Water Environment Federation (WEF) and Arizona Water Student Design Competition

Naif Alkahtani

Ahmad Almohammedsaleh

Brittany Riser

Juris Tan

Kyle Telesco

Introduction

Purpose

 Analyze/design a wastewater treatment facility, create design documents for entry into the AZ Water Spring 2021 student design competition

Location

• A small community in Arizona

Client

Arizona Water (AZ Water)

Background

- Universities in Arizona compete to design/redesign a wastewater treatment plant based on a prompt
- Will get the prompt in January

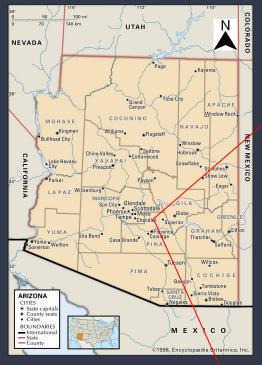


Figure 2: Arizona State Map [2]

Figure 3: 2018 WEF Competition Wastewater Treatment Plant [3]

Introduction

Stakeholders

- The community/the city itself
- Residents/business discharging to the facility
- Arizona Department of Environmental Quality (ADEQ)
- People/animals using the water

Technical Considerations/Challenges

- Regulations
- Sustainable design
- Hydraulic and treatment process design
- Solids handling

Figure 4: AZ Water Logo [4]

Task 1 Prepare for Competition

1.1 Research for Treatment Process

1.2 Registration

Figure 5: AZ Water Logo [5]

Task 2 Site Investigation

2.1 Site Visit

2.2 Analysis of Provided Data

2.2.1 Treatment Plant Constraints/Criterion

2.2.2 Source Water Characteristics

2.2.3 Develop Site Plan of Existing Plant

Task 3 Treatment Design (1/2)

3.1 Design Capacity

- 3.1.1 Estimate Daily Demand Factors
- 3.1.2 Calc. End of Lifecycle Capacity
- 3.1.3 Effluent Regulations

3.2 Preliminary Treatment

- 3.2.1 Evaluate and Choose Preliminary Treatment
- 3.2.2 Design Preliminary Treatment

3.3 Primary Treatment

- 3.3.1 Evaluate and Choose Primary Treatment
- 3.3.2 Design Primary Treatment

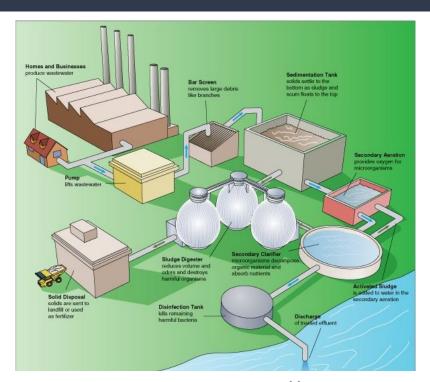


Figure 6: Treatment Process [6]

Task 3 Treatment Design (2/2)

3.4 Secondary Treatment

3.4.1 BOD/Organic Matter Removal

3.4.2 Disinfection

3.5 Tertiary Treatment

3.5.1 Evaluate and Choose Tertiary Treatment

3.5.2 Design Tertiary Treatment

3.6 Biosolids Management

3.6.1 Evaluate Biosolids

3.6.2 Design Biosolids

Figure 7: Aerial View of a Wastewater Treatment Facility [7]

Task 4 Hydraulics

4.1 System Analysis

4.2 Pump Analysis

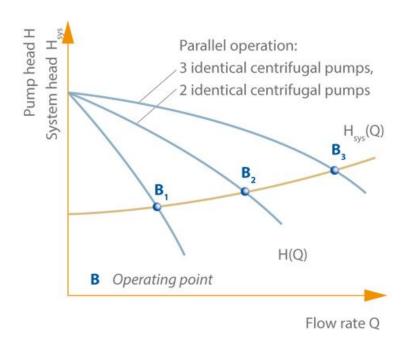


Figure 8: Pump and System Curve [8]

Task 5 Cost of Project

Task 6 Project Impacts

5.1 Construction Cost

5.2 Operation Cost

5.3 Expected Lifespan Cost

Figure 9: Economic/Social/ Economic Impacts [9]

6.1 Societal Impact

6.2 Environmental Impact

6.3 Economical Impact

Task 7 Project Deliverables

7.1 30% Completion

7.2 60% Completion

7.3 90% Completion

7.4 100% Completion

7.5 Competition Deliverables

Task 8 Project Management

8.1 Meetings

8.1.1 Client/GI/TA Meetings

7.1.2 Team Meetings

8.2 Schedule Management

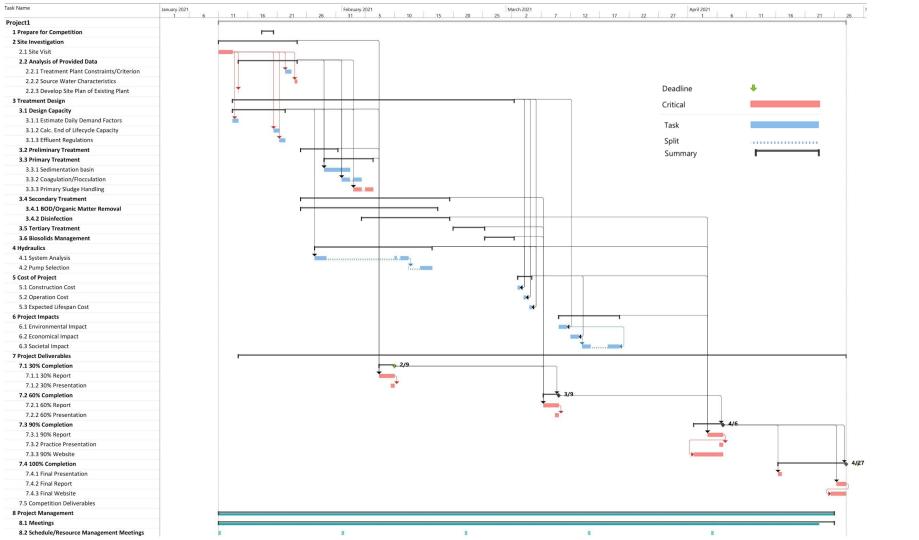
8.3 Resource Management

Exclusions

Construction

Figure 10: "Blue" Print [10]

Stormwater


Figure 11: Stormwater Drain [11]

Transportation

Figure 12: AZ CAP Canal [12]

Schedule

Staffing

Task Number	Task Name	Work (Hours)	SENG	ENG	LAB	INT	AA
1	Prepare for Competition	20	2	6	3	6	3
2	Site Investigation	55	14	5	17	0	19
3	Treatment Design	325	41	176	11	86	11
4	Hydraulics	40	4	23	1	11	1
5	Cost of Project	30	3	18	0	9	0
6	Project Impacts	60	6	33	3	15	3
7	Project Deliverables	105	20	51	8	22	4

Cost of Engineering Services

Summary:

- Staffing
 - o \$47,534
- Travel
 - o \$1,495
- Supplies
 - o \$225

Total: \$ 49,254

Staffin	g			
	Positions	Hours	Billing Rate	Total Pay
	Senior Engineer	90	\$185.00	\$16,650
	Engineer	312	\$80.00	\$24,960
	Lab Technician	43	\$45.00	\$1,935
	Intern	149	\$17.00	\$2,533
	Admin Assistant	41	\$35.50	\$1,455.5
			Subtotal	\$47,533.5
Travel				
	Item	Notes	Rate	Total Pay
	Site Visit	1 trip at 288 miles	\$0.58/ miles	\$67.04
	Rental Vehicle	1 day	\$62/day	\$62
	Competition	1 trip at 310 miles	\$0.58/miles	\$179.8
	Rental Vehicle	3 days (extra 1 day to return the vehicle)	\$62/day	\$186
	Hotel	2 rooms 2 nights	\$100/ night/room	\$400.00
	Meals	2 nights (3 meals per day for 5 people)	\$60/person/day	\$600
	\$1494.84			
Suppli	es		<u>'</u>	
	Items	Notes	Rate	Total
	3D Printing	at 1kg	\$0.05/g	\$50
	Membership	5 people	\$35/person	\$175
	\$225			

- [1] Water Environment Federation WEF Home, "WEF WEF Home." [Online]. Available: https://www.wef.org/. [Accessed: Sep-2020].
- [2] G. L. McNamee and M. E. Hecht, "Arizona," Encyclopædia Britannica, 30-Jul-2020. [Online]. Available: https://www.britannica.com/place/Arizona-state. [Accessed: Sep-2020].
- [3] 2018. [Online]. Available: https://www.ceias.nau.edu/capstone/projects/CENE/2018/WastewaterFacility/.
- [4] "Welcome to ADEQ," 11-Dec-2020. [Online]. Available: https://www.azdeq.gov/.
- [5] "We are Professionals Dedicated to Arizona's Water!," AZ Water Association. [Online]. Available: https://www.azwater.org/. [Accessed: Sep-2020].
- [6] T. English, "Dirty to Clean: How a Water Treatment Plant Works," 22-Mar-2020. [Online]. Available: https://interestingengineering.com/dirty-clean-how-water-treatment-plant-works. [Accessed: 09-Nov-2020].
- [7] "Major Renovations Reshape Ann Arbor Wastewater Treatment Plant," 2017. [Online]. Available: http://www.walshgroup.com/news/2017/majorrenovationsreshapeannarborwastewatertreatmentplant.html. [Accessed: Nov-2020].
- [8] The EcoAmbassador. 2020. Increasing Wastewater Pump System Efficiency. [online] Available at: https://www.theecoambassador.com/WastewaterPump.html [Accessed 2 November 2020].
- [9] "Goal 12: Ensure sustainable consumption and production patterns SDG Indicators," *United Nations*. [Online]. Available: https://unstats.un.org/sdgs/report/2018/goal-12/. [Accessed: Sep-2020].
- [10] Doherty, P., 2020. Best Regions To Start A Construction Business Build Magazine. [online] Build Magazine. Available at: https://www.build-review.com/best-regions-to-start-a-construction-business/ [Accessed 12 November 2020].
- [11] CRWD. 2020. Stormwater Runoff CRWD. [online] Available at: https://www.capitolregionwd.org/our-water/stormwater-runoff/ [Accessed 12 November 2020].
- [12] En.wikipedia.org. 2020. Arizona Cap Canal.Jpg. [online] Available at: https://en.wikipedia.org/wiki/File:Arizona_cap_canal.jpg [Accessed 12 November 2020].

Questions?