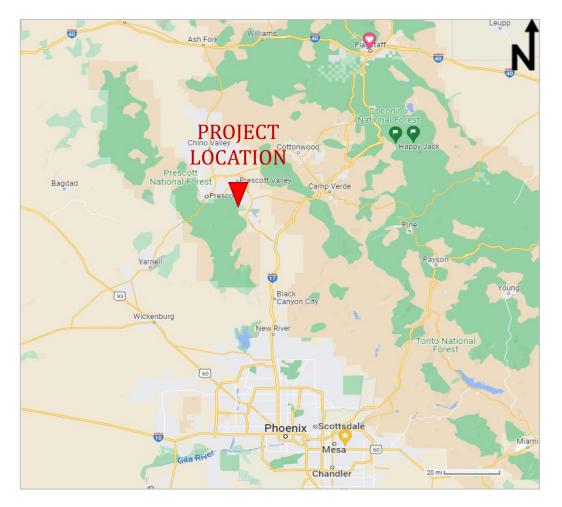
Prescott Dells Ranch (Dewey Site Design)

Crossed Arrow Engineering



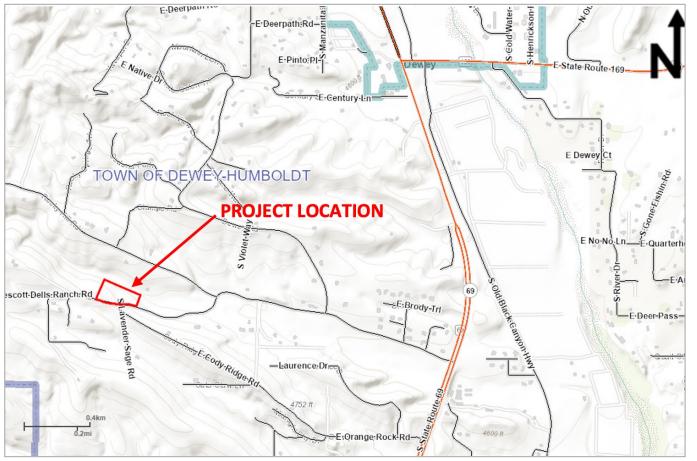
Kewei Ren Daniel Langsmith Lance Quotskuyva CENE-486C

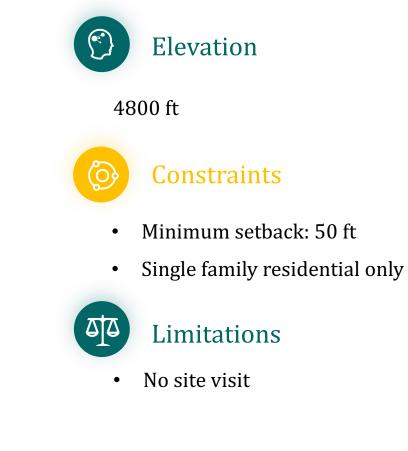
December 9, 2022

1 Project Information

11800 E Prescott Dells Ranch Rd

Purpose


Site design, grading and drainage plan Per Yavapai County Standards [3]


Client and Technical Advisor

Client: Taylor Layland, REMAL Consulting Technical Advisor: Jeffrey Heiderscheidt, PhD

Project Information

[4] Figure 2 Project Location Map

2 Site Investigation

[4] Figure 3 Soil Survey Area

- Soil Survey from NRCS [5]
- Information to be used in Hydrologic Analysis
- Group 'C' = Slow water transmission and infiltration rate

Table 1 Soil Properties

Hydrologic Soil Group	С
Soil Type	Balon gravelly sandy clay loam
Depth to Restrictive Feature	≥ 80 inches
Depth to Water Table	≥ 80 inches
Mean Annual Precipitation	≈ 14 inches

³ Hydrologic Analysis

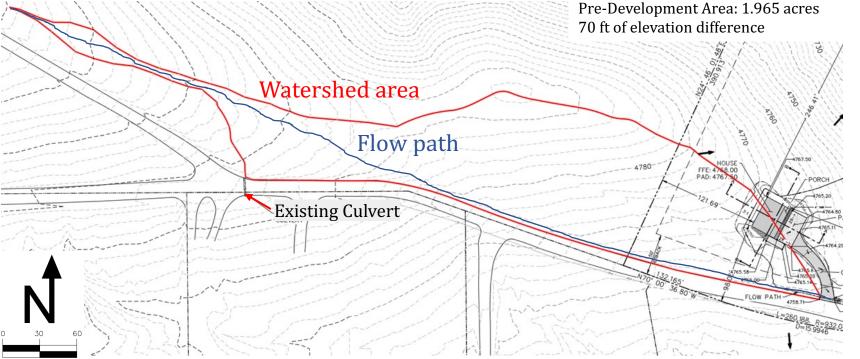
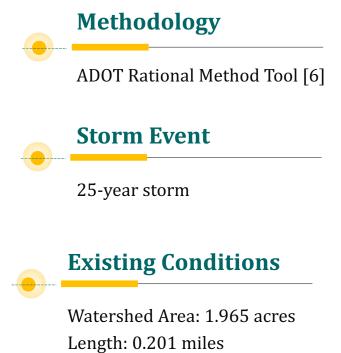



Figure 4 Pre-Development Watershed Area

Elevation change: 70 ft

Predominant Landform Type: Rangeland

³ Hydrologic Analysis

Table 2 Input data in ADOT Rational Method Tool

Slope (ft/mi)	348.26
Кb	0.1
Time of concentration (hr)/(min)	0.082/4.9

- Rational Method Equation
- Time of Concentration, T_c Equation

Table 3 ADOT Rational Method Calculations for pre-development

Design Storm Event	Discharge - Q (cfs)	Rational Coefficient - C	Rainfall Intensity - I (in/hr)	Area - A (acres)	Calculated T _c (min)	Applied T _c (min)
2-Year	1.1	.20	2.84	1.965	6.7	10
10-Year	2.1	.23	4.68	1.965	5.4	10
25-Year	3.6	.31	5.68	1.965	4.9	10
100-year	6.2	.40	6.84	1.965	4.4	10

³ Hydrologic Analysis

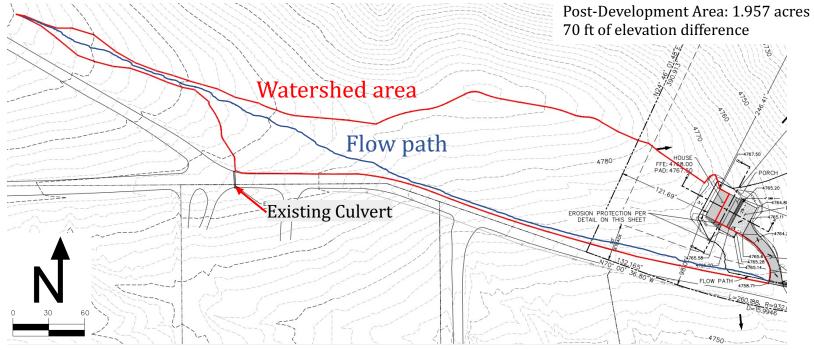


Figure 6 Post-Development Watershed

• Area-averaged C-value

Table 4 Composite C-value Calculation

25-year					
	Area (acres)	Average 'C'			
Pavement and rooftops	0.0127	0.885			
Desert Landscaping 1	1.9443	0.775			
C _{comp}	0.776				

Hydrologic Analysis

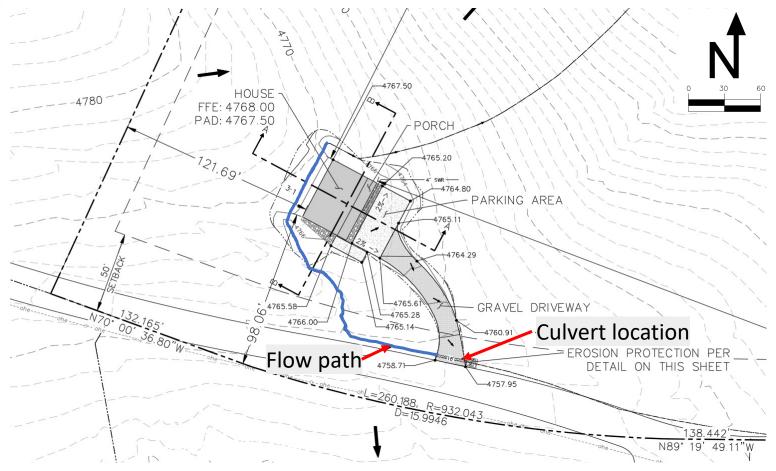

Pre-Development Site Data				
Total Area (acre)	1.965			
С	0.775			
Q (cfs)*	8.92			
Intensity (in/hr)	5.86			
Length(mile)	0.201			
ΔH Elevation (ft)	70			
Slope (ft/mi)	348.26			
Landform type	Rangeland			
Kb	0.1			
Tc (applied) (min)	10			
Tc (computed) (min)	4.9			

Table 6 Post-Development Site data

Changed

	-	
	Post-Development	t Site Data
	Total Area (acre)	1.965
	Coefficient C ₁	0.885
	Coefficient C ₂	0.775
	Area (roof) (acre)	0.0127
	Area (Landscape) (acre)	1.9443
A	C _{comp}	0.776
A	Q (cfs)*	8.94
	Intensity (in/hr)	5.86
	Length (mi)	0.201
	ΔH Elevation (ft)	70
	Slope (ft/mi)	348.26
	Landform type	Rangeland
	К _b	0.1
	T _c (applied) (min)	10
M	T _c (computed) (min)	2.7

4 Hydraulic Analysis

Table 7 Exiting Conditions for Culvert

Length – L (ft)	18
ΔΗ (ft)	0.59
Slope – S (ft/ft)	0.033
Shape	Circular

Figure 7 Proposed flow path through culvert

4 Hydraulic Analysis

Table 8 Culvert Hydraulic Design Standards for Yavapai County [7]

	Culvert Hydraulic Design Standards
Design Variable	Design Standard
Minimum Velocity	5 fps for Q _{design} Lesser of 3 fps for 0.5 x Q _{design} or 3 fps at flow depth = 1'
Maximum Velocity	20 fps
Minimum Slope	0.005 ft/ft

• Continuity Equation

• Energy Equation in the culvert

Table 9 Potential Solutions for Culvert

Solution ID	Flow Regime	Material	Exit Velocity (ft/s)	Inlet HW Elev. (ft)	Tailwater Elev. (ft)	Normal Depth (ft)	Compliance for Manual
1	Supercritical	CMP	6.56	4758.23	4756.75	1.02	Yes
2	Supercritical	Concrete	9.07	4759.05	4756.75	0.78	Yes
3	Supercritical	Smooth walled- HDPE	9.47	4758.68	4756.75	0.77	Yes

4 Hydraulic Analysis

Table 10 Potential Solutions Comparison [8]

Potential Solution	Material	Lifespan (yr)	Exit Velocity (fps)	Cost (\$/ft)
1	СМР	15~40	6.56	60.00
2	Concrete	>100	9.07	125.00
3	Smooth walled-HDPE	100	9.47	55.00

Table 11 Decision Matrix

Solution	Lifespan	Exit Velocity	Cost	Total
18"-CMP	1	3	3	7
15"-Concrete	3	1	1	5
15"-HDPE	3	1	2	6

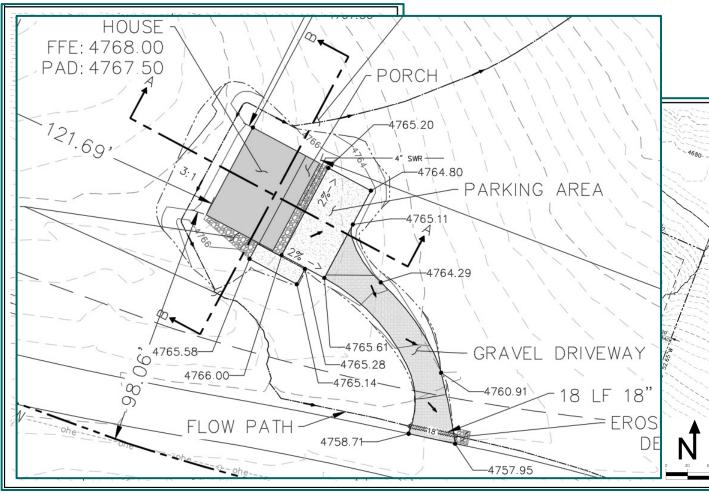


Figure 8 Proposed location of structures

Client requests and standards

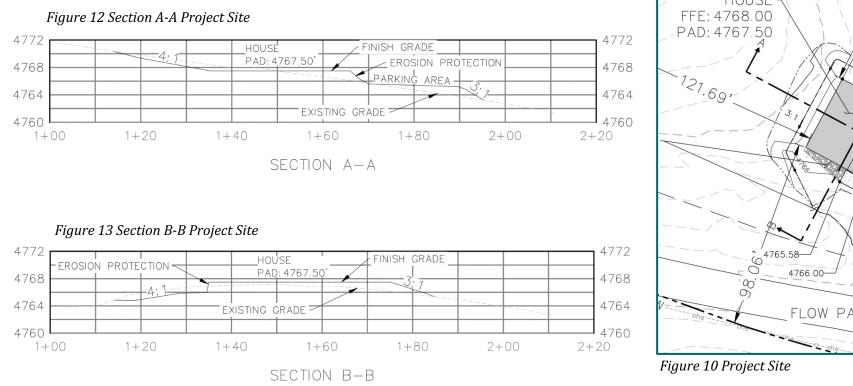
- FF (Finish Floor) Elevation: 4768 ft
- Pad Elevation: 6in. Below Finish Floor
- Approximate Existing Ground Slope $\approx 10\%$
- Side slope of cut walls 3:1

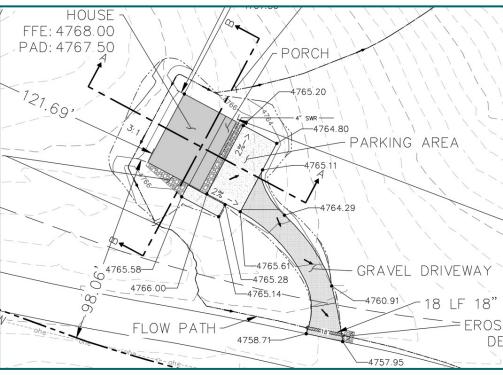
5 Plan Set Production

Plan Set Requirements

• Designed according to Yavapai

County Standards [3]


- Cut/Fill Quantities
- Property Limits
- 2 cross sectional details orthogonal to each other
- Location of existing structures
- Required notes


Figure 9 Grading/Drainage

5 Plan Set Production

Table 16 Civil 3D Volume Comparison

Area (ft ²)	Cut (yd ³)	Fill (yd ³)	Net (yd³)
6683.69	124.82	117.1	7.72 (Cut)

5 Plan Set Production

Riprap Outlet Protection (*downstream of culvert)

Figure 9 Typical Erosion Protection [1]

Velocity (ft/s)	6.56
Depth of Flow (ft)	1.02
Froude number, F _r	1.02

Table 15 Design Criteria for Riprap Apron Sizing Chart

Criteria name	Calculated Value	Criteria	Criteria Met?
V (fps)	6.56	≤20	YES
$Q/D_c^{2.5}$	2. 38	≤6	YES
Y_t/D_c	0.35	0.35	YES

 $1 \le F_r \le 2.5$ and $\frac{Q}{D_c^{2.5}} \le 6$ permits use of Simplified Riprap Apron Method [7]

Figure 11.6 Riprap Apron Sizing Chart for Circular Culvert Outlets

Figure 11.7 Riprap Apron Length for Circular Pipes (18-inch - 36-inch)

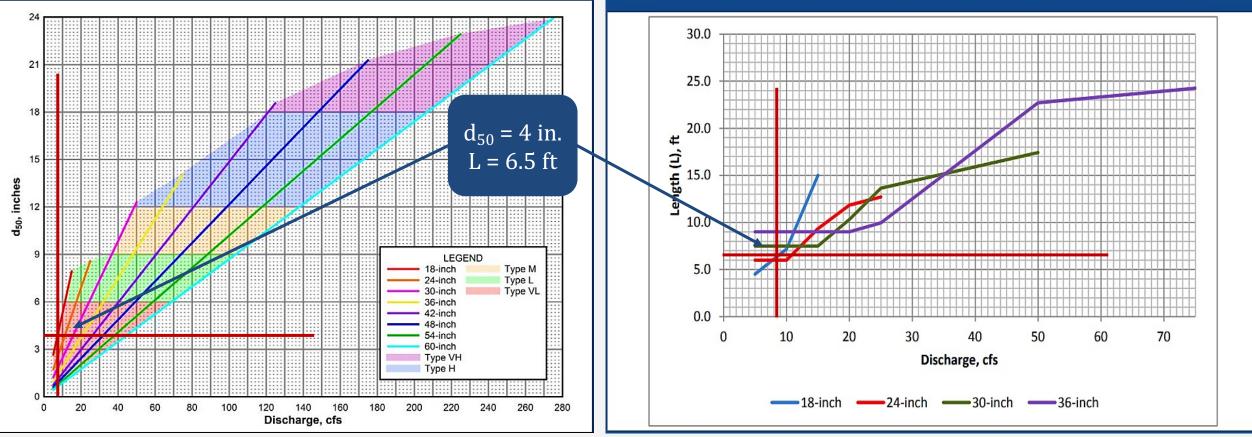


Figure 10 Riprap Apron Sizing Chart [7]

Figure 11 Riprap Apron Length Chart [7]

7 Impact Analysis

Social Impacts

- + New neighbors
- + Increase the enrollment at local schools and the attendance at local churches
- + Increase the local property value
- Eliminates neighbors' view
- Increased delay

G Environmental Impacts

- + Reduce sedimentation
- Initial vegetation removal
- Displacement of wildlife
- Increased noise pollution
- Increase fuel consumption

Economic Impacts

- + Increase revenue for builder of the cabin
- + Increased population of the town
- Cost of electricity, water, and the occasional septic tank cleaning

Construction Cost Estimate

Table 17 Material Estimate [8]

Material	Quantity	Unit Price (\$)	Cost (\$)
Excavation and grading	242 yd ³	65	4,500
Remove excess material from site*	7.72 yd ³	45.75/ton	510
D ₅₀ =4in. Rock*	0.33 yd ³	30/ton	100
* Includes cost for delivery		Total	5,110

Table 19 Equipment Estimate [8]

Equipment	Cost (\$)
Heavy equipment, Dump Truck, Compactor	4,500

Table 18 Labor Estimate [8]

Position	wage/hr	labor hours	Cost (\$)
Foreman	\$30.70	16	491
Equipment Operator	\$39.25	56	2,204
Laborer	\$28.70	64	1,837
		Total	4,600

•Material Cost:	\$5,100
•Labor Cost:	\$4,600
•Equipment Cost:	\$4,500
•Total Cost:	\$ 14,200

- [1] "Bing Images," Bing, [Online]. Available: https://www.bing.com/images/search?view=detailV2&ccid=Xd1%2fIXyE&id=35F349089916B3837E62C20D73A9816BF37EC391&thid=OIP.Xd1_IXyEzHCBwLpai Oz6oAHaFj&mediaurl=https%3a%2f%2fth.bing.com%2fth%2fid%2fR.5ddd7f217c84cc7081c0ba5a88ecfaa0%3frik%3dkcN%252b82uBqXMNwg%2. [Accessed 21 October 2022].
- [2] Google, "Google Earth," Google, [Online]. Available: https://earth.google.com/web/. [Accessed 26 September 2022].
- [3] Y. C. Arizona, "Grading Submittal Requirements," [Online]. Available: https://yavapaiaz.gov/Portals/34/Reference%20Materials/PB-22GradingSubmittalRequirements.pdf. [Accessed 20 October 2022].
- [4] "Yavapai County Interactive Map," ESRI, [Online]. Available: https://gis.yavapaiaz.gov/v4/. [Accessed 03 March 2022].
- [5] U. S. D. o. Agriculture, "Soil Survey of Yavapai County, Arizona," 1968. [Online]. Available: https://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=AZ. [Accessed 26 09 2022].
- [6] ADOT, "ADOT Rational Method Tool," [Online]. Available: https://apps.azdot.gov/files/roadway-engineering/hydrology-manual-online-data/ADOTRational.zip. [Accessed 7 February 2022].
- [7] Y. County, "Drainage Design Manual for Yavapai County," 1 July 2015. [Online]. Available: https://yavapaiaz.gov/Portals/43/ReferenceMaterials/2015_DDMforYavapaiCountyFinal.pdf. [Accessed 03 March 2022].
- [8] A. D. o. Transportation, "Estimated Engineering Construction Cost," ADOT, [Online]. Available: https://apps.azdot.gov/Applications/ReportViewerHost/ReportViewer/Viewer.aspx?ReportPath=/E2C2/E2C2BidHistory&cCty=MA&cDistrict=E&cItemNbr=&cRoute =&cTracsNbr=&dFromBidDate=12/6/2002&dFromMP=&dFromQty=&dToBidDate=12/6/2022&dToMP=&dToQty=&vcDescript=hdpe&vc. [Accessed 6 December 2022].