downs

X-Ray Fluorescence (XRF) Analysis

- X-ray is emitted at the sample and electrons are displaced
 - from their atomic orbital positions
- Energy released characteristic of a specific element
- Arsenic and lead X-ray lines are close in energy; cause interference due to overlapped spectrum
- Flame Atomic Absorption (FAA) and Inductively Coupled Plasma (ICP) used for confirmatory analysis
- FAA/ICP needed when lead to arsenic ratio >10:1

Figure 18: XRF Electron Displacement

X-Ray Fluorescence (XRF) Analysis

- 9 subsamples
- Concentrations were downloaded to an excel file
- Min and max values were removed, and averages found
- Confirmatory analysis (FAA/ICP) was not needed

Figure 19: XRF Analyzer Photo Credit: Frankie Martinez

Figure 20: Sub Samples Photo Credit: Frankie Martinez

Identify Human Health Contaminants of Concern

All XRF readings compared to the Arizona Non-Residential Soil Remediation Standards (AZ SRS) [2]

AZ Non- Residential SRS (ppm)	10
Sample ID	As Concentration (ppm)
B1	12
B2	10
B3	9
R1	14
R2	16
DU1 (N=4)	76 +/- 20.36
DU2 (N=4)	17 +/- 5.03
DU3 (N=4)	8 +/- 0.56

Table 1: Human Health COC- Arsenic

Ecological Contaminants of Concern

- Different EPA Ecological Soil Screening Levels (ECO-SSL) for plants, soil invertebrates, avian wildlife, and mammals
- Highest concentrations found in DU1

Element	Pb	As	Zn	Cu	Ni	Mn	V	Sb	Cd	Ag
ECO-SSL (ppm)										
Plants	120	18	160	70	38	220	N/A	N/A	32	560
Soil Invertebrates	1700	N/A	120	80	280	450	N/A	78	140	N/A
Avian	11	43	46	28	210	4300	26	N/A	0.77	4.2
Mammals	56	46	79	49	130	4000	280	0.27	0.26	14
Highest Elevated Concentration Found (ppm)	376	100	2100	223	71	872	132	59	25	120

Table 2: Ecological COCs

Slide 16

CAB1 Should I do this table or the next table?

Chloe Ann Blackhurst, 4/18/2023

FIM1 i think the next

Frankie Irene Martinez, 4/18/2023

Human Health Risk Assessment

Exposure Point Concentrations (EPCs)

50% EPC – Average Exposed Individual

• Arithmetic mean of replicate samples

95% EPC - Maximally Exposed Individual

• Calculated with following equation...

95%
$$EPC = \overline{X} + t_{(1-\alpha)(r-1)} \times \frac{S_{\overline{X}}}{\sqrt{r}}$$

Where:

 \overline{X} = arithmetic mean of all ISM samples in DU

 $t = (1-\alpha)^{\text{th}}$ quantile of the t-distribution with (r-1) degrees of freedom (1.645)

 $S_{\overline{X}}$ = standard deviation of all ISM samples in DU

r = number of ISM samples in DU

DU #	Arsenic 50% EPC (mg/kg)	Arsenic 95% EPC (mg/kg)
DU1	76	90
DU2	17	20
DU3	8	8

Table 3: EPCs

Exposure Assessment - Ingestion

- Used to calculate the intake dose via ingestion
- Residential exposure not required
- Adult worker exposure
 - o 6-months total for site cleanup
- Recreational exposure for children and adults
 - \circ 14 days/year
 - Age ranges:
 - 1. 0 to 6 years
 - 2. 6 to 12 years
 - 3. 12 to adulthood

Table 4: Worker Exposure [6] [7]

Worker Exposure Scenario				
Parameter	Worker Ingestion			
Contact Rate (mg soil/day)	100			
Exposure Frequency (hours/day)	8			
Exposure Duration (days)	120			
Average Body Weight (kg)	70			
Averaging Time, Non- Carcinogen (year)	0.5			
Averaging Time, Carcinogen (year)	70			

Recreation Exposure Assessment - Ingestion

Recreational Exposure Scenario					
Parameter	Child Ingestion (0 to 6 years)	Child Ingestion (6 to 12 years)	Adult Ingestion		
Contact Rate (mg/day)	200	100	100		
Exposure Frequency (days)	14	14	14		
Exposure Duration (years)	6	6	30		
Average Body Weight (kg)	18	31	70		
Averaging Time, Non-Carcinogen (year)	6	6	30		
Averaging Time, Carcinogen (year)	70	70	70		

Table 5: Recreation Exposure [6] [7]

20

Intake Doses

- Calculated for worker and recreation exposure scenarios
- Calculated for both 50% and 95% EPCS

$$Calculation$$
$$I = \frac{C \cdot CR \cdot EF \cdot ED}{BW \cdot AT}$$

Where:

/ = Intake (mg/(kg of body weight-day))

C = Concentration at exposure point (mg/kg)

CR = Contact Rate (kg/day)

EF = Exposure Frequency (days/year)

ED = Exposure Duration (years)

BW = Body Weight (kg)

AT = Averaging Time (days)

Human Health Risk Calculation

Carcinogenic Risk

 $Risk = I_c \cdot SF$

Where:

I_c= Carcinogenic Intake (mg/(kg of body weight-day))

SF = Slope Factor (mg/(kg-day))⁻¹

Elevated Risk if >10E-6

Non-Carcinogenic Risk

$$HI = \frac{I_N}{RfD}$$

<u>Where:</u>

HI = Hazard Index (unitless)

RfD = Reference Dose (mg/(kg-day))

Elevated Risk if >1

Human Health Risk – Carcinogenic

Table 6: 50% EPC Carcinogenic Risk

Risk	DU#1	Average of all DUs
Worker Exposure Scenario	7.65E-07	3.38E-07
Recreational Exposure Scenario (Child 0-6 years)	8.33E-06	3.68E-06
Recreational Exposure Scenario (Child 6-12 years)	1.61E-06	8.02E-07
Recreational Exposure Scenario (Adult)	5.35E-06	2.23E-06

Table 7: 95% EPC Carcinogenic Risk

Risk	DU#1	Average of all DUs
Worker Exposure Scenario	9.12E-07	4.00E-07
Recreational Exposure Scenario (Child 0-6 years)	9.93E-06	4.36E-06
Recreational Exposure Scenario (Child 6-12 years)	1.92E-06	9.45E-07
Recreational Exposure Scenario (Adult)	6.38E-06	2.64E-06

Human Health Risk – Non-Carcinogenic

Risk DU#1 Average **Worker Exposure Scenario** 0.241 0.107 **Recreational Exposure Scenario** 0.216 0.096 (Child 0-6 years) **Recreational Exposure Scenario** 0.063 0.028 (Child 6-12 years) **Recreational Exposure Scenario** 0.028 0.012 (Adult)

Table 8: 50% Non-Carcinogenic Risk

Table 9: 95% Non-Carcinogenic Risk

Risk	DU#1	Average
Worker Exposure Scenario	0.288	0.126
Recreational Exposure Scenario (Child 0-6 years)	0.257	0.113
Recreational Exposure Scenario (Child 6-12 years)	0.075	0.033
Recreational Exposure Scenario (Adult)	0.033	0.015

Ecological Risk Assessment

OCCs Spatial Exceedances Table 10: Ecological COCs									
	Road	DU1	DU2	DU3		Road	DU1	DU2	DU3
Plants	Pb	Pb	Pb	Pb	Avian	Pb	Pb	Pb	Pb
	As	As	As	As		As	As	As	As
	Zn	Zn	Zn	Zn		Zn	Zn	Zn	Zn
	Cu	Cu	Cu	Cu		Cu	Cu	Cu	Cu
	Ni	Ni	Ni	Ni		Ni	Ni	Ni	Ni
	Mn	Mn	Mn	Mn		Mn	Mn	Mn	Mn
	Sb	Sb	Sb	Sb		Sb	Sb	Sb	Sb
	Cd	Cd	Cd	Cd		Cd	Cd	Cd	Cd
	Ag	Ag	Ag	Ag		Ag	Ag	Ag	Ag
Soil	Pb	Pb	Pb	Pb	Mammalian	Pb	Pb	Pb	Pb
Invertebrates	As	As	As	As		As	As	As	As
	Zn	Zn	Zn	Zn		Zn	Zn	Zn	Zn
	Cu	Cu	Cu	Cu		Cu	Cu	Cu	Cu
	Ni	Ni	Ni	Ni		Ni	Ni	Ni	Ni
	Mn	Mn	Mn	Mn		Mn	Mn	Mn	Mn
	Sb	Sb	Sb	Sb		Sb	Sb	Sb	Sb
	Cd	Cd	Cd	Cd		Cd	Cd	Cd	Cd
	Ag	Ag	Ag	Ag		Ag	Ag	Ag	Ag
		Exce	eds EC	D-SSL a	and >120% of E	Backgro	ound lev	vels	
	Exceeds ECO-SSL and >1000% of Background levels								

Plant ECO-SSL

Native Vegetation of the Mojave Desert Region:

- Yucca
- Cactus
- Shrubs
- Wildflowers

Figure 21: Vegetation On-Site Photo Credit: Chloe Blackhurst

Table 11: Plant ECO-SSL

СОС	ECO-SSL	Highest (ppm)
Lead	120	376
Arsenic	18	100
Zinc	160	2101
Copper	70	223
Nickel	38	70
Manganese	220	872

Common Effects of Toxicity in Plants:

- Limited biomass production
- Imbalanced mineral nutrition
- DNA damage
- Reduced root growth
- Overall degradation

Soil Invertebrate ECO-SSL

Soil Invertebrates of the Mojave Desert Region:

- Arachnids: tarantulas, scorpions
- Worms

Table 12: Invertebrate ECO-SSL

COC	ECO-SSL	Highest (ppm)
Zinc	120	2101
Copper	80	223
Manganese	450	872

Common affects:

- Reduced survival rates
- Slowed growth rates
- Developmental abnormalities

Figure 22: Giant Desert Hairy Scorpion

Avian Wildlife ECO-SSL

Endangered Avian Wildlife in the Mojave Desert Region:

- California condor
- Southwestern Willow Flycatcher

Figure 23: California Condor [2]

Figure 24: Southwestern Willow Flycatcher [3]

СОС	ECO-SSL	Highest (ppm)
Lead	11	376
Arsenic	43	100
Zinc	46	2101
Copper	28	223
Vanadium	7.8	132
Cadmium	0.77	25
Silver	4.2	120

Table 13: Avian ECO-SSL

Effects on Avian Wildlife:

- Decreased body weight
- Gizzard and pancreatic lesions
- Biochemical changes
- Locomotor disturbances

Mammalian Wildlife ECO-SSL

Mammals of the Mojave Desert Region:

- Jack rabbits
- Burros
- Mule Deer
- Javalina

Figure 25: Jack Rabbit [4]

Figure 26: Burro On-Site Photo Credit: Claire Griffiths

Table 14: Mammalian ECO-SSL

сос	ECO-SSL	Highest (ppm)	
Lead	56	376	
Arsenic	46	100	
Zinc	79	2101	
Copper	49	223	
Antimony	0.27	132	
Cadmium	0.36	25	
Silver	14	120	

Effects on Mammalian Wildlife:

- Impaired reproductive capacity
- Impaired immune function
- Cardiovascular collapse
- Behavioral issues such as anxiety
- Chronic poisoning death

Migration Pathways

Particulate Matter (PM) Air Suspension

- Wind coming from northeast may carry alluvial material and PM
- PM would travel southwest into wash

Figure 27: Wind Rose for Oatman [5]

Overland Flow

- Surface runoff/erosion- steep surrounding slopes and steep slopes on site
- Wash capable of carrying sediment offsite

Figure 28: Overland Flow Pathways on Site

Remediation Options

Remediation Alternatives

Alternative #1: No Action			
Alternative #2: Phytoremediation	Bioremediation process that uses plants to uptake contaminants and restores the native vegetation		
Alternative #3: Institutional Controls	Fencing and signage around DU1 to restrict access to the site		
Alternative #4: Excavation	Removing the top layer of soil then treating/disposing of the soil ex-situ		
Alternative #5: Phytoremediation and Institutional Controls			
	3		

Remediation Decision Matrix

Table 15: Remediation Decision Matrix

Remediation Alternatives								
Criteria	Weight	No Action	Phytoremediation	Institutional Controls	Excavation	Phytoremediation and Institutional Controls		
Ecological	0.25	1	3	1	3	3		
Human Health	0.15	1	2	2	2	2		
Effectiveness	0.15	T	Z	3	3	3		
Cost	0.35	3	2	3	1	2		
Implementability	0.25	3	2	2	1	2		
Total	1	2.2	2.25	2.25	1.8	2.4		
3 = ideal, 2 = average, 1 = poor								

Recommended Remedy

Phytoremediation with Institutional Controls

• Phytoremediation: short grasses (Deer Grass)

and Yellow Pygmy Sunflowers are recommended

 $\circ~$ Both Native Plants, uptake arsenic from

soil, habitable in Oatman

- Institutional Controls: fencing and signage around DU1
 - $\circ~$ DU1 contains highest contamination and
 - historical site structures

Figure 30: Yellow Pygmy Sunflower

Economic Impact

- Remediation expenses
- Possible medical expenses from exposure
- Cost of project decreased due to change in sampling method

Questions?

References

[1] Google Maps. [Online]. Available: https://www.google.com/maps . [Accessed: 19-Sept-2022].

[2] "California condor," Oregon Wild. [Online]. Available: <u>https://oregonwild.org/wildlife/california-condor</u>. [Accessed: 16-Mar-2023].

[3] "Southwestern willow flycatcher," National Parks Service. [Online]. Available: <u>https://www.nps.gov/articles/southwestern-</u> willow-flycatcher.htm. [Accessed: 16-Mar-2023].

[4]"Rabbits of Saguaro National Park," National Parks Service. [Online]. Available: <u>https://www.nps.gov/sagu/learn/nature/rabbits-</u> <u>of-saguaro-national-park.htm</u>. [Accessed: 16-Mar-2023].

[5] WRCC, "Oatman Wind Rose," Oatman Arizona. [Online]. Available: https://raws.dri.edu/cgi-bin/rawMAIN.pl?azAOAT.
 [Accessed: 10-Mar-2023].

[6] United States Environmental Protection Agency, "Update for Chapter 5 of the Exposure Factors Handbook," EPA, September 2017. [Online]. Available: <u>https://www.epa.gov/sites/default/files/2018-01/documents/efh-chapter05_2017.pdf</u>. [Accessed 17 March 2023].

[7] United States Environmental Protection Agency, "Exposure Factors Handbook," EPA, September 2011. [Online]. Available: https://ordspub.epa.gov/ords/eims/eimscomm.getfile?p_download_id=526169. [Accessed 17 March 2023].