SINCLAIR WASH RESTORATION PROJECT

REPORT

April 27, 2021

Prepared for: Mark Lamer Version: Final Report

RED ROCK ENGINEERING

Jakob Brishke Hannah Fischer Kylie Hemmele Stephanie Nelson

Table of Contents

Acknowledgments	ix
1.0 Project Introduction	. 1
1.1 Background	. 1
1.2 Location	. 2
1.3 Current Conditions	. 4
2.0 Site Investigation	. 4
3.0 Analysis of Previous Studies	. 7
4.0 Geotechnical Analysis	. 8
5.0 Geomorphic Assessment	. 9
6.0 Biological and Ecological Assessment	10
7.0 Open Channel Design	11
7.1 Effective Model	11
7.2 Corrective Effective Model	12
7.3 Culvert Designs	14
7.4 Proposed HEC RAS Model	16
8.0 Plan Set	19
8.1 Site Changes	19
9.0 Summary of Engineering Work	20
9.1 Proposed Schedule	20
9.2 Project Schedule	20
10.0 Summary of Engineering Costs	20
10.1 Staffing Hours	20
10.2 Cost of Construction	
10.3 Cost of Engineering Work	22
11.0 Impacts	24
11.1 Social	
11.2 Environmental	25
11.3 Economic	26
12.0 Conclusion	
13.0 References	
14.0 Appendices	
••	

Table of Appendices

Appendix 1: Safety Plan for Initial Site Investigation	29
Appendix 2: Cross Section #1 – Station 0+70 Photographs	30
Appendix 3: Cross Section #2 – Station 1+40 Photographs	31
Appendix 4: Cross Section #3 – Station 2+10 Photographs	32
Appendix 5: Cross Section #4 – Station 2+80 Photographs	35
Appendix 6: Cross Section #5 – Station 3+50 Photographs	38
Appendix 7: Culvert Photographs	39
Appendix 8: Field Sampling Plan	43
Appendix 9: Random Soil Sampling Images	44
Appendix 10: Sample 1 Soil Classification	47
Appendix 11: Sample 2 Soil Classification	50
Appendix 12: Sample 3 Soil Classification	53
Appendix 13: Sample 4 Soil Classification	56
Appendix 14: Sample 5 Soil Classification	59
Appendix 15: Sample 6 Soil Classification	62
Appendix 16: Sample 7 Soil Classification	65
Appendix 17: Sample 8 Soil Classification	68
Appendix 18: Sample 9 Soil Classification	71
Appendix 19: Sample 10 Soil Classification	74
Appendix 20: Sample 11 Soil Classification	77
Appendix 21: Sample 12 Soil Classification	80
Appendix 22: Sample 13 Soil Classification	83
Appendix 23: Sample 14 Soil Classification	86
Appendix 24: Sample 15 Soil Classification	89
Appendix 25: Sample 16 Soil Classification	92
Appendix 26: Sample 17 Soil Classification	95
Appendix 27: Sample 18 Soil Classification	98
Appendix 28: Sample 19 Soil Classification	
Appendix 29: Sample 20 Soil Classification	104
Appendix 30: USCS Classification AutoCAD Exhibit	
Appendix 31: AASHTO Classification AutoCAD Exhibit	108
Appendix 32: USGS StreamStats Report	109
Appendix 33: Flora Identification	112
Appendix 34: Fauna Identification	121
Appendix 35: Revegetation Plan	122
Appendix 36: Effective Hydraulic Model Cross Section Diagram	123
Appendix 37: Effective Hydraulic Model Culvert Diagram	124
Appendix 38: Effective Hydraulic Model Cross Section Summary Table	125
Appendix 39: Effective Hydraulic Model Culvert Summary Table	
Appendix 40: Three-Dimensional Effective Hydraulic Model	127

Appendix 41: Corrected Effective Hydraulic Model Cross Section Diagram	128
Appendix 42: Corrected Effective Hydraulic Model Culvert Diagram	129
Appendix 43: Corrected Effective Hydraulic Model Cross-Section Summary Tables	130
Appendix 44: Corrected Effective Hydraulic Model Culvert Summary Table	131
Appendix 45: Three-Dimensional Corrected Effective Hydraulic Model	132
Appendix 46: Corrected Effective Model HEC RAS Cross Section Data	133
Appendix 47: Existing Culvert – CulvertMaster Report Design Storm	156
Appendix 48: Existing Culvert – CulvertMaster Report Check Storm	158
Appendix 49: Six Barrel CMP – CulvertMaster Designer/Analyzer Report	160
Appendix 50: Triple Box Culvert – CulvertMaster Designer/Analyzer Report	162
Appendix 51: 3-Sided Culvert – CulvertMaster Designer/Analyzer Report	164
Appendix 52: Cost Calculations for the Proposed Culvert Designs	166
Appendix 53: FEMA – FIS Water Surface Elevation for Sinclair Wash	168
Appendix 54: Proposed Hydraulic Model Cross Section Diagram	169
Appendix 55: Proposed Hydraulic Model Culvert Diagram	172
Appendix 56: Proposed Hydraulic Model Cross Section Summary Table	173
Appendix 57: Proposed Hydraulic Model Culvert Summary Table	174
Appendix 58: Three-Dimensional Proposed Hydraulic Model	175
Appendix 59: Final Plan Set	176
Appendix 60: Proposed Schedule	177
Appendix 61: Updated Project Schedule	179
Appendix 62: Summary of Staffiing Hours	180
Appendix 63: Billing Rate Breakdown for Personnel Work	181

Table of Figures

Figure 1: Site Location with Respect to Flagstaff Boundary	2
Figure 2: Site Location with Respect to NAU's Boundary	
Figure 3: Site Boundary	
Figure 4: Cross-Sections for Site	4
Figure 5: Station 0+70 Channel – Downstream	30
Figure 6: Station 0+70 Channel – Upstream	30
Figure 7: Station 1+40 Channel – Downstream	31
Figure 8: Station 1+40 Channel Embankment	31
Figure 9: Station 2+10 Channel – Downstream	32
Figure 10: Station 2+10 Channel – Upstream	32
Figure 11: Station 2+10 Channel Debris	33
Figure 12: Station 2+10 Channel Overgrowth	33
Figure 13: Station 2+10 Channel Obstruction	34
Figure 14: Station 2+80 Channel – Downstream	35
Figure 15: Station 2+80 Channel – Upstream	35
Figure 16: Station 2+80 Channel Overgrowth	36

	Station 2+80 Channel Debris	
Figure 18:	Station 2+80 Channel Conditions	37
Figure 19:	Station 3+50 Channel – Downstream	38
	Culvert Inlets	
Figure 21:	Culvert Outlets	39
	Left (South) Culvert Outlet	
	Center Culvert Outlet	
Figure 24:	Right (North) Culvert Outlet	41
Figure 25:	Culvert Inlet Obstruction	41
Figure 26:	Culvert Inlet Conditions	42
Figure 27:	Random Soil Sample Location #1	44
	Random Soil Sample Location #2	
Figure 29:	Random Soil Sample Location #3	45
	Random Soil Sample Location #4	
Figure 31:	Random Soil Sample Location #5	46
	Particle Distribution Curve – Sample 1	
Figure 33:	Casagrande's Plasticity Chart - Sample 1	48
Figure 34:	AASHTO Classification Chart - Sample 1	49
Figure 35:	Particle Distribution Curve – Sample 2	50
Figure 36:	Casagrande's Plasticity Chart - Sample 2	51
Figure 37:	AASHTO Classification Chart - Sample 2	52
Figure 38:	Particle Distribution Curve – Sample 3	53
Figure 39:	Casagrande's Plasticity Chart - Sample 3	54
Figure 40:	AASHTO Classification Chart - Sample 3	55
	Particle Distribution Curve – Sample 4	
	Casagrande's Plasticity Chart - Sample 4	
Figure 43:	AASHTO Classification Chart - Sample 4	58
Figure 44:	Particle Distribution Curve – Sample 5	59
Figure 45:	Casagrande's Plasticity Chart - Sample 5	60
	AASHTO Classification Chart - Sample 5	
Figure 47:	Particle Distribution Curve – Sample 6	62
Figure 48:	Casagrande's Plasticity Chart - Sample 6	63
Figure 49:	AASHTO Classification Chart - Sample 6	64
Figure 50:	Particle Distribution Curve – Sample 7	65
Figure 51:	Casagrande's Plasticity Chart - Sample 7	66
Figure 52:	AASHTO Classification Chart - Sample 7	67
Figure 53:	Particle Distribution Curve – Sample 8	68
Figure 54:	Casagrande's Plasticity Chart - Sample 8	69
Figure 55:	AASHTO Classification Chart - Sample 8	70
-	Particle Distribution Curve – Sample 9	
-	Casagrande's Plasticity Chart - Sample 9	
	AASHTO Classification Chart - Sample 9	
Figure 59:	Particle Distribution Curve – Sample 10	74

Figure 60: Casagrande's Plasticity Chart - Sample 10	
Figure 61: AASHTO Classification Chart - Sample 10	
Figure 62: Particle Distribution Curve – Sample 11	
Figure 63: Casagrande's Plasticity Chart - Sample 11	
Figure 64: AASHTO Classification Chart - Sample 11	
Figure 65: Particle Distribution Curve – Sample 12	
Figure 66: Casagrande's Plasticity Chart - Sample 12	
Figure 67: AASHTO Classification Chart - Sample 12	
Figure 68: Particle Distribution Curve – Sample 13	. 83
Figure 69: Casagrande's Plasticity Chart - Sample 13	. 84
Figure 70: AASHTO Classification Chart - Sample 13	. 85
Figure 71: Particle Distribution Curve – Sample 14	
Figure 72: Casagrande's Plasticity Chart - Sample 14	. 87
Figure 73: AASHTO Classification Chart - Sample 14	. 88
Figure 74: Particle Distribution Curve – Sample 15	. 89
Figure 75: Casagrande's Plasticity Chart - Sample 15	. 90
Figure 76: AASHTO Classification Chart - Sample 15	. 91
Figure 77: Particle Distribution Curve – Sample 16	. 92
Figure 78: Casagrande's Plasticity Chart - Sample 16	. 93
Figure 79: AASHTO Classification Chart - Sample 16	. 94
Figure 80: Particle Distribution Curve – Sample 17	. 95
Figure 81: Casagrande's Plasticity Chart - Sample 17	. 96
Figure 82: AASHTO Classification Chart - Sample 17	
Figure 83: Particle Distribution Curve – Sample 18	
Figure 84: Casagrande's Plasticity Chart - Sample 18	
Figure 85: AASHTO Classification Chart - Sample 18	
Figure 86: Particle Distribution Curve – Sample 19	
Figure 87: Casagrande's Plasticity Chart - Sample 19	
Figure 88: AASHTO Classification Chart - Sample 19	
Figure 89: Particle Distribution Curve – Sample 20	
Figure 90: Casagrande's Plasticity Chart - Sample 20	105
Figure 91: AASHTO Classification Chart - Sample 20	
Figure 92: Effective Hydraulic Model Cross-Section Diagram	
Figure 93: Effective Hydraulic Model Culvert Diagram	
Figure 94: Three-Dimensional Effective Hydraulic Model	

Table of Tables

5
5
6
6
7

Table 6: Culvert Observations	
Table 7: Worksheet 12 Stream Characteristics	-
Table 8: Stream Type Classifications	. 10
Table 9: HEC-RAS Effective Model Data	
Table 10: HEC-RAS Corrected Effective Model Data	. 13
Table 11: Culvert Master Data	. 15
Table 12: Culvert Design Decision Matrix	. 16
Table 13: HEC-RAS Proposed Model Data	. 18
Table 14: Final Staffing Hour Summary	. 20
Table 15: Proposed Staffing Hour Summary	. 21
Table 16: Cost of Construction	
Table 17: Proposed Cost of Engineering Work	. 23
Table 18: Final Cost of Engineering Work	. 23
Table 19: Sieve Analysis Raw Data – Sample 1	. 47
Table 20: Liquid Limit Raw Data – Sample 1	. 48
Table 21: Plastic Limit Raw Data – Sample 1	. 48
Table 22: Sieve Analysis Raw Data – Sample 2	. 50
Table 23: Liquid Limit Raw Data – Sample 2	. 51
Table 24: Plastic Limit Raw Data – Sample 2	
Table 25: Sieve Analysis Raw Data – Sample 3	
Table 26: Liquid Limit Raw Data – Sample 3	
Table 27: Plastic Limit Raw Data – Sample 3	
Table 28: Sieve Analysis Raw Data – Sample 4	
Table 29: Liquid Limit Raw Data – Sample 4	. 57
Table 30: Plastic Limit Raw Data – Sample 4	
Table 31: Sieve Analysis Raw Data – Sample 5	
Table 32: Liquid Limit Raw Data – Sample 5	
Table 33: Plastic Limit Raw Data – Sample 5	. 60
Table 34: Sieve Analysis Raw Data – Sample 6	. 62
Table 35: Liquid Limit Raw Data – Sample 6	
Table 36: Plastic Limit Raw Data – Sample 6	. 63
Table 37: Sieve Analysis Raw Data – Sample 7	. 65
Table 38: Liquid Limit Raw Data – Sample 7	. 66
Table 39: Plastic Limit Raw Data – Sample 7	. 66
Table 40: Sieve Analysis Raw Data – Sample 8	. 68
Table 41: Liquid Limit Raw Data – Sample 8	. 69
Table 42: Plastic Limit Raw Data – Sample 8	
Table 43: Sieve Analysis Raw Data – Sample 9	. 71
Table 44: Liquid Limit Raw Data – Sample 9	. 72
Table 45: Plastic Limit Raw Data – Sample 9	
Table 46: Sieve Analysis Raw Data – Sample 10	
Table 47: Liquid Limit Raw Data – Sample 10	
Table 48: Plastic Limit Raw Data – Sample 10	. 75

Table 49: Sieve Analysis Raw Data – Sample 11	77
Table 50: Liquid Limit Raw Data – Sample 11	
Table 50: Elquid Elmit Raw Data – Sample 11 Table 51: Plastic Limit Raw Data – Sample 11	
Table 51: Flashe Ellinit Raw Data – Sample 11 Table 52: Sieve Analysis Raw Data – Sample 12	
Table 52: Sieve Anarysis Raw Data – Sample 12 Table 53: Liquid Limit Raw Data – Sample 12	
Table 53: Elquid Elinit Raw Data – Sample 12 Table 54: Plastic Limit Raw Data – Sample 12	
Table 55: Sieve Analysis Raw Data – Sample 13	
Table 56: Liquid Limit Raw Data – Sample 13	
Table 57: Plastic Limit Raw Data – Sample 13	
Table 58: Sieve Analysis Raw Data – Sample 14	
Table 59: Liquid Limit Raw Data – Sample 14	
Table 60: Plastic Limit Raw Data – Sample 14	
Table 61: Sieve Analysis Raw Data – Sample 15	
Table 62: Liquid Limit Raw Data – Sample 15	
Table 63: Plastic Limit Raw Data – Sample 15	
Table 64: Sieve Analysis Raw Data – Sample 16	
Table 65: Liquid Limit Raw Data – Sample 16	
Table 66: Plastic Limit Raw Data – Sample 16	
Table 67: Sieve Analysis Raw Data – Sample 17	
Table 68: Liquid Limit Raw Data – Sample 17	
Table 69: Plastic Limit Raw Data – Sample 17	
Table 70: Sieve Analysis Raw Data – Sample 18	
Table 71: Liquid Limit Raw Data – Sample 18	
Table 72: Plastic Limit Raw Data – Sample 18	
Table 73: Sieve Analysis Raw Data – Sample 19	
Table 74: Liquid Limit Raw Data – Sample 19	
Table 75: Plastic Limit Raw Data – Sample 19	
Table 76: Sieve Analysis Raw Data – Sample 20	
Table 77: Liquid Limit Raw Data – Sample 20	105
Table 78: Plastic Limit Raw Data – Sample 20	
Table 79: Flora Identification	112
Table 80: Fauna Identification	120
Table 81: Effective Hydraulic Model Cross-Section Summary Table	124
Table 82: Effective Hydraulic Model Culvert Summary Table	125
Table 83: Cross-Section 1+00	
Table 84: Cross-Section 1+25	134
Table 85: Cross-Section 1+50	135
Table 86: Cross-Section 1+75	
Table 87: Cross-Section 2+00	
Table 88: Cross-Section 2+25	
Table 89: Cross-Section 2+50	
Table 90: Cross-Section 2+75	
Table 91: Cross-Section 3+00	141

Table 92: Cross-Section 3+25	
Table 93: Cross-Section 3+50	143
Table 94: Cross-Section 3+75	144
Table 95: Cross-Section 4+00	145
Table 96: Cross-Section 4+25	146
Table 97: Cross-Section 4+40	147
Table 98: Cross-Section 4+99	148
Table 99: Cross-Section 5+04	149
Table 100: Cross-Section 5+29	
Table 101: HEC-RAS Cross-Section #1	150
Table 102: HEC-RAS Cross-Section #2	151
Table 103: HEC-RAS Cross-Section #3	151
Table 104: HEC-RAS Cross-Section #4	-
Table 105: HEC-RAS Cross-Section #5	
Table 106: HEC-RAS Cross-Section #6	
Table 107: HEC-RAS Cross-Section #7	
Table 108: HEC-RAS Cross-Section #8	152
Table 109: HEC-RAS Cross-Section #9	-
Table 110: HEC-RAS Cross-Section #10	153
Table 111: HEC-RAS Cross-Section #11	153
Table 112: HEC-RAS Cross-Section #12	153
Table 113: HEC-RAS Cross-Section #13	
Table 114: HEC-RAS Cross-Section #14	
Table 115: HEC-RAS Cross-Section #15	
Table 116: HEC-RAS Cross-Section #16	154
Table 117: HEC-RAS Cross-Section #17	
Table 118: HEC-RAS Cross-Section #18	155

Table of Abbreviations

NAU	Northern Arizona University	
CS	Cross-section	
N/A	N/A Not Applicable	
D	Diameter	
CMP	Corrugated Metal Pipe	
FUTS	Flagstaff Urban Trail System	
cfs	Cubic feet per second	
ROB	DB Right of Bank	
LOB	Left of Bank	
FEMA	Federal Emergency Management Agency	
FIS	Flood Insurance Study	
HEC-RAS	Hydraulic Engineering Center's – River Analysis System	

Acknowledgments

We would like to thank our client, technical advisor, and grading instructor Mark Lamer, for providing technical and educational guidance.

1.0 Project Introduction

1.1 Background

The Sinclair Wash Restoration Feasibility Study, completed by HYD Engineering, identified three sites along Sinclair Wash in need of restoration. The first site chosen was approximately 156-ft east of the I-17 culvert and extended past the first FUTS crossing of the wash. It was chosen due to the multiple low points that caused ponding, and the vast amounts of vegetation that impeded flow through the channel. The second site chosen was 550-ft northeast of the San Francisco Street culvert and extended 870-ft in the same direction. An overgrowth of vegetation and thalweg cutback were the identified areas of concern for the site. The final site chosen, expanded from 1000-ft southwest of the Lone Tree Culvert to the entrance of the same culvert. This site was chosen based on the observed ponding and dirt/gravel lining that would increase erosion rates.

To address the issues observed in each section of the wash, HYD Engineering proposed a trapezoidal channel design with a smaller trapezoidal cut at the bottom of the channel. This allowed the channel bed to convey water for high and low flows. The design would be implemented at each cross-section and vary based on the bank-full area. Sites #1-3 required the respective bank-full areas, 10.95-ft², 20.693-ft², and 20.23-ft². The site profiles were changed to reflect a ripple, pool, run, glide design, along with channel side cuts placed at an H:V ratio of 3:1. Natural grasses were seeded along the channel and banks of the wash, per City of Flagstaff Stormwater Design Manual 8.4.4.

While all three sites had similar channel issues and design solutions, HYD Engineering identified an additional issue at Site #1. The current CMP culverts (3, 2.5-ft barrels) produce overtopping and damage to the channel, reducing functionality throughout the site and along the FUTS crossing. To repair this issue, HYD Engineering proposed that a prefabricated bridge replace the FUTS crossing. However, HYD Engineering also suggested that further study and analysis be completed to determine the adequate culvert design. Therefore, Site #1 was selected for completion of the Sinclair Wash Restoration Project.

As a continuation, this project aimed to restore a section of the Sinclair Wash near the I-17 culvert to its proper riparian habitat through an aerial assessment and the completion of a detailed restoration plan. The assessment collected data on the current channel conditions, adjacent infrastructure, and problematic stream crossings to provide design alternatives for the area. The restoration plan was completed to improve the natural riparian ecosystem within and around the channel section, reduce flooding, erosion, and sedimentation produced by rainfall events, and promote recreational use along the Flagstaff Urban Trail.

1.2 Location

The site is in Flagstaff, Arizona on the Northern Arizona University campus and adjacent to the Flagstaff Urban Trail System. It is a section of the Sinclair Wash which lies 156-ft east of the I-17 and McConnell Dr. overpass. See Figures 1-3 for site location images.



Figure 1: Site Location with Respect to Flagstaff Boundary

Figure 1 presents the site location with respect to Flagstaff's boundary. Figure 2 displays the site location with respect to Northern Arizona University's boundary.

Red Rock Engineering

Figure 2: Site Location with Respect to NAU's Boundary

The site location is circled in red and can be identified within Figures 1 and 2. Figure 3 depicts the site location with respect to I-17. The site boundary has been outlined in orange.

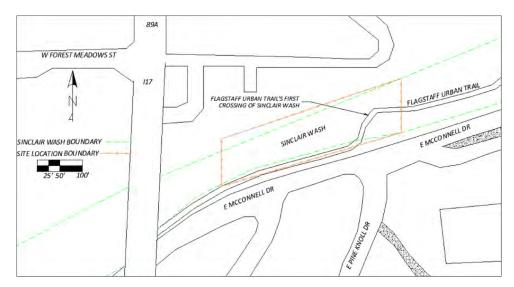


Figure 3: Site Boundary

The site boundary is 156-ft east of the I-17 culvert and continues past the first crossing of the wash along the Flagstaff Urban Trail System. This has been illustrated in Figure 3.

1.3 Current Conditions

Various problems continue to occur throughout the Sinclair Wash, including sedimentation build up (aggradation), erosion (degradation), inconsistency between low points within the channel, and vegetation overgrowth. Aggradation and degradation of the channel section has caused sediment to deposit amongst new places, thus impeding the normal flow of the channel and creating low points in other areas. Overgrown vegetation has resulted in ponding, flooding, and growth of non-native (invasive) flora. The Sinclair Wash floods following heavy rainstorms or large snow melt events. This causes the adjacent Flagstaff Urban Trail to erode and generates risk to anyone utilizing the trail.

2.0 Site Investigation

Red Rock Engineering conducted an initial site investigation. The safety plan was created and signed by each member completing the site investigation prior to arrival (See Appendix 1: Safety Plan for Initial Site Investigation). The site was divided into six cross-sections. These cross-sections have been identified and provided below (See Figure 4). The first cross-section was used to indicate the beginning of the site.

Figure 4: Cross-Sections for Site

Drainage course assessments, site condition analyses, and inventories for areas of concern were devised for each cross-section. Observations for each cross-section also included the span directly following the previous cross-section. There were no observations collected for Cross-Section #0 (STA 0+00) as it was used for reference. The recorded observations for Cross-Section #1 (STA 0+70) have been provided below (See Table 1).

Table 1: Cross-Section #1 Observations

CROSS-SECTION #1 (STA 0+70)	
Drainage Course Assessment	Clear, well-defined flow path (barriers defining the drainage course are considered high enough for average rainfall events) Drainage course consists primarily of dirt
Site Conditions Growing flowers (pr Debris (scattered)	Ample grass/vegetation surrounding the drainage course. Growing flowers (presence of nutrients and ability to support life) Debris (scattered) Dry (at least one month passed since most recent rainfall)
Inventory: Areas of Concern	Too much grass to identify what is underneath vegetation (not along channel center)

Images of Cross-Section #1 were collected by the team members responsible for conducting the site investigation (See Appendix 2: Cross Section #1 - STA 0+70 Images). The recorded observations for Cross-Section #2 (STA 1+40) have been provided below (See Table 2).

 Table 2: Cross-Section #2 Observations

CROSS-SECTION #2 (STA 1+40)				
Drainage Course Assessment	Blocked/poorly defined flow path (due to overgrown vegetation)			
Site Conditions	Ample buildup of debris Foliage obstructing entire channel pathway. High Manning's value (excess debris and overgrown vegetation) Terrain for flow path was ill-defined (a clear channel path was difficult to distinguish)			
	High volume of debris Ill-defined flow path			

Images of Cross-Section #2 were collected by the team members responsible for conducting the site investigation (See Appendix 3: Cross Section #2 - STA 1+40 Images). The recorded observations for Cross-Section #3 (STA 2+10) have been provided below (See Table 3).

CROSS-SECTION #3 (STA 2+10)					
Drainage Course AssessmentFlow path began to open and widen (moving from barrier between CS#3 & CS#4)					
Site Conditions	No barrier present between dirt flow path and side barriers Rocky; fewer debris (compared to CS#2)				
•	Large area established beside primary flow path; appears to be an unfinished channel (assumed to act like a dam)				

Images of Cross-Section #3 were collected by the team members responsible for conducting the site investigation (See Appendix 4: Cross Section #3 - STA 2+10 Images). The recorded observations for Cross-Section #4 (STA 2+80) have been provided below (See Table 4).

Table 4: Cross-Section #4 Observations

CROSS-SECTION #4 (STA 2+80)					
Drainage Course AssessmentRocky path began to open (moving from barrier between CS#4 to barrier between CS#4 & CS#5)					
Site Conditions	Minor debris proceeding culvert inlet (west end of culvert) Debris were still present at inlet of culvert (obstruct flow through culvert inlet) (west end of culvert)				
•	Two of three culvert inlets (west ends of culverts) present were completely blocked; third culvert severely restricted.				

Images of Cross-Section #4 were collected by the team members responsible for conducting the site investigation (See Appendix 5: Cross Section #4 - STA 2+80 Images). The recorded observations for Cross-Section #5 (STA 3+50) have been provided below (See Table 5).

CROSS-SECTION #5 (STA 3+50)					
Drainage Course Assessment Wide, well-defined flow path					
Site Conditions	All (three) culvert outlets (east) were identifiable. Little debris present; rocky, less vegetation (comparably)				
Inventory: Areas of Concern	N/A				

Images of Cross-Section #5 were collected by the team members responsible for conducting the site investigation (See Appendix 6: Cross Section #5 - STA 3+50 Images). The recorded observations for the crossing and culverts have been provided below (See Table 6).

Table 6: Culvert Observations

CULVERT DATA					
Measurements	D = 2.5' Elevation = 3.5/4' from crown Material: CMP				
Culvert Conditions	Restricted flow Buildup of debris Looking upstream: left and center culverts are blocked, right culvert is hindered.				
Inventory: Areas of Concern	Extreme dirt/debris buildup on 2 left-most culverts (looking upstream); took some digging to find middle inlet; right inlet was not found.				

Images of the crossing and culverts were collected by the team members responsible for conducting the site investigation (See Appendix 7: Culvert Photographs).

3.0 Analysis of Previous Studies

Red Rock Engineering employed results from the feasibility study conducted by HYD Engineering. The study identified three sections of the Sinclair Wash requiring restoration within NAU property boundaries. Reported issues within the I-17 channel reach, included channel

erosion, low points not along the thalweg, excessive vegetation, and concerns pertaining to the culvert intersecting the Flagstaff Urban Trail System. Red Rock Engineering also employed surveying and hydraulic modeling data provided from previous capstone teams to model the channel and estimate earthwork quantities. [1].

Hydraulic modeling data entailed effective and corrected effective models presented by HYD Engineering. These models were employed to progressively model hydraulic flow properties along the Sinclair Wash. HYD Engineering did not provide geotechnical data for Sinclair Wash. [1]. Red Rock Engineering performed a geotechnical analysis to obtain the necessary data for classifying existing soils (See Section 2.4).

Based on the results found during the site investigation it can be determined that the existing channel conditions have many geomorphic instabilities. The first is debris such as rocks or trash hindering the flow path in many areas. The second is the overgrown brush obstructing substantial portions of the thalweg causing water to lose too much velocity creating sedimentation. The final is high sediment deposition and overgrown vegetation blocking the inlets and outlets at the FUTS trail crossing three-barrel culverts. The sum of these instability issues is causing the stream to aggrade upstream and degrade downstream of the FUTS culverts. This is evident when compared to the prominent level of sedimentation in the inlets of the FUTS Culverts as well as low points not along the thalweg found in the site investigation. A design solution presented by the 2019-2020 Capstone team suggests the profile of the channel be changed to fit the profile of a ripple-run-pool-glide. This and other designs solutions will be considered in the final plan set. All identified instability issues will be addressed in the final channel reach design [1].

4.0 Geotechnical Analysis

The Field Sampling Plan was created prior to visiting the Sinclair Wash. This plan entails the sampling methodology and required materials as well as the quantity and locations of each sample. The document was completed and signed by each team member in attendance (See Appendix 8: Field Sampling Plan).

Beginning at cross-section 0+70 and ending at cross-section 3+50 (seen in Figure 4), one sample was collected at the ROB, LOB, and thalweg. Each cross section has a total of 3 samples. In addition to these, 5 additional samples were collected randomly, giving a total of 20 soil samples. See Appendix 9 for random soil sampling pictures.

At each sampling location any debris or plants were removed from the area and the surface soil was removed. A 1 gallon bag was used as the volume of sample needed. After the samples were collected they were placed in tins and allowed to dry out. After drying any plant and debris in the sample was removed. The Atterberg Limit Tests were completed followed by a sieve analysis. Appendices 10 - 29 give all raw data for the Atterberg Limit Tests and sieve analysis in addition to the particle size distribution curve, the casagrande plasticity chart, and the AASHTO classification chart. Appendix 30 shows the AutoCAD exhibit of the location of each sample and the USCS classification. The classifications of the soil will be used to conduct the geomorphic assessment of the channel reach.

5.0 Geomorphic Assessment

The geomorphic assessment entailed classifying stream types for both upstream and downstream of the culverts according to the Rosgen Geomorphic Classification. The stream was divided into upstream and downstream classifications due to the differences in flow type, elevation, and channel features. Characteristics applicable for both upstream and downstream classifications have been provided below (See Table 7).

Stream Name:	Sinclair Wash					
Basin Name:	SB#1	Drainage Area:	6086.4 acres 9.51 mi ²			
Location:	Northern Arizona University & I-17 Overpass; Flagstaff, AZ					
Township & Range:	10324005R	Section & Quarter:	28	Latitude/Longitude:	35.17917, - 111.65776	
Observers:	Hannah Fischer, Jakob Brischke, Kylie Hemmele, Stephanie Seymour			Date:	4/6/2021	

The drainage area was determined as the area of the watershed using USGS StreamStats (See Appendix 32: USGS StreamStats Report). The Coconino County Parcel Viewer was employed for determining the township/range and section/quarter for the channel reach. The stream type for each channel segment was determined using the corresponding enrichment ratio, width/depth ratio, channel sinuosity, water surface slope, and particle size index (See Table 8).

Table 8: S	Stream Type	Classifications
------------	-------------	-----------------

ID	Characteristic					Stream Tuna	
ID	ER (ft/ft)	(W_{bkf} / d_{bkf})	Κ	S (ft/ft)	D ₅₀ (mm)	Stream Type	
Upstream	0.7002	19.893	1.19201	0.006048	3	F4-F5	
Downstream	0.7746	5.1384	1.0743	0.0272	1.98	G4-G5	

Both upstream and downstream classifications were identified as ranges between two stream type subsections due to variable compositions in channel materials. Measurements calculated using cross-sectional data for upstream and downstream of the culverts were determined using cross-sections immediately preceding and following these culverts, respectively.

6.0 Biological and Ecological Assessment

The Sinclair Wash was monitored to assess surrounding environmental interactions. The area is highly trafficked during non-COVID NAU semesters. Students commute around the area to access campus. Flagstaff civilians and pets use the Flagstaff urban trail intersecting this section of the wash. Construction occurs near the wash along I-17 during the warmer months.

Local flora was classified to differentiate native, invasive, and noxious species. Native flora for this area of the wash includes smooth sumac, creeping barberry, silvery cinquefoil, western wheatgrass, spike muhly, and little bluestem grass. Invasive species include Siberian elm, golden tickseed, curly dock, common dandelion, sweet clover, New Mexico vervain, Kentucky bluegrass, smooth brome, intermediate wheatgrass, and creeping foxtail [2, 3, 4]. Noxious species include Russian knapweed and field bindweed (See Appendix 33: Flora Identification).

Local fauna was examined to determine respective site interactions and potential endangerment. This investigation indicated that the site does not currently support endangered species. Fauna discovered throughout the site are native (See Appendix 34: Fauna Identification) [5, 6].

The findings from these assessments were used to create the invasive/noxious species abatement and native species revegetation plan. This plan entails removing invasive/noxious species from the wash and replacing them with native species through the use of hydro-seeding. Each respective species was indicated with unique symbols on the AutoCAD illustration (See Appendix 35: Revegetation Plan). Ponderosa pine trees and creeping barberry were removed from the wash as they are not considered riparian vegetation and impeded the flow of water through the channel.

7.0 Open Channel Design

7.1 Effective Model

A 2019 capstone team completed a hydraulic analysis of the I-17 reach along Sinclair Wash. [7]. Utilizing HEC-RAS 5.0.5, an effective model (Liszewski model) was designed to mimic the initial site conditions. The Liszewski model was designed with eight cross-sections (see Appendix 36) and three culverts (see Appendix 37), which were analyzed at 350cfs, 670cfs, and 890cfs or the 10-, 50-, and 100-year storm events, respectively. Cross-section and culvert summary tables for the produced results can be found in Appendix 38 and 39. A 3D image of the model can be found in Appendix 40. Pertinent data from the effective model can be seen below in Table 9.

HEC-RAS Effective Model Data						
Station	W.S Elevation (ft)	Velocity (ft/s)	Q (ft^3)	Froude #		
6378.119	6865.84	1.36	890	0.11		
6378.119	6864.57	1.41	670	0.13		
6289.358	6865.77	1.19	890	0.09		
6289.358	6864.46	1.22	670	0.11		
6230.611	6865.71	1.20	890	0.09		
6230.611	6864.38	1.22	670	0.10		
6161.003	6865.60	1.64	890	0.12		
6161.003	6864.21	1.73	670	0.15		
6090.144	6865.5	2.18	890	0.16		
6090.144	6864.06	2.33	670	0.21		
6068.609	6865.41	1.75	890	0.13		
6068.609	6863.98	2.20	670	0.20		
6012.663	6865.42	1.96	890	0.14		
6012.663	6863.76	2.36	670	0.20		
5997.055	6865.4	2.05	890	0.16		
5997.055	6863.69	2.50	670	0.24		

Table 9: HEC-RAS Effective Model Data

The previous conditions indicate that the channel was functioning properly with the current, three-barrel culvert. However, when this data is compared to more current conditions implies that there could be a possible inaccuracy or instability within the Effective Model.

7.2 Corrective Effective Model

Red Rock Engineering completed an updated hydraulic analysis of the I-17 reach along Sinclair Wash. Utilizing HEC-RAS 5.0.7, a corrective effective model was produced to mimic the current site conditions. The Corrective Effective Model contains a total of 18 cross sections (see Appendix 41) taken every 25 feet from the most upstream end of the study area. Cross sections are also taken 5 feet upstream of the inlet and 5 feet downstream of the outlet for the FUTS triple barrel culverts (see Appendix 42). The 100-year and 50-year storms of 890 CFS and 670 CFS respectively are used as the flow profiles per FEMA FIS. Refer to Appendix 43 and 44 for crosssection and culvert summary tables. A 3D image of the model can be found in Appendix 45. The cross-sectional data for the model can be seen in Appendix 46. Pertinent data from the corrected and effective model can be seen below in Table 10.

	HEC-RAS Corrected Effective Model Data							
Station	W.S Elevation (ft)	Velocity (ft/s)	Q (ft^3)	Froude #				
10+00	6862.04	6.06	890	0.67				
10+00	6861.62	5.47	670	0.65				
10+25	6862.38	4.84	890	0.45				
10+25	6861.93	4.21	670	0.42				
10+25	6862.41	5.07	890	0.12				
10+30	6961.96	4.43	670	0.47				
10+90	6871.12	1.28	890	0.07				
10+89	6870.76	1.00	670	0.05				
11+04	6871.13	1.21	890	0.06				
11+04	6870.77	0.94	670	0.05				
11+29	6871.43	1.11	890	0.06				
11+29	6870.77	0.87	670	0.05				
11+54	6871.14	0.95	890	0.05				
11+54	6870.77	0.74	670	0.04				
11+79	6871.14	0.94	890	0.05				
11+79	6870.77	0.73	670	0.04				
12+04	6871.14	0.85	890	0.05				
12+04	6870.77	0.67	670	0.04				
12+29	6871.14	0.76	890	0.04				
12+29	6870.78	0.60	670	0.03				
12+54	6871.15	0.70	890	0.04				
12+54	6870.18	0.55	670	0.03				
12+79	6871.15	0.66	890	0.04				
12+79	6870.78	0.52	670	0.03				
13+04	6871.15	0.65	890	0.03				
13+04	6870.78	0.51	670	0.03				
13+29	6871.15	0.66	890	0.04				
13+29	6870.78	0.52	670	0.03				
13+54	6871.15	0.66	890	0.04				
13+54	6870.78	0.52	670	0.03				
13+79	6871.15	0.67	890	0.04				
13+79	6870.78	0.52	670	0.03				
14+04	6871.15	0.67	890	0.04				
14+04	6870.18	0.52	670	0.03				
14+29	6871.15	0.70	890	0.04				
14+29	6870.78	0.55	670	0.03				

Table 10: HEC-RAS Corrected Effective Model Data

When comparing the current conditions (corrective effective model) of the channel to the previous conditions (effective model) it is clear that the channel no longer functions properly with the current three-barrel culvert. In the Corrected Effective model immediately downstream of the culvert, at station 10+30, the velocity and Froude numbers increase, while the water surface elevation values decrease for the design (670) and check (890) storms. This data indicates that the culverts are severely undersized and are ponding just upstream of the culvert, causing overtopping of the FUTS.

7.3 Culvert Design

Typically, the 25 year and 100-year storm events would be used for the design and check storm, respectively. However, no data could be found for the 25-year storm. The 10- and 50-year flow were interpolated to determine an estimate for the 25-year storm. Due to this estimation and the requirement by Flagstaff that the 100-year water surface elevation cannot be exceeded, data from the check storm will be used for each culvert to compare and finalize a design.

The current culvert has multiple issues. These include, two of three barrels being blocked by debris, and a scour pool at the outlet. The team determined that the debris at the inlet of the culverts is due to high headwater which decreases the waters velocity. When the velocity decreases all suspended particles and debris begin to settle at the inlet. Due to this the team concluded that the new design should not increase the current headwater levels. In addition, Flagstaff mandates that the water surface elevation cannot exceed the 100-year water surface elevation. After research was done the maximum water surface elevation was determined to be 6864.4 feet. The scour pool is occurring due to a high velocity exiting the culvert. In addition there is no channel protection to combat the high velocity. The team will refer to Flagstaff requirements for culverts to ensure that the new design velocity is acceptable and if needed will also design channel protection for the outlet.

Appendices 47 - 48 show the Culvert Master reports for the current culvert. Due to 2 of the 3 culverts being blocked the CulvertMaster model has a single 30" culvert. It can be seen in the results from the reports that the current culvert is inadequate. For the design and check storm the culvert is only carrying 7% and 4% of the discharge, respectively. Based on this model Red Rock Engineering determined that large and multiple barrel culverts will be needed to convey the 25-and 200-year storm events.

Three alternative culvert designs were chosen. The first design is a six-barrel CMP culvert with a diameter of 96 inches. The second design will be a 9–foot high by 12-foot long, triple box culvert. The final design will be a three-barrel three-sided culvert with sized at 9–foot high by 12-foot long. CulvertMaster does not have an option to model a 3-sided culvert, the team modeled the bridge as a triple box culvert. The manning's value was changed from .013 for concrete to .04 to match the natural channel bed.

Each design was initially modeled in Culvert Master and the following results were found. See Appendices 49–51 for culvert designer/analyzer reports. See Table 11 for culvert master data.

Corrected Effective Culvert						
Storm Interval	H.W. Elevations (ft)	Velocities (ft/s)	Discharge (cfs)	Control	Flow Regime	
100-yr (890cfs)	6864.84	7.76	114.31	Outlet	N/A	
Six CMP Barrel Culverts						
100-yr (890cfs)	6864.4	8.5	890	Outlet	Subcritical	
	Three Concrete Box Culverts					
100-yr (890cfs)	6864.26	9.84	890	Inlet	Supercritical	
3-Sided Bridge						
100-yr (890cfs)	6864.62	9.27	890	Outlet	Subcritical	

The headwater elevation was used to determine if the culvert caused the headwater to increase above the allowable water surface elevation. The velocity was compared to standards set by Flagstaff channels to ensure they are in compliance. Discharge was recorded for all culvert options as well to ensure the culvert was not undersized. Culvert control was also recorded in addition to the flow regime. Following this, a decision matrix was used to analyze the data.

The team created the decision matrix with 4 criteria, upstream water surface elevation, downstream velocity, aesthetics, and cost. The upstream water surface elevation and downstream velocity were the most important to ensure the culvert design was in compliance and thus were weighted at 0.3 each. The next most important aspect was the cost, this was weighted at 0.25. Aesthetics were considered as well and weighted at 0.15. A value of 3 was given for the least increase in upstream headwater surface elevation, a score of 1 was given for the most increase. A value of 3 was given for the least increase in upstream velocity, a score of 1 was given for the most increase. The most aesthetically pleasing received a score of 3 and the least received a score of 1. The least expensive option was given a 3 and the most expensive was given a 1. See Appendix 52 for cost calculations for each design.

The following decision matrix in Table 12 was used to determine which design produced optimal results. This design was implemented in HEC-RAS and used to model the proposed solution.

Alternatives	Upstream Water Surface	-		Cost	TOTAL
Weights	0.3	0.3	0.15	0.25	1
Six Barrel "96	1	2	1	3	1.8
Tripple Box Culvert	3	1	2	2	2
3-Sided Bridge	2	3	3	1	2.2

 Table 12: Culvert Design Decision Matrix

The triple barrel, 3-sided culvert received the highest score. It had the highest water surface elevation, and the second-best velocity. It scored the best in both aesthetics and cost. The water surface elevation was higher than the 100-year storm, but this will be addressed in the HEC RAS model where the team will be able to adjust the channel and the culvert to ensure the water surface elevation is below the 100-year storm event. In addition, the velocity is still considered to be high according to Flagstaff and channel protection will need to be implemented.

7.4 Proposed HEC RAS Model

The proposed HEC-RAS model was created by modifying the Effective corrected model to include the proposed triple barrel three-sided culvert, as well as channel cross section modifications. Per FEMA FIS the 100-year, 50-year, and 25-year storm events at 890 Cfs, 670 cfs and 470 cfs respectively are used for the flow profiles in HEC-RAS. In addition to the proposed tipple barrel three-sided box culvert several cross sections needed to be modified to form a more trapezoidal channel cross section. This was done to reduce the water surface elevation (WSE) further below the FEMA FIS specified 100-year storm value of 6864.5 ft. The FEMA FIS Sinclair wash water surface elevation chart that was used to find this value can be seen in Appendix 53.

The cross sections were only modified between overbank locations to attempt to preserve the original form of the channel as well as to minimize earthwork. During the design it was also determined that the current FUTS trail that parallels the study reach of Sinclair wash needed to be raised several feet, as the existing trail is below the FEMA specified 100-year WSE. Calculations were performed in excel to raise the FUTS trail while still maintaining the existing slopes to the overbank and road locations for each cross section. In order to preserve the natural meander and form in the majority of the channel reach, large cross section modifications were limited to 50 feet upstream and downstream of the proposed culvert to include from cross sections 11+29 to 10+00.

Although large geometric changes were limited, it was determined the thalweg through the study reach had minimal to no slope in sections, to rectify this thalweg elevations in every cross section were changed so the thalweg slope matches the overall average slope of the channel reach. Refer to Appendix 54 – 55 for the cross-section and culvert diagrams. Refer to Appendix 56 and 57 for the cross-section and culvert summary tables. The 3D HEC-RAS rendering of the proposed channel can be found in Appendix 58. Seen below in Table 13 is pertinent data from the Proposed HEC-RAS model, all values are in compliance with both FEMA-FIS and City of Flagstaff design standards.

	HEC-RAS Proposed Model Data						
Station	W.S. Elev (ft)	Velocity (ft/s)	Q Total (ft ³ /s)	Froude #			
14+29	6863.63	1.55	890	0.12			
14+29	6862.91	1.36	670	0.12			
14+04	6863.62	1.63	890	0.13			
14+04	6862.9	1.45	670	0.13			
13+79	6863.62	1.4	890	0.11			
13+79	6862.9	1.21	670	0.1			
13+54	6863.61	1.38	890	0.1			
13+54	6862.89	1.2	670	0.1			
13+29	6863.6	1.48	890	0.12			
13+29	6862.88	1.3	670	0.11			
13+04	6863.6	1.37	890	0.1			
13+04	6862.88	1.2	670	0.1			
12+79	6863.6	1.21	890	0.09			
12+79	6862.88	1.03	670	0.08			
12+54	6863.6	1.26	890	0.09			
12+54	6862.88	1.07	670	0.08			
12+29	6863.58	1.39	890	0.1			
12+29	6862.87	1.18	670	0.09			
12+04	6863.57	1.49	890	0.1			
12+04	6862.86	1.26	670	0.09			
11+79	6863.54	1.98	890	0.15			
11+79	6862.83	1.72	670	0.14			
11+54	6863.53	1.96	890	0.14			
11+54	6862.82	1.67	670	0.13			
11+29	6863.51	2.07	890	0.14			
11+29	6862.81	1.75	670	0.13			
11+04	6863.47	2.45	890	0.18			
11+04	6862.78	2.09	670	0.16			
10+89	6863.46	2.49	890	0.18			
10+89	6862.77	2.11	670	0.16			
10+30	6858.85	7.36	890	0.77			
10+30	6858.4	6.57	670	0.73			
10+25	6858.84	6.36	890	0.64			
10+25	6858.37	5.67	670	0.62			
10+00	6858.67	6.41	890	0.67			
10+00	6858.18	5.82	670	0.66			

Table 13: HEC-RAS Proposed Model Data

8.0 Plan Set

The final plan set can be found in Appendix 59. This was sent directly to the client. The cover page details the location of the project and identifies the page numbers and the corresponding sheets. The plan sheet shows the existing plan view of the section of the Sinclair Wash, in addition to the proposed plan view. The profile sheets have a profile view of each cross section and the thalweg. Identified on each are the existing and proposed surface. Following the profile sheets are a channel details and culvert details sheet. The channel details sheet has callouts for all changes along the reach of the channel. The culvert details sheet has a plan and profile view of the culvert with dimensions and relevant information for the client and construction team.

8.1 Site Changes

There were multiple issues with the existing section of the wash that have been addressed in the proposed design. First, the FUTS was at an elevation 2 feet below the 100-year water surface elevation. The proposed design has raised the FUTS to increase usability during storm events. The three-sided culvert was also implemented in the design and replaces the existing triple barrel culverts. Directly north and south of the culvert the FUTS is proposed to slope up to meet the top of the three-sided culvert. Based on the exit velocity of the culvert, riprap will be used to protect the channel bed at the outlet from a scour pool. In addition, gravel will be added to the top of the three-sided culvert as it will be used as a crossing of the FUTS. For safety reasons, railings will be implemented on the crossing as well. Multiple low points throughout the channel reach will be filled in the proposed design. In the existing profile it can be seen that the thalweg upstream of the culvert had no slope. This was adjusted in the final design so that the entire channel has a consistent slope throughout to allow the water to convey through the channel and not pond. The jump seen in the thalweg profile is due to the culvert and will not actually be implemented in place, rather the consistent slope will still be utilized. In the 50 feet before and after the culvert the channel is proposed to be modified into a trapezoidal shape. This was done to increase the capacity of the channel and reduce the water surface elevation upstream to below the 100-year water surface elevation. Minimal modifications outside of the 50-foot range were made to allow the Sinclair wash to naturally flow and restore itself. The velocities calculated by HEC-RAS fell in the range of 4.0 to 10.0 feet per second, outlet armoring in the form of dumped rock riprap is required by the City of Flagstaff Stormwater design manual. The median riprap size (D50)

calculated per the city of Flagstaff standards is determined to be 11.5 inches. The length of the apron was also calculated in accordance with the City of Flagstaff and determined to be 104 feet. Since there is a well-defined channel downstream of the apron, no width was required to be calculated, instead width was assumed to be the width of the channel bed.

9.0 Summary of Engineering Work

The proposed and completed schedules for the restoration work have been provided in the following sections, respectively.

9.1 Proposed Schedule

The proposed schedule for the project can be seen in Appendix 60. This schedule was produced with the intention to complete all the technical work by the 60% submittals.

9.2 Project Schedule

The completed schedule for the project can be seen in Appendix 61. The schedule was altered to account for delays in laboratory access and weather conditions. The majority of the technical work was completed between the 30% and 90% submittals.

10.0 Summary of Engineering Costs

The completed staffing hours and cost of construction have been detailed in the following sections, respectively.

10.1 Staffing Hours

The completed staffing hours can be seen in Table 14 below. A complete breakdown of the hours for each position can be seen in Appendix 62.

	-				
Final Staffing Summary					
Position	Hours				
Senior Engineer	108				
Project Engineer	170				
Laboratory Technician	103				
Intern	117				
Total	498				

Table 14: Final Staffing Hour Summary

A total of 498 hours were spent on the completion of this project. This total is relatively close to the anticipated hours of 502, as seen in Table 15 below.

Proposed Staffing Summary					
Position	Hours				
Senior Engineer	95				
Project Engineer	182				
Laboratory Technician	79				
Intern	146				
Total	502				

Table 15: Proposed Staffing Hour Summary

The team initially anticipated the intern and project engineer would complete the majority of hours. However, the laboratory technician and senior engineer ended up completing more hours due to the significant technical work required for this project.

10.2 Cost of Construction

The cost of construction includes a line item break down of the revegetation, culvert, and earthwork cost needed to implement the proposed solution. The cost to construct the project can be seen in Table 16 below.

Item	Unit	Unit Price	Quantity/Area	Subtotal			
Revegetation							
Clearing & Grubbing	acre	\$4,037.50	0.316	\$1,275.85			
Tree Removal	per tree	\$800.00	87	\$69,600.00			
Misc. Work (Noxious Plant Control – Manual)	yd ²	\$0.70	7637.035	\$5,345.92			
Misc. Work (Noxious Plant Control – Herbicide)	yd ²	\$0.39	7637.035	\$2,978.44			
Seeding (Area > 1-acre)	acre	\$5,537.73	1.52	\$8,417.35			
Th	ree Culvert	ts (12 × 9)					
Gravel	ton	\$40.00	9.867	\$394.68			
Contractor Quality Control	L.Sum	\$31,051.13	1	\$31,051.13			
Construction Survey & Layout	L.Sum	\$20,000.00	1	\$20,000.00			
Box Culvert & Labor	L.F.	\$1,540.50	45	\$66,915.00			
Wingwalls & Labor	L.F.	\$3,562.00	4	\$14,248.00			
	Earthw	ork					
Excess Dirt Removal & Disposal	yd ³	\$47.15	270.65	\$12,761.15			
Cut & Fill	yd ³	\$8.00	3112.93	\$24,903.44			
Riprap (Dumped)	yd ³	\$190.24	154	\$29,296.96			
TOTAL COST	SUB17.1 SUB17.1 SUB17						

Table 16: Cost of Construction

The final construction cost calculated for completion of this project is \$287,187.93.

10.3 Cost of Engineering Work

The cost of engineering work is categorized by personnel work, laboratory facility usage, and required project supplies. The proposed cost of engineering work can be seen in Table 17 below.

Proposed Cost of Engineering Services Summary						
	Classification	Hours	Rate (\$/Hour)	Cost		
	Senior Engineer	95.25	\$218.79	\$20,840		
Personnel	Project Engineer	182	\$141.68	\$25,786		
	Lab Technician	79	\$98.01	\$7,743		
	Intern	146	\$32.13	\$4,691		
Subtotal				\$59,059		
Lab Facilities	Classification	Days	Rate (\$/Days)	Cost		
	Geotechnical Lab	3	\$100.00	\$300		
Subtotal				\$300		
	Classification	Quantity	Rate (\$/Quantity)	Cost		
Supplies	Shovel	4	\$50.00	\$200		
	Gallon Ziplock Bags	25	\$0.13	\$3		
Subtotal	\$203					
	\$59,563					

Table	17.	Droposod	Cost	of Engin	oovina	Work
rubie	1/.	Proposed	COSi	0j Engin	ieering	WOIN

The proposed cost of engineering services was anticipated to be \$59,563. While the final cost of the project didn't include a supplies section, the final cost still came out above the anticipated. The final cost can be seen in Table 18 below.

Final Cost of Project							
	Classification	cation Hours Rate (\$/Hour)		Cost			
	Senior Engineer	108	\$218.79	\$23,575			
Personnel	Project Engineer	1	\$141.68	\$24,060			
	Lab Technician	103	\$98.01	\$10,136			
	Intern	117	\$32.13	\$3,768			
Subtotal				\$61,538			
Lab Facilities	Classification	Days	Rate (\$/Days)	Cost			
	Geotechnical Lab	17	\$100.00	\$1,700			
Subtotal	\$1,700						
	\$63,239						

Table 18: Final Cost of Engineering Work

The final cost of engineering services amounted to \$63,239. The majority of the cost resides in the personnel work at \$61,538, followed by the lab facility use at \$1,700. The cost for the engineering services comes out to \$3,676 above the anticipated amount, due to the additional lab

time required to complete the geotechnical work and increase in senior engineer and lab technician hours. A breakdown of personnel work can be seen in Appendix 63.

11.0 Impacts

The team completed an impact analysis for the proposed design. The information collected from this impact analysis will be provided to stakeholders to ensure satisfactory project completion and benefits to all parties involved. Social, environmental, and economic impacts were analyzed for achieving the triple bottom line.

11.1 Social

Restoration of the Sinclair Wash will have significant social impacts during and following restoration completion. Negative impacts are expected during construction operations as the geomorphologic design impacts nearby establishments. These impacts are anticipated to become positive following implementation of the design due to improved guidance of stormwater runoff and improvement of natural growth surrounding the channel. Improvements are anticipated to increase foot traffic, safety, and overall usability of the site.

Commute through Northern Arizona University campus along E McConnell Dr. between the I-17 overpass and WA Franke College of Business will be significantly impacted. The I-17 offramp intersecting E McConnell Dr. will also be impacted as this off-ramp may require closure to minimize commute through this area. Individuals commuting through this area will have to utilize alternate routes during wash restoration as the removal and replacement of culverts may necessitate heavy machinery requiring spatial accommodation. This is expected to greatly impact commuters as additional time may have to be budgeted to reach destinations using alternate routes. Nearby establishments will receive secondhand effects of road closures as visitation to these organizations may decrease dramatically during restoration. Employees of these establishments will be required to use alternate routes and budget accordingly to arrive to work on time. Residents within proximity to the restoration area will also be affected as they would have to use alternate routes multiple times daily until restoration has been completed. Frequent users of the Flagstaff Urban Trail System will have to plan accordingly as this section of the trail will be closed during construction. Increased foot traffic is anticipated following restoration as this segment of the Sinclair Wash will become more aesthetically pleasing. The aesthetic appearance of the area will be enhanced following removal of debris and flourishment of native flora. This will encourage ecotourism throughout the Sinclair Wash as well as promote usage of the Flagstaff Urban Trail System. Another important component to augmented safety includes compacted dirt with the installation of replacement culverts. Compacted dirt will reduce the potential for injuries by increasing the frictional force between objects coming into contact with the trail. This minimizes the possibility of runners slipping or bicycle wheels losing traction. Safety would also be augmented due to the removal of debris. This would reduce the level of toxins within the area and ultimately minimize disbursement of bacteria. As a final safety measure, railings will be implemented on the crossing of the wash.

11.2 Environmental

Restoration of the Sinclair Wash necessitates considerable environmental impacts. These environmental impacts include removal of debris as well as reduction of invasive and noxious species. The removal of debris will ultimately improve water quality by reducing the level of toxins being transported via flow through the channel. Reduction of invasive and noxious species will allow for native species to repopulate. Downstream of the section of the wash will also see a decrease in invasive and noxious species as seeds from this section of the reach will not be transported downstream.

The primary concern of wash restoration from the environmental perspective is the removal of debris. Elimination of debris will improve flow within the channel by reducing blockage and permitting natural flow. Removing debris from the channel reach will also improve water quality by reducing toxins and bacteria transported through the wash. Compacting soil within the channel reach and surrounding the replacement culverts will further reduce aggradation and degradation. This minimizes erosion by reducing the amount of sediment transported throughout the wash.

Reduction of invasive species will also allow the channel reach to operate naturally and eliminate the possibility of invasive and/or noxious species impacting the growth of native vegetation. Introduction of new, native vegetation will promote growth and expansion of native species to replace the presence of invasive/noxious species. Replacing invasive and noxious flora with native species will also ensure invasive and noxious seeds do not disperse throughout the area.

11.3 Economic

Significant economic impacts are anticipated during completion of the Sinclair Wash. This is primarily due to the budget required for restoration of the channel reach as well as removal and replacement of the existing culverts. Minimal economic impact is anticipated following completion of restoration as commuters and visitors of the area are not required to pay to utilize the area.

Channel restoration as well as removal and replacement of the culverts will have considerable economic impacts. These economic impacts primarily include the purchasing of materials and labor. The replacement culvert materials will generate the greatest economic impact for this project. Cut/Fill material will also need to be purchased to raise the Flagstaff Urban Trail System crossing the channel. Other material that would need to be purchased includes seeding for native fauna following removal of invasive and noxious species. Labor required to complete restoration as well as removal and replacement of culverts will also generate significant economic impacts. This is because labor is required for each phase of the project, including removal, movement, and installation of culverts as well as the removal of debris and native revegetation.

Restoration of the Sinclair Wash will generate economic impacts for local residents. This may include increases in taxes to obtain necessary funds to complete wash restoration. Students attending Northern Arizona University may also notice increases in semesterly costs as the restoration area is located on-campus. Alternative routes implemented during restoration may increase the commuting distance for drivers and ultimately increase the funds they are contributing to gasoline. Nearby establishments may experience negative impacts as commute through this area will be temporarily interrupted. Businesses may experience reduction of sales for goods and services due to temporary road closure.

12.0 Conclusion

Red Rock Engineering has provided the client with a final plan set that has the proposed design. There are construction notes and details included in the plan set to be shared with the construction project manager. The final proposed design is in compliance with Flagstaff City's requirements and is able to convey the 25 and 100 year storm event. At the completion of construction and revegetation, the channel will be restored to its natural riparian habitat, will remain a natural channel with its natural meander intact. The project was completed over budget and on time. Impacts of the proposed project have been thoroughly researched and discussed. Any changes to the plan set provided to the client should be approved by Red Rock Engineering prior to implementation.

13.0 References

- [1] S. B. X. W. Eric Lima, "Sinclair Wash Restoration Project," Northern Arizona University -Engineering Department, Flagstaff, 2020.
- [2] J. B. a. C. Casey, "Native Plants for Northern Arizona Landscapes Draft A," The Arboretum at Flagstaff, Flagstaff, 2000.
- [3] A. O. a. L. E. Epple, A Field Guide to The Plants of Arizona, Conneticut: The Globe Pequot Press, 1995.
- [4] University of Arizona Cooperative Extension and Flagstaff Chapter of the Arizona Native Plant Society, "Northern Arizona Invasive Plants," Coconino County, 2016. [Online]. Available: https://www.nazinvasiveplants.org/by-image. [Accessed 13 January 2021].
- [5] Arizona Game and Fish Deparment, "Airizonas Online Environmental Review Tool," NatureServe, 2021. [Online]. Available: https://ert.azgfd.gov/content/map. [Accessed 24 January 2021].
- [6] Arizona Game and Fish, "Wildlife | Northern Arizona," AZ.gove | Arizona Game and Fish Department, 2021. [Online]. Available: https://www.azgfd.com/wildlife/viewing/wheretogo/north/. [Accessed 24 January 2021].
- [7] C. L. a. A. Najjar, "Feasibility Analysis for Stream revitalization and Electronic Monitoring," Northern Arizona University, Flagstaff, 2019.

14.0 Appendices

Appendix 1: Safety Plan for Initial Site Investigation

Safety Plan for Initial Site Investigation

Individual Responsibilities

Kylie Hemmele

To ensure my safety during the site investigation, I will wear bright, obvious clothing and a safety vest. I will also refrain from crossing streets, however if I must cross a street I will cross in a legal manner. Also, when I am near the street, I will stand clear of the street by either standing on a sidewalk or when a sidewalk is not present, standing a minimum of three feet away from the street edge. I will take notes while in the field on the following tables.

Stephanie Seymour

To ensure my safety during the site investigation, I will rent a safety vest and wear clothes that are appropriate for the weather and allow me to be easily seen. In addition, I will only cross the street when needed and when legally allowed to do so. I will also be located in an area that is easily seen yet at least three feet away from the street edge. I will take photographs of the site to back up any notes we take.

Protective Clothing

Our team will wear protective clothing whenever in the field. We will use the safety vests. This will ensure our team is visible no matter what time of day we are in the field. Our team will also ensure we are dressed appropriately for the weather conditions during our time in the field.

Location and Time

Our team will be doing a site investigation at the designated reach of the Sinclair Wash near McConnell Dr and Pine Knoll Dr at 10:30 a.m. on Saturday, October 10, 2020. During this time we will do our initial site investigation and record all observations and pictures in the following pages.

Signatures

Kephi Hane &

10/10/2020

Date

Kylie Hemmele

Sym

Stephanie Seymour

Date

10/10/2020

Appendix 2: Cross Section #1 – Station 0+70 Photographs

Figure 5: Station 0+70 Channel – Downstream

Figure 6: Station 0+70 Channel – Upstream

Appendix 3: Cross Section #2 – Station 1+40 Photographs

Figure 7: Station 1+40 Channel – Downstream

Figure 8: Station 1+40 Channel Embankment

Appendix 4: Cross Section #3 – Station 2+10 Photographs

Figure 9: Station 2+10 Channel – Downstream

Figure 10: Station 2+10 Channel – Upstream

Figure 11: Station 2+10 Channel Debris

Figure 12: Station 2+10 Channel Overgrowth

Figure 13: Station 2+10 Channel Obstruction

Appendix 5: Cross Section #4 – Station 2+80 Photographs

Figure 14: Station 2+80 Channel – Downstream

Figure 15: Station 2+80 Channel – Upstream

Figure 16: Station 2+80 Channel Overgrowth

Figure 17: Station 2+80 Channel Debris

Red Rock Engineering

Figure 18: Station 2+80 Channel Conditions

Appendix 6: Cross Section #5 – Station 3+50 Photographs

Figure 19: Station 3+50 Channel – Downstream

Appendix 7: Culvert Photographs

Figure 20: Culvert Inlets

Figure 21: Culvert Outlets

Figure 22: Left (South) Culvert Outlet

Figure 23: Center Culvert Outlet

Figure 24: Right (North) Culvert Outlet

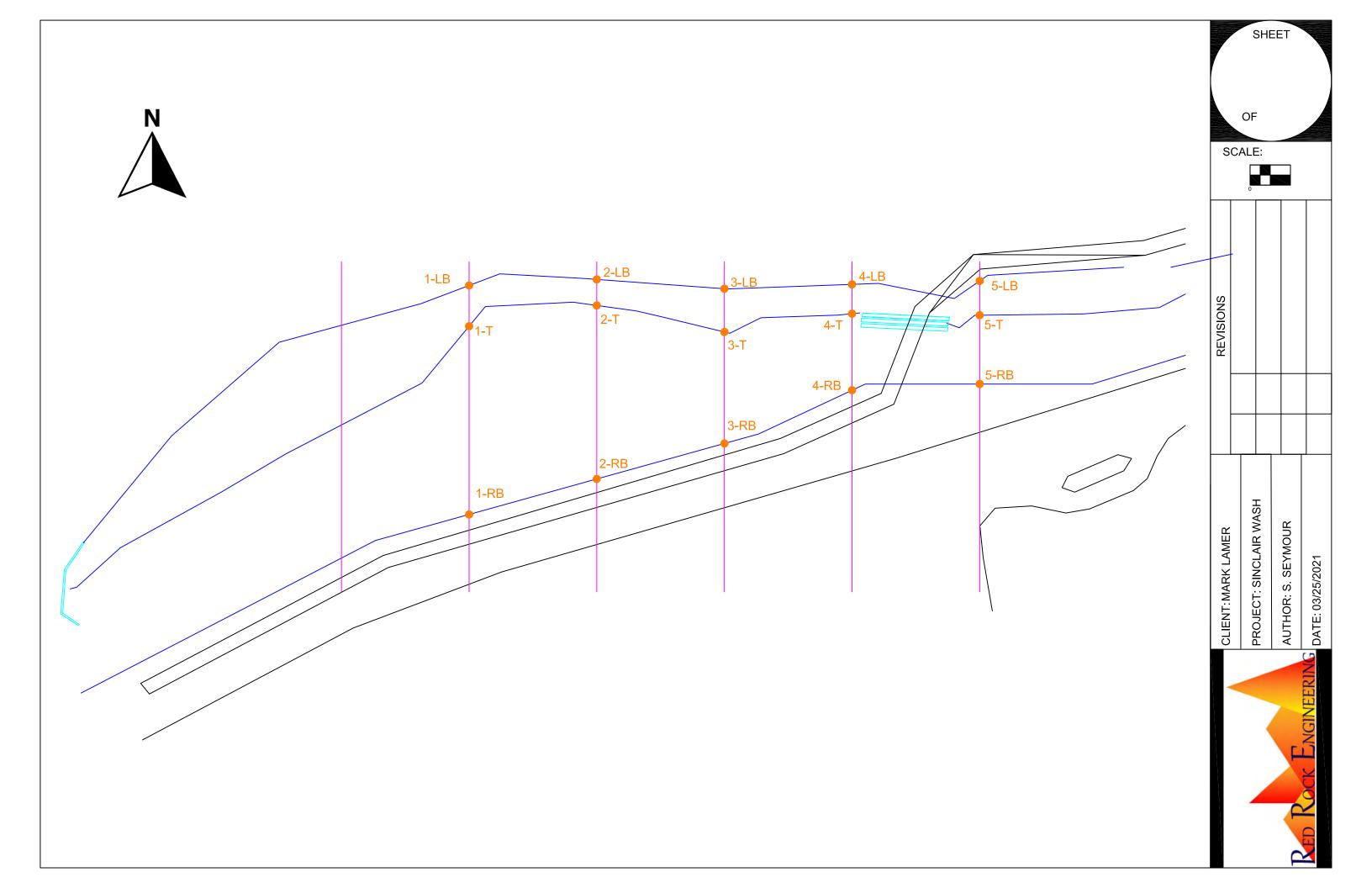


Figure 25: Culvert Inlet Obstruction

Figure 26: Culvert Inlet Conditions

Appendix 8: Field Sampling Plan

Appendix 9: Soil Sampling Photos

Figure 27: Random Soil Sample Location #1

Figure 28: Random Soil Sample Location #2

Figure 29: Random Soil Sample Location #3

Figure 30: Random Soil Sample Location #4

$R_{\text{ED}} \; R_{\text{OCK}} \; E_{\text{NGINEERING}}$

Figure 31: Random Soil Sample Location #5

Appendix 10: Sample 1 Soil Classification

		Mass	Mass of Sieve				
Sieve	Sieve	of Sieve,	and Retained	Mass of Sample,	Percent Mass	Cumulative Mass	
#	Opening (mm)	A (g)	Sample,	Wn (g) A-B	Retained, Rn	Retained, Rn	Percent Finer
4	· /	empty	B (g)				
4	4.75	773.7	2153.7	1380	60.3	60.3	39.7
10	2	447	734.9	287.9	12.6	72.9	27.1
20	0.85	381.3	642.6	261.3	11.4	84.3	15.7
40	0.425	395.3	395.3	0	0.0	84.3	15.7
60	0.25	343.6	411.2	67.6	3.0	87.3	12.7
150	0.106	337.7	442.3	104.6	4.6	91.8	8.2
200	0.075	326.1	391.3	57.7	2.5	94.4	5.6
Pan	NA	369.8	491.4	129.1	5.6	100.0	0.0
Sum	XX	XX	Wts =	2288.2			

Table 19: Sieve Analysis Raw Data – Sample 1

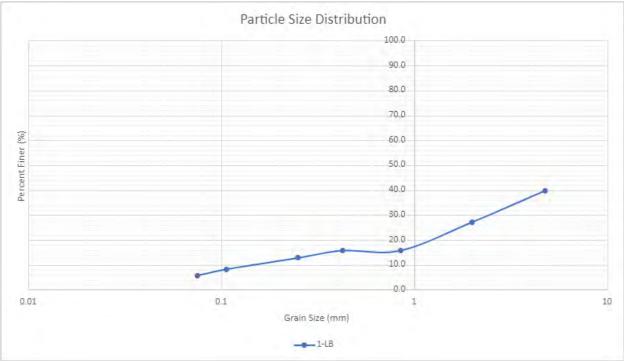


Figure 32: Particle Distribution Curve – Sample 1

	Sample 1						
Cross Section	0+70	1					
Location/Name	Left of Bank	1-LB					
Moisture Can ID	1	2	3	4	5		
Mass of Can, (g)	19.8	13.1	13.7	14.1	13.5		
Mass of Can and Moist Sample, (g)	43.7	39.1	35.5	43.7	46		
Mass of Can and Dry Sample, (g)	36.4	31.5	29.6	35.6	38.3		
Moisture Content, (%)	44.0	41.3	37.1	37.7	31.0		
Number of Drops, N	6	22	30.0	37	50		
Liquid Limit	39						

Table 20: Liquid Limit Raw Data – Sample 1

Table 21: Plastic	: Limit Rav	v Data – S	Sample 1
-------------------	-------------	------------	----------

Sample 1						
Cross Section	0+70	1				
Location/Name	Left of Bank	1-LB				
Mass of Can, (g)	13.9	13.9	19.9			
Mass of Can and Moist Sample, (g)	14.9	14.6	20.6			
Mass of Can and Dry Sample, (g)	14.8	14.4	20.3			
Moisture Content, (%)	11.1	40.0	75.0			
Plastic Limit	42.0					

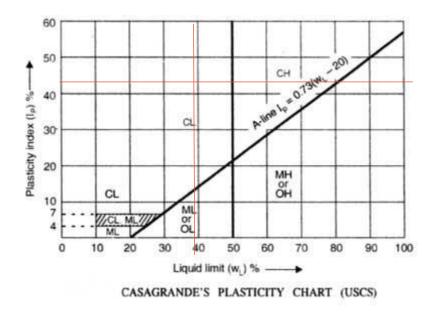


Figure 33: Casagrande's Plasticity Chart - Sample 1

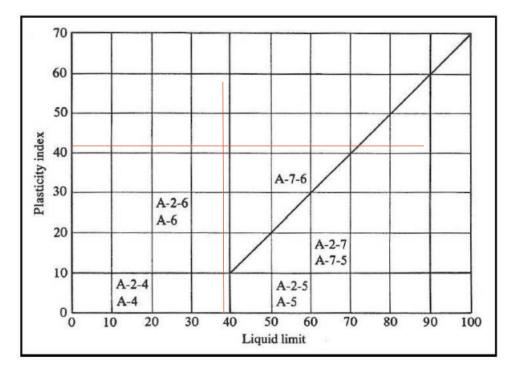


Figure 34: AASHTO Classification Chart - Sample 1

Appendix 11: Sample 2 Soil Classification

					Percent		
	Sieve	Mass of	Mass of Sieve	Mass of	Mass	Cumulativ	
	Openin	Sieve,	and	Sample,		e Mass	
Sieve #	g	A (g)	Retained	Wn (g)	Retaine	Retained,	Percent
	(mm)	empty	Sample, B (g)	A-B	d, Rn	Rn	Finer
4	4.75	515.1	678.9	163.8	8.8	8.8	91.2
10	2	469.8	963.8	494	26.6	35.4	64.6
20	0.85	414.6	1021.7	607.1	32.7	68.2	31.8
40	0.425	360.9	631.6	270.7	14.6	82.7	17.3
60	0.25	345.7	434.7	89	4.8	87.5	12.5
150	0.106	338.5	409.2	70.7	3.8	91.3	8.7
200	0.075	318.6	348.5	57.7	3.1	94.5	5.5
Pan	NA	362.5	493.2	102.9	5.5	100.0	0.0
Sum	XX	XX	Wts =	1855.9			

Table 22: Sieve Analysis Raw Data – Sample 2

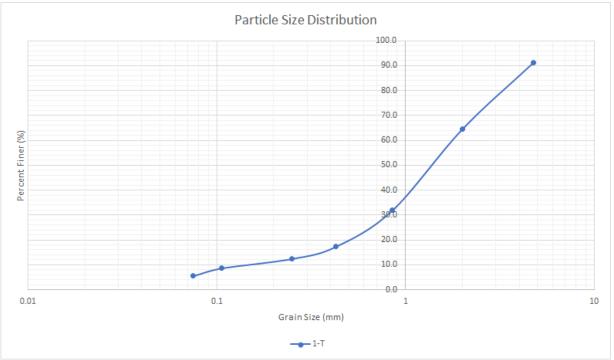


Figure 35: Particle Distribution Curve – Sample 2

	Sample 2						
Cross Section	0+70	1					
Location/Name	Thalweg	1-T					
Moisture Can ID	3	1	5	2	4		
Mass of Can, (g)	13.8	13.1	13.2	13.3	13.1		
Mass of Can and Moist Sample, (g)	16.8	14.8	16.7	16.5	14.9		
Mass of Can and Dry Sample, (g)	15.9	14.3	15.7	15.6	14.4		
Moisture Content, (%)	42.9	41.7	40.0	39.1	38.5		
Number of Drops, N	30	32	40.0	46	49		
Liquid Limit	44						

 Table 23: Liquid Limit Raw Data – Sample 2

Sample 2						
Cross Section	0+70	1				
Location/Name	Thalweg	1 - T				
Mass of Can, (g)	13.5	13.3	13.4			
Mass of Can and Moist Sample, (g)	15.3	15.6	15.6			
Mass of Can and Dry Sample, (g)	14.8	14.9	15			
Moisture Content, (%)	38.5	43.8	37.5			
Plastic Limit	40					

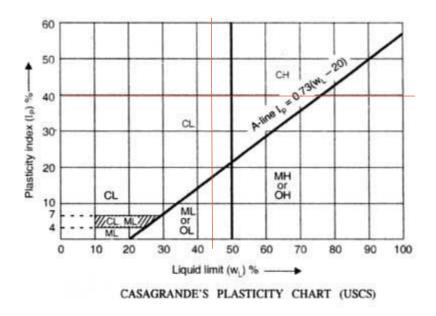


Figure 36: Casagrande's Plasticity Chart - Sample 2

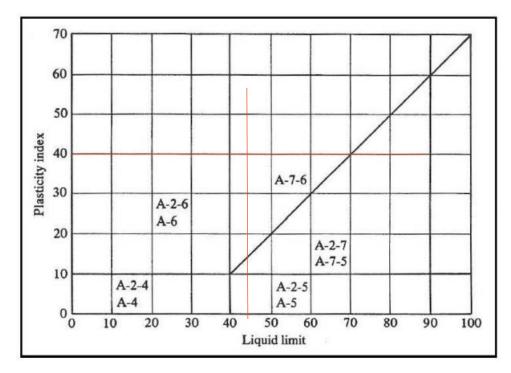


Figure 37: AASHTO Classification Chart - Sample 2

Appendix 12: Sample 3 Soil Classification

	Sieve	Mass of	Mass of Sieve	Mass of	Percent	Cumulativ	
	Openin	Sieve,	and	Sample,	Mass	e Mass	
Sieve #	g	A (g)	Retained	Wn (g)	Retaine	Retained,	Percent
	(mm)	empty	Sample, B (g)	A-B	d, Rn	Rn	Finer
4	4.75	515.1	733.4	218.3	9.9	9.9	90.1
10	2	469.6	897.8	428.2	19.5	29.4	70.6
20	0.85	414.6	893.3	478.7	21.8	51.2	48.8
40	0.425	397	695.2	298.2	13.6	64.8	35.2
60	0.25	345.7	505	159.3	7.3	72.1	27.9
150	0.106	337.7	521.6	183.9	8.4	80.5	19.5
200	0.075	318.5	421.5	70.8	3.2	83.7	16.3
Pan	NA	362.4	688.4	358.2	16.3	100.0	0.0
Sum	XX	XX	Wts =	2195.6			

Table 25: Sieve Analysis Raw Data – Sample 3

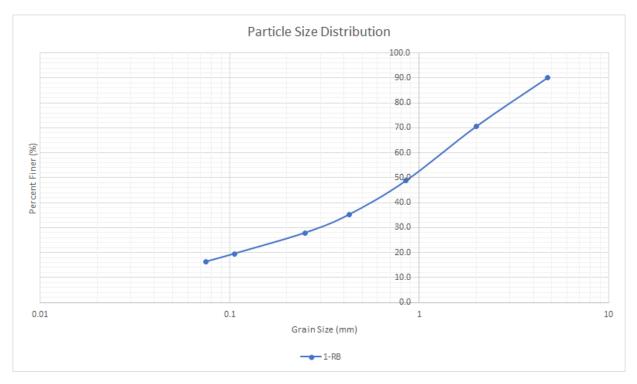


Figure 38: Particle Distribution Curve – Sample 3

	Sample 3						
Cross Section	0+70	1					
Location/Name	Right of Bank	1-RB					
Moisture Can ID	1	2	3	4	5		
Mass of Can, (g)	13.3	13.3	13.7	13.7	13.1		
Mass of Can and Moist Sample, (g)	50.1	53.4	27.1	50.7	41.6		
Mass of Can and Dry Sample, (g)	41	44.1	23.9	42.3	35.6		
Moisture Content, (%)	32.9	30.2	31.4	29.4	26.7		
Number of Drops, N	6	20	37.0	49	80		
Liquid Limit	31						

Table 26: Liquid Limit Raw Data – Sample 3

Table 27: Plastic Limit Raw Data – Sample	3
---	---

San	Sample 3							
Cross Section	0+70		1					
Location/Name	Right of Bank		1-RB					
Mass of Can, (g)		13.1	13.2	19.7				
Mass of Can and Moist Sample, (g)		14.2	16.8	23.9				
Mass of Can and Dry Sample, (g)		14	16	22.9				
Moisture Content, (%)		22.2	28.6	31.3				
Plastic Limit		27						

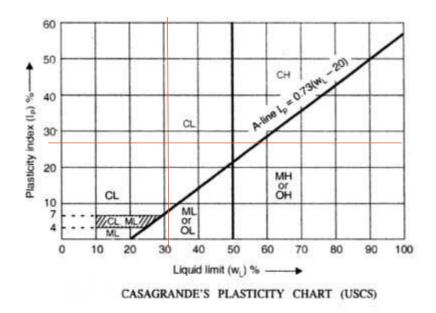


Figure 39: Casagrande's Plasticity Chart - Sample 3

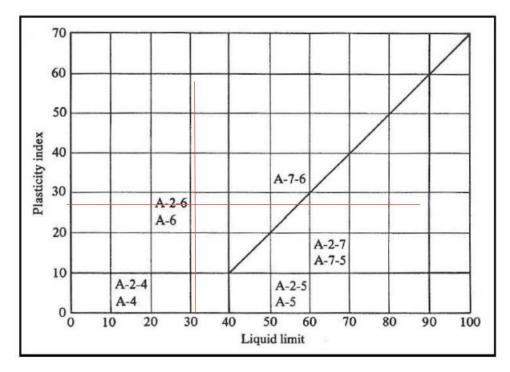


Figure 40: AASHTO Classification Chart - Sample 3

Appendix 13: Sample 4 Soil Classification

					Percent		
	Sieve	Mass of	Mass of Sieve	Mass of	Mass	Cumulativ	
	Openin	Sieve,	and	Sample,		e Mass	
Sieve #	g	A (g)	Retained	Wn (g)	Retaine	Retained,	Percent
	(mm)	empty	Sample, B (g)	A-B	d, Rn	Rn	Finer
4	4.75	769.5	1300.3	530.8	32.7	32.7	67.3
10	2	447.4	816	368.6	22.7	55.4	44.6
20	0.85	394.9	721.3	326.4	20.1	75.5	24.5
40	0.425	391.6	548.6	157	9.7	85.1	14.9
60	0.25	345.7	406.7	61	3.8	88.9	11.1
150	0.106	337.8	410	72.2	4.4	93.3	6.7
200	0.075	296.8	336.3	7.9	0.5	93.8	6.2
Pan	NA	370	438.9	100.5	6.2	100.0	0.0
Sum	XX	XX	Wts =	1624.4			

Table 28: Sieve Analysis Raw Data – Sample 4

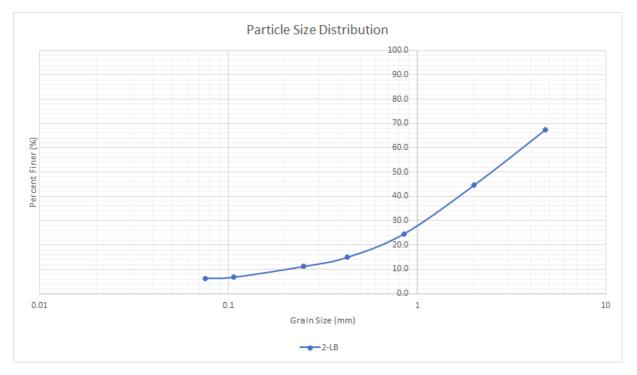


Figure 41: Particle Distribution Curve – Sample 4

	Sample 4				
Cross Section	1+40	2			
Location/Name	Left of Bank	2-LB			
Moisture Can ID	1	5	2	4	3
Mass of Can, (g)	14.1	13.5	13.6	13.3	13.4
Mass of Can and Moist Sample, (g)	16.4	16.5	17.1	15.6	17.9
Mass of Can and Dry Sample, (g)	15.8	15.8	16.2	15	16.8
Moisture Content, (%)	35.3	30.4	34.6	35.3	32.4
Number of Drops, N	31	37	42.0	46	50
Liquid Limit	34				

Tahle	29.	Liquid	Limit	Raw	Data -	Sample 4
rubie	49.	ычий	Limii	nuw	Duiu -	- Sumple +

Table 30: Plastic Limit Raw Data – Sample 4

Sample 4				
Cross Section	1+40		2	
Location/Name	Left of Bank		2-LB	
Mass of Can, (g)		14.5	13.5	12.3
Mass of Can and Moist Sample, (g)		16.1	15.4	14.4
Mass of Can and Dry Sample, (g)		15.7	14.9	13.9
Moisture Content, (%)		33.3	35.7	31.3
Plastic Limit		33		

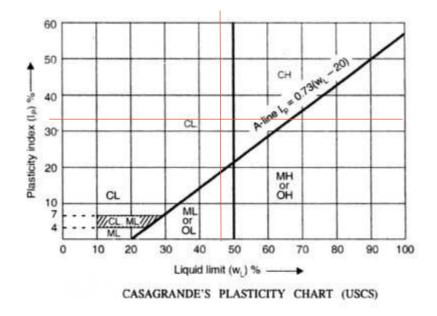


Figure 42: Casagrande's Plasticity Chart - Sample 4

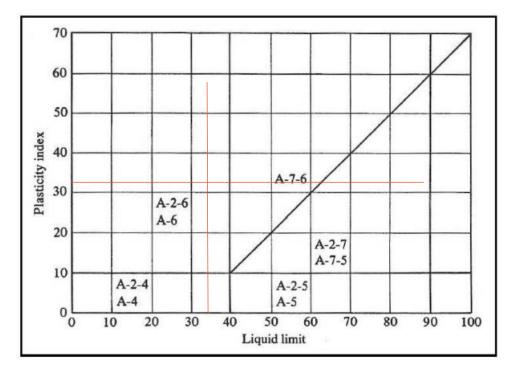


Figure 43: AASHTO Classification Chart - Sample 4

Appendix 14: Sample 5 Soil Classification

Sieve #	Sieve Openin g (mm)	Mass of Sieve, A (g) empty	Mass of Sieve and Retained Sample, B (g)	Mass of Sample, Wn (g) A- B	Percent Mass Retained, Rn	Cumulative Mass Retained, Rn	Percent Finer
4	4.75	522.4	1097.4	575	42.9	42.9	57.1
10	2	443.9	768.8	324.9	24.2	67.2	32.8
20	0.85	619.2	813.8	194.6	14.5	81.7	18.3
40	0.425	394.9	472.3	77.4	5.8	87.5	12.5
60	0.25	367.2	401.2	34	2.5	90.0	10.0
150	0.106	338.6	376	37.4	2.8	92.8	7.2
200	0.075	293.2	323.4	21.4	1.6	94.4	5.6
Pan	NA	366.3	432.7	75.2	5.6	100.0	0.0
Sum	XX	XX	Wts =	1339.9			

Table 31: Sieve Analysis Raw Data – Sample 5

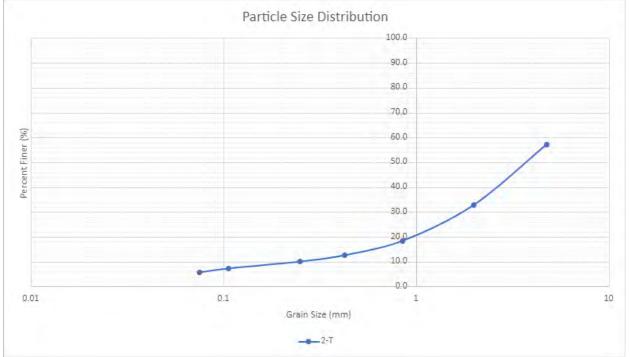


Figure 44: Particle Distribution Curve – Sample 5

Sample 5							
Cross Section	1+40	2					
Location/Name	Thalweg	2-T					
Moisture Can ID	1	2	3	4	5		
Mass of Can, (g)	13.5	13.4	13.4	13.7	13.4		
Mass of Can and Moist Sample, (g)	16	16.9	16.5	24.3	17.3		
Mass of Can and Dry Sample, (g)	15.5	16.2	15.6	21.5	16.3		
Moisture Content, (%)	25.0	25.0	40.9	35.9	34.5		
Number of Drops, N	6	12	24.0	36	43		
Liquid Limit	33						

Table 32: Liquid Limit Raw Data – Sample 5

Table 33: Plastic Limit Raw Data – Sample 5

Sample 5			
Cross Section	1+40	2	
Location/Name	Thalweg	2-T	
Mass of Can, (g)	13.5	13.6	13.3
Mass of Can and Moist Sample, (g)	15.2	16.1	15.9
Mass of Can and Dry Sample, (g)	14.8	15.4	15.2
Moisture Content, (%)	30.8	38.9	36.8
Plastic Limit	36		

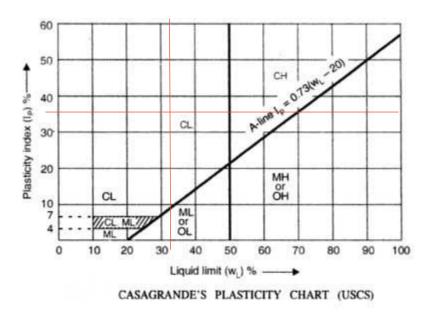


Figure 45: Casagrande's Plasticity Chart - Sample 5

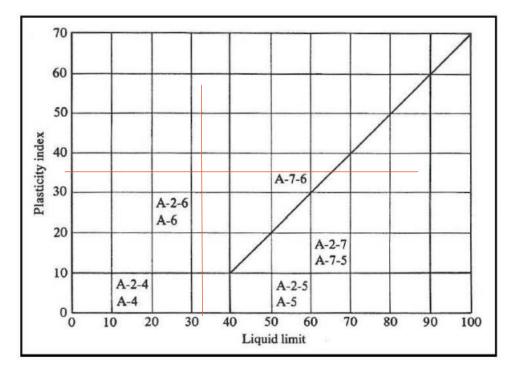


Figure 46: AASHTO Classification Chart - Sample 5

Appendix 15: Sample 6 Soil Classification

Siev	Sieve	Mass of	Mass of Sieve and Retained	Mass of Sample,	Percent Mass	Cumulativ e Mass	
e #	Opening (mm)	Sieve, A (g) empty	Sample, B (g)	Wn (g) A-B	Retained, Rn	Retained, Rn	Percent Finer
4	4.75	774.6	1000.8	226.2	15.2	15.2	84.8
10	2	449.7	872.1	422.4	28.4	43.6	56.4
20	0.85	396.6	764.3	367.7	24.7	68.3	31.7
40	0.425	392.1	589.5	197.4	13.3	81.6	18.4
60	0.25	373.4	452.8	79.4	5.3	86.9	13.1
150	0.106	341.2	424.2	83	5.6	92.5	7.5
200	0.075	299.6	339.6	33.5	2.3	94.7	5.3
Pan	NA	363.6	435.7	78.6	5.3	100.0	0.0
Sum	XX	XX	Wts =	1488.2			

Table 34: Sieve Analysis Raw Data – Sample 6

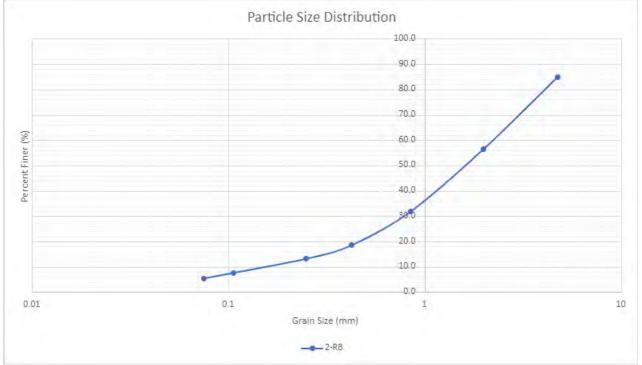


Figure 47: Particle Distribution Curve – Sample 6

RED ROCK ENGINEERING

Sample 6									
Cross Section	1+40	2							
Location/Name	Right of Bank	2-RB							
Moisture Can ID	1	2	3	4	5				
Mass of Can, (g)	13.3	13.3	13.6	13.2	13.3				
Mass of Can and Moist Sample, (g)	19.6	15.3	17	15.6	16				
Mass of Can and Dry Sample, (g)	17.9	14.8	16.1	14.8	15.2				
Moisture Content, (%)	37.0	33.3	36.0	50.0	42.1				
Number of Drops, N	8	15	27.0	35	55				
Liquid Limit	39								

Table 36: Plastic Limit Raw Data – Sample 6

Sample 6	6			
Cross Section	1+40		2	
Location/Name	Right of Bank		2-RB	
Mass of Can, (g)		13.5	13.1	13.3
Mass of Can and Moist Sample, (g)		15.6	15.5	15.1
Mass of Can and Dry Sample, (g)		15	14.9	14.5
Moisture Content, (%)		40.0	33.3	50.0
Plastic Limit		41		

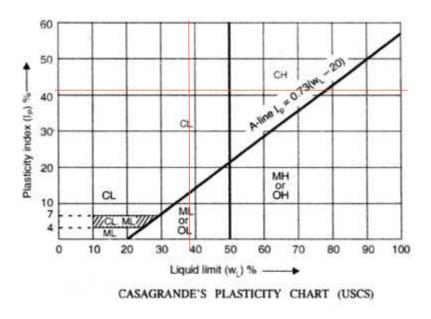


Figure 48: Casagrande's Plasticity Chart - Sample 6

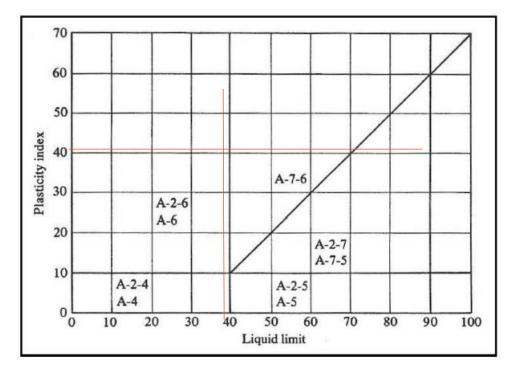


Figure 49: AASHTO Classification Chart - Sample 6

Appendix 16: Sample 7 Soil Classification

Sieve #	Sieve Opening (mm)	Mass of Sieve, A (g) empty	Mass of Sieve and Retained Sample, B (g)	Mass of Sample, Wn (g) A-B	Percent Mass Retained, Rn	Cumulative Mass Retained, Rn	Percent Finer
4	4.75	769.4	1364.7	595.3	30.7	30.7	69.3
10	2	458.8	1011.7	552.9	28.5	59.1	40.9
20	0.85	416.2	811	394.8	20.3	79.5	20.5
40	0.425	381.7	547.9	166.2	8.6	88.0	12.0
60	0.25	349.8	421.8	72	3.7	91.7	8.3
150	0.106	339.1	411.1	72	3.7	95.4	4.6
200	0.075	319	358.4	24.4	1.3	96.7	3.3
Pan	NA	370.8	420.2	64.4	3.3	100.0	0.0
Sum	XX	XX	Wts =	1942			

Table 37: Sieve Analysis Raw Data – Sample 7

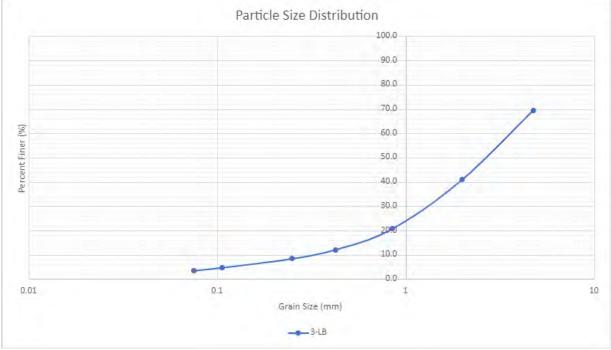


Figure 50: Particle Distribution Curve – Sample 7

Sample 7								
Cross Section	2+10	3						
Location	Left of Bank	3-LB						
Moisture Can ID	1	2	3	4	5			
Mass of Can, (g)	13.6	13.3	13.4	13.6	13.4			
Mass of Can and Moist Sample, (g)	17.7	19.0	18.3	20.6	17			
Mass of Can and Dry Sample, (g)	16.7	17.8	17.2	19.0	16.4			
Moisture Content, (%)	32.3	26.7	28.9	29.6	20.0			
Number of Drops, N	7	24	28.0	43	50			
Liquid Limit	29							

Table 38: Liquid Limit Raw Data – Sample 7

Table 39: Plastic Limit Raw Data – Sample 7

Sample 7				
Cross Section	2+10		3	
Location	Left of Bank		3-LB	
Mass of Can, (g)		13.1	19.7	12.6
Mass of Can and Moist Sample, (g)		15.3	22.0	15.0
Mass of Can and Dry Sample, (g)		15.0	21.3	14.4
Moisture Content, (%)		15.8	43.7	33.3
Plastic Limit		31		

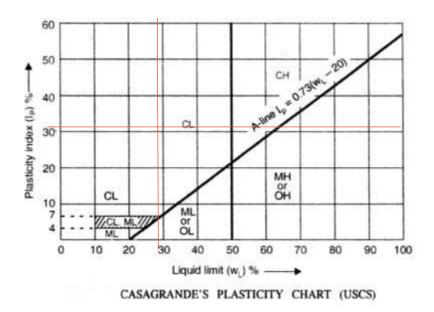


Figure 51: Casagrande's Plasticity Chart - Sample 7

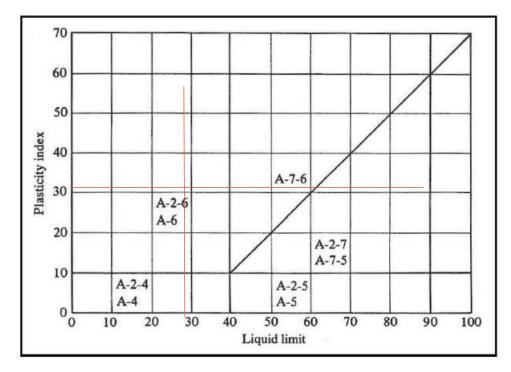


Figure 52: AASHTO Classification Chart - Sample 7

Appendix 17: Sample 8 Soil Classification

Sieve #	Sieve Opening (mm)	Mass of Sieve, A (g) empty	Mass of Sieve and Retained Sample, B (g)	Mass of Sample, Wn (g) A-B	Percent Mass Retained, Rn	Cumulative Mass Retained, Rn	Percent Finer
4	4.75	517.1	1181.2	664.1	39.4	39.4	60.6
10	2	470.8	824.6	353.8	21.0	60.4	39.6
20	0.85	396	633.3	237.3	14.1	74.5	25.5
40	0.425	361	477.3	116.3	6.9	81.4	18.6
60	0.25	347.3	405.1	57.8	3.4	84.8	15.2
150	0.106	345.2	442.5	97.3	5.8	90.6	9.4
200	0.075	536.4	538.2	0	0.0	90.6	9.4
Pan	NA	365.45	521.9	158.25	9.4	100.0	0.0
Sum	XX	XX	Wts =	1684.85			

Table 40: Sieve Analysis Raw Data – Sample 8

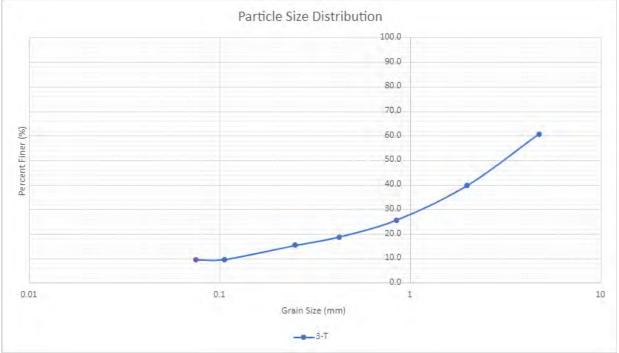


Figure 53: Particle Distribution Curve – Sample 8

Sample 8									
Cross Section	2+10	3							
Location	Thalweg	3-T							
Moisture Can ID	1	2	3	4	5				
Mass of Can, (g)	13.3	13.4	13.6	19.7	13.3				
Mass of Can and Moist Sample, (g)	16	16.7	17	23.9	16.4				
Mass of Can and Dry Sample, (g)	15.2	15.9	16.2	23.0	15.9				
Moisture Content, (%)	42.1	32.0	30.8	27.3	19.2				
Number of Drops, N	8	14	27.0	37	49				
Liquid Limit	31								

Table 41: Liquid Limit Raw Data – Sample 8

Table 42: Plastic Limit Raw Data – Sample 8

Sample 8			
Cross Section	2+10	3	
Location	Thalweg	3-T	
Mass of Can, (g)	13.3	19.5	13.8
Mass of Can and Moist Sample, (g)	15.4	21.6	16.2
Mass of Can and Dry Sample, (g)	14.9	21.2	15.7
Moisture Content, (%)	31.3	23.5	26.3
Plastic Limit	27		

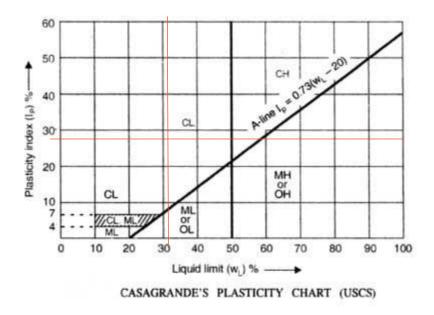


Figure 54: Casagrande's Plasticity Chart - Sample 8

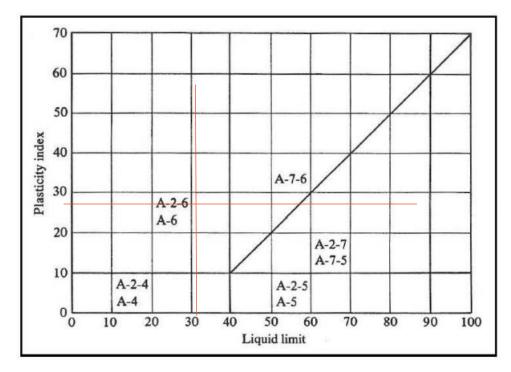


Figure 55: AASHTO Classification Chart - Sample 8

Appendix 18: Sample 9 Soil Classification

			Mass of Sieve				
	Sieve	Mass of	and	Mass of	Percent	Cumulativ	
Sieve	Openin	Sieve,	Retained	Sample,	Mass	e Mass	
#	g	A (g)	Sample,	Wn (g) A-	Retained,	Retained,	Percent
	(mm)	empty	B (g)	В	Rn	Rn	Finer
4	4.75	772.4	1082.3	309.9	20.8	20.8	79.2
10	2	454.3	882.2	427.9	28.7	49.5	50.5
20	0.85	631.4	946.2	314.8	21.1	70.7	29.3
40	0.425	397	528.1	131.1	8.8	79.5	20.5
60	0.25	373.2	443.1	69.9	4.7	84.2	15.8
150	0.106	338.7	430.3	91.6	6.1	90.3	9.7
200	0.075	298.7	341.1	34.1	2.3	92.6	7.4
Pan	NA	365.5	467.4	110.2	7.4	100.0	0.0
Sum	XX	XX	Wts =	1489.5			

Table 43: Sieve Analysis Raw Data – Sample 9

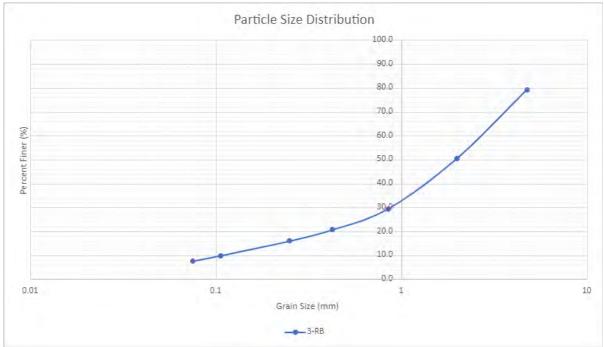


Figure 56: Particle Distribution Curve – Sample 9

	Sample 9				
Cross Section	2+10	3			
Location	Right of Bank	3-RB			
Moisture Can ID	1	2	3	4	5
Mass of Can, (g)	13.3	13.6	12.9	19.7	13.1
Mass of Can and Moist Sample, (g)	17	14.6	14.9	28.1	15.9
Mass of Can and Dry Sample, (g)	15.9	14.4	14.4	26.1	15.3
Moisture Content, (%)	42.3	25.0	33.3	31.3	27.3
Number of Drops, N	13	24	30.0	42	50
Liquid Limit	34				

Table 44: Liquid Limit Raw Data – Sample 9

Table 45: Plastic Limit Raw Data – Sample 9

Sample	9			
Cross Section	2+10		3	
Location	Right of Bank		3-RB	
Mass of Can, (g)		13.2	19.6	19.7
Mass of Can and Moist Sample, (g)		14.9	21.9	21.3
Mass of Can and Dry Sample, (g)		14.4	20.9	21.2
Moisture Content, (%)		41.7	76.9	6.7
Plastic Limit		42		

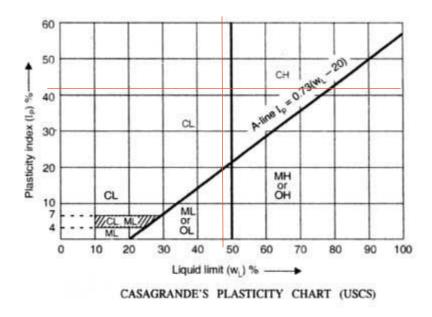


Figure 57: Casagrande's Plasticity Chart - Sample 9

Figure 58: AASHTO Classification Chart - Sample 9

Appendix 19: Sample 10 Soil Classification

Sieve #	Sieve Opening (mm)	Mass of Sieve, A (g) empty	Mass of Sieve and Retained Sample, B (g)	Mass of Sample, Wn (g) A-B	Percent Mass Retained, Rn	Cumulative Mass Retained, Rn	Percent Finer
4	4.75	770.7	1053.4	282.7	19.2	19.2	80.8
10	2	455	1010	555	37.6	56.8	43.2
20	0.85	632.1	927.8	295.7	20.1	76.9	23.1
40	0.425	396.9	508.2	111.3	7.5	84.4	15.6
60	0.25	540.6	603.6	63	4.3	88.7	11.3
150	0.106	338.6	408	69.4	4.7	93.4	6.6
200	0.075	326.9	358.3	24.9	1.7	95.1	4.9
Pan	NA	363.2	429.1	72.4	4.9	100.0	0.0
Sum	XX	XX	Wts =	1474.4			

Table 46: Sieve Analysis Raw Data – Sample 10

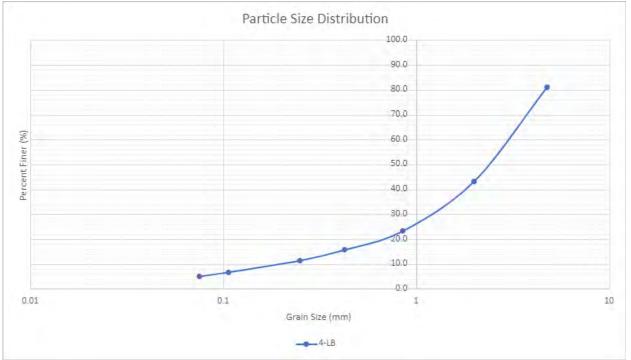


Figure 59: Particle Distribution Curve – Sample 10

	Sample 10				
Cross Section	2+80	4			
Location/Name	Left of Bank	4-LB			
Moisture Can ID	1	2	3	4	5
Mass of Can, (g)	13.2	12.8	13.3	13.3	13
Mass of Can and Moist Sample, (g)	16.4	15.9	16.4	15.8	15.5
Mass of Can and Dry Sample, (g)	15.6	15.2	15.5	15.2	15.0
Moisture Content, (%)	33.3	29.2	40.9	31.6	25.0
Number of Drops, N	8	12	26.0	34	50
Liquid Limit	32				

Table 47: Liquid Limit Raw Data – Sample 10

Table 48: Plastic Limit Raw Data – Sample 10

Sample 10				
Cross Section	2+80		4	
Location/Name	Left of Bank		4-LB	
Mass of Can, (g)		13.4	13.3	13.2
Mass of Can and Moist Sample, (g)		15.4	15.0	15.3
Mass of Can and Dry Sample, (g)		14.9	14.6	14.7
Moisture Content, (%)		33.3	30.8	40.0
Plastic Limit		35		

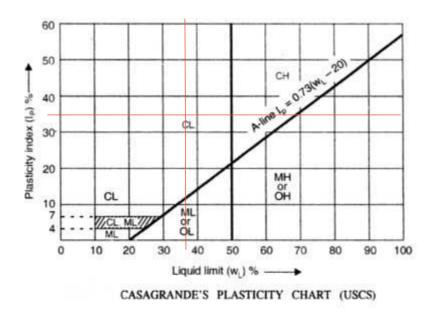


Figure 60: Casagrande's Plasticity Chart - Sample 10

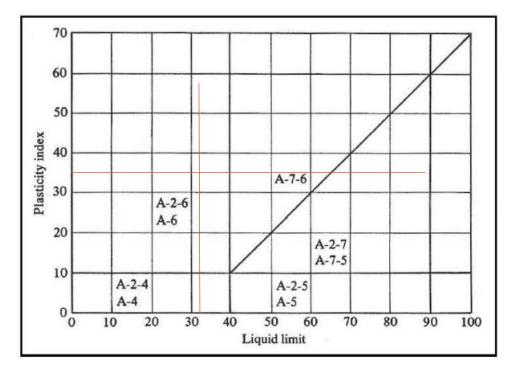


Figure 61: AASHTO Classification Chart - Sample 10

Appendix 20: Sample 11 Soil Classification

Sieve	Sieve	Mass of	Mass of Sieve and	Mass of Sample,	Percent Mass	Cumulative Mass	
#	Opening	Sieve,	Retained Sample,	Wn (g) A-	Retained,	Retained,	Percent
	(mm)	A (g) empty	B (g)	В	Rn	Rn	Finer
4	4.75	517.5	1257.8	740.3	37.6	37.6	62.4
10	2	470	1004.4	534.4	27.2	64.8	35.2
20	0.85	395.4	745.2	349.8	17.8	82.6	17.4
40	0.425	360.8	520	159.2	8.1	90.7	9.3
60	0.25	345.6	393	47.4	2.4	93.1	6.9
150	0.106	343.6	393.7	50.1	2.5	95.7	4.3
200	0.075	298.4	321.9	12.9	0.7	96.3	3.7
Pan	NA	365.2	427.2	72.6	3.7	100.0	0.0
Sum	XX	XX	Wts =	1966.7			

Table 49: Sieve Analysis Raw Data – Sample 11

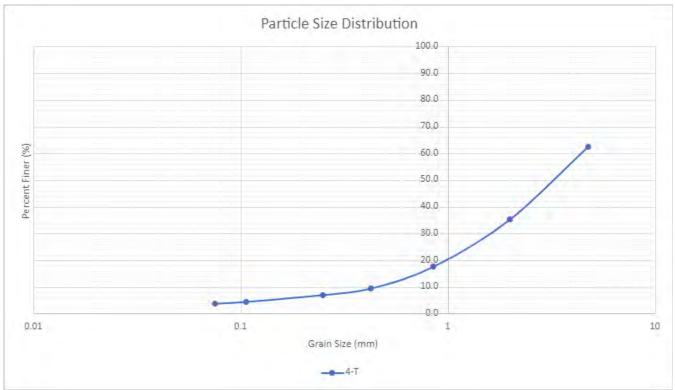


Figure 62: Particle Distribution Curve – Sample 11

Sample 11							
Cross Section	2+80	4					
Location/Name	Thalweg	4- T					
Moisture Can ID	1	2	3	4	5		
Mass of Can, (g)	13.6	14.1	13.2	13.7	13.1		
Mass of Can and Moist Sample, (g)	17.2	17.3	16.4	17.8	16.9		
Mass of Can and Dry Sample, (g)	16.3	16.5	15.6	16.8	16		
Moisture Content, (%)	33.3	33.3	33.3	32.3	31.0		
Number of Drops, N	10	19	27.0	40	55		
Liquid Limit	33						

Table 51: Plastic Limit Raw Data – Sample 11

Sample 11			
Cross Section	2+80	4	
Location/Name	Thalweg	4-T	
Mass of Can, (g)	13.0	14.4	13.5
Mass of Can and Moist Sample, (g)	14.9	16.9	15.6
Mass of Can and Dry Sample, (g)	14.5	16.3	15.1
Moisture Content, (%)	26.7	31.6	31.3
Plastic Limit	30		

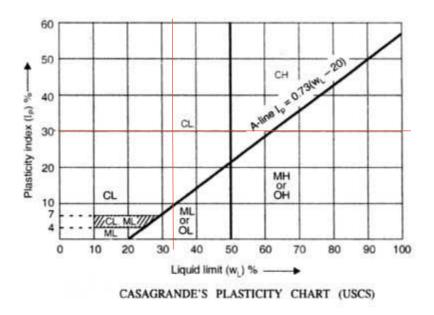


Figure 63: Casagrande's Plasticity Chart - Sample 11

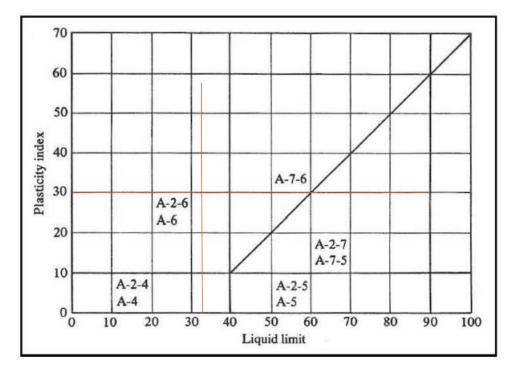


Figure 64: AASHTO Classification Chart - Sample 11

Appendix 21: Sample 12 Soil Classification

	Sieve	Mass of Sieve,	Mass of Sieve and	Mass of Sample,	Percent Mass	Cumulative Mass	
Sieve #	Opening (mm)	A (g) empty	Retained Sample, B (g)	Wn (g) A- B	Retained, Rn	Retained, Rn	Percent Finer
4	4.75	769.1	1464.4	695.3	36.2	36.2	63.8
10	2	453.2	928.2	475	24.7	60.9	39.1
20	0.85	631	1015.4	384.4	20.0	80.9	19.1
40	0.425	396.8	556.3	159.5	8.3	89.2	10.8
60	0.25	540.7	601.1	60.4	3.1	92.3	7.7
150	0.106	338.7	405.8	67.1	3.5	95.8	4.2
200	0.075	293.2	320.3	11.6	0.6	96.4	3.6
Pan	NA	362.3	416.2	69.4	3.6	100.0	0.0
Sum	XX	XX	Wts =	1922.7			

Table 52: Sieve Analysis Raw Data – Sample 12

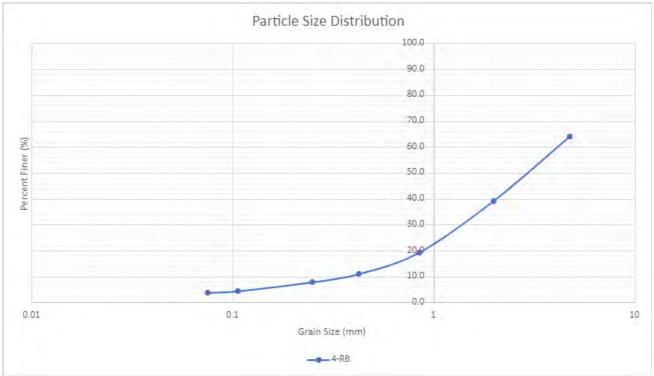


Figure 65: Particle Distribution Curve – Sample 12

	Sample 12				
Cross Section	2+80	4			
Location/Name	Right of Bank	4-RB			
Moisture Can ID	1	2	3	4	5
Mass of Can, (g)	19.4	22.6	13.6	13	14.6
Mass of Can and Moist Sample, (g)	24	27.3	18.3	17.1	19
Mass of Can and Dry Sample, (g)	23.0	26.1	17.2	16.1	17.9
Moisture Content, (%)	27.8	34.3	30.6	32.3	33.3
Number of Drops, N	10	17	28.0	37	60
Liquid Limit	31				

Table 53: Liquid Limit Raw Data – Sample 12

Table 54: Plastic Limit Raw Data – Sample 12

Sample	e 12			
Cross Section	2+80		4	
Location/Name	Right of Bank		4-RB	
Mass of Can, (g)		13.2	13.4	13.6
Mass of Can and Moist Sample, (g)		14.6	15.3	15.4
Mass of Can and Dry Sample, (g)		14.3	14.8	15.0
Moisture Content, (%)		27.3	35.7	28.6
Plastic Limit		31		

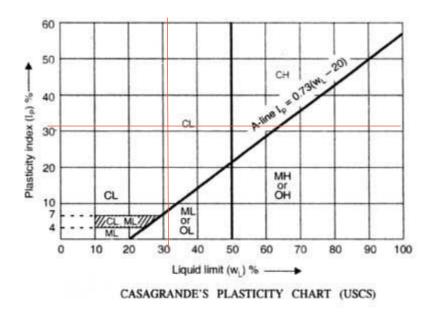


Figure 66: Casagrande's Plasticity Chart - Sample 12

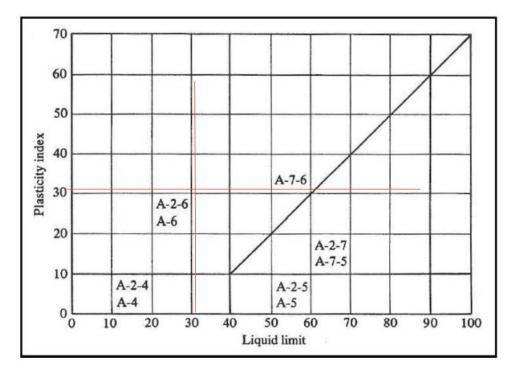


Figure 67: AASHTO Classification Chart - Sample 12

Appendix 22: Sample 13 Soil Classification

		Mass of	Mass of Sieve		Percent	Cumulative	
	Sieve	Sieve,	and	Mass of	Mass	Mass	
Sieve #	Opening	A (g)	Retained	Sample,	Retained,	Retained,	Percent
	(mm)	empty	Sample, B (g)	Wn (g) A-B	Rn	Rn	Finer
4	4.75	769.4	1593.3	823.9	31.0	31.0	69.0
10	2	457.7	981.2	523.5	19.7	50.7	49.3
20	0.85	414.6	959.7	545.1	20.5	71.3	28.7
40	0.425	380.6	703.3	322.7	12.2	83.4	16.6
60	0.25	367.2	538.3	171.1	6.4	89.9	10.1
150	0.106	339.5	488.2	148.7	5.6	95.5	4.5
200	0.075	326.1	375	22.7	0.9	96.3	3.7
Pan	NA	369.9	441.4	97.7	3.7	100.0	0.0
Sum	XX	XX	Wts =	2655.4			

Table 55: Sieve Analysis Raw Data – Sample 13

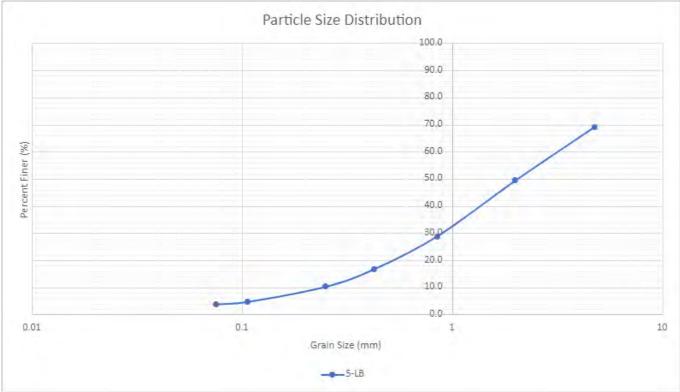


Figure 68: Particle Distribution Curve – Sample 13

Sample 13							
Cross Section	3+50	5					
Location/Name	Left of Bank	5-LB					
Moisture Can ID	1	2	3	4	5		
Mass of Can, (g)	13.1	13.4	13.4	13.1	19.5		
Mass of Can and Moist Sample, (g)	17.2	17	16.2	15.1	21.3		
Mass of Can and Dry Sample, (g)	16.1	16.2	15.8	14.3	21.2		
Moisture Content, (%)	36.7	28.6	16.7	66.7	5.9		
Number of Drops, N	7	13	30.0	47	58		
Liquid Limit	31						

Table 56: Liquid Limit Raw Data – Sample 13

Table 57: Plastic Limit Raw Data – Sample 13

Sample	2 13			
Cross Section	3+50		5	
Location/Name	Left of Bank		5-LB	
Mass of Can, (g)		12.0	13.6	13.3
Mass of Can and Moist Sample, (g)		14.0	16.2	14.9
Mass of Can and Dry Sample, (g)		13.6	15.6	14.5
Moisture Content, (%)		25.0	30.0	33.3
Plastic Limit		29		

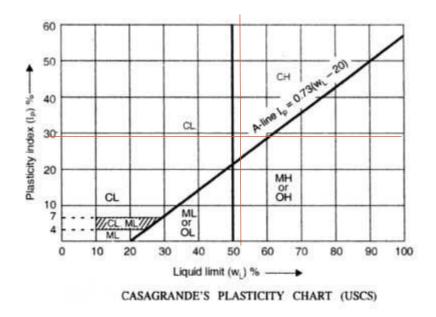


Figure 69: Casagrande's Plasticity Chart - Sample 13

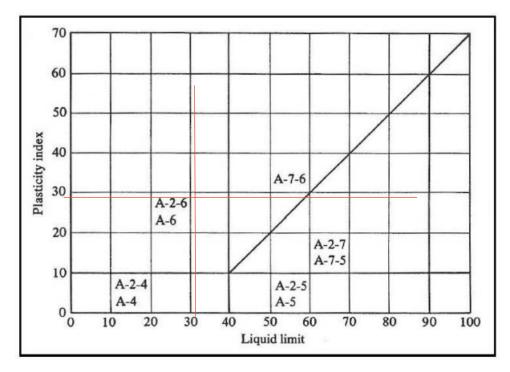


Figure 70: AASHTO Classification Chart - Sample 13

Appendix 23: Sample 14 Soil Classification

Sieve #	Sieve Opening (mm)	Mass of Sieve, A (g) empty	Mass of Sieve and Retained Sample, B (g)	Mass of Sample, Wn (g) A- B	Percent Mass Retained, Rn	Cumulative Mass Retained, Rn	Percent Finer
4	4.75	774.5	1810.5	1036	49.3	49.3	50.7
10	2	444	1004.5	560.5	26.7	76.0	24.0
20	0.85	619.6	989.7	370.1	17.6	93.6	6.4
40	0.425	395.1	483.4	88.3	4.2	97.8	2.2
60	0.25	371.9	387.4	15.5	0.7	98.5	1.5
150	0.106	338.5	349.8	11.3	0.5	99.0	1.0
200	0.075	298.8	305.8	3.6	0.2	99.2	0.8
Pan	NA	365.5	378.6	16.5	0.8	100.0	0.0
Sum	XX	XX	Wts =	2101.8			

Table 58: Sieve Analysis Raw Data – Sample 14

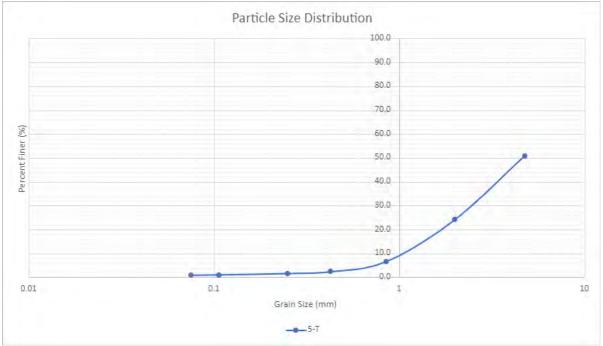


Figure 71: Particle Distribution Curve – Sample 14

Sa	mple 14				
Cross Section	3+50	5			
Location/Name	Thalweg	5-T			
Moisture Can ID	1	2	3	4	5
Mass of Can, (g)	19.7	13.4	13.4	19.5	13.3
Mass of Can and Moist Sample, (g)	21.7	17.3	16.9	23.4	16.4
Mass of Can and Dry Sample, (g)	21.2	16.4	16.1	22.5	15.8
Moisture Content, (%)	33.3	30.0	29.6	30.0	24.0
Number of Drops, N	15	32	37.0	45	65
Liquid Limit	32				

Table 59: Liquid Limit Raw Data – Sample 14

Table 60: Plastic Limit Raw Data – Sample 14

Sample 14			
Cross Section	3+50	5	
Location/Name	Thalweg	5-T	
Mass of Can, (g)	13.5	13.5	13.6
Mass of Can and Moist Sample, (g)	15.5	15.0	15.2
Mass of Can and Dry Sample, (g)	15	14.6	14.8
Moisture Content, (%)	33.3	36.4	33.3
Plastic Limit	34		

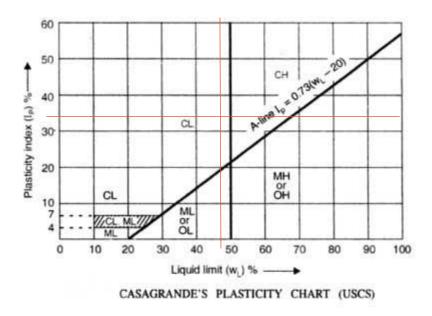


Figure 72: Casagrande's Plasticity Chart - Sample 14

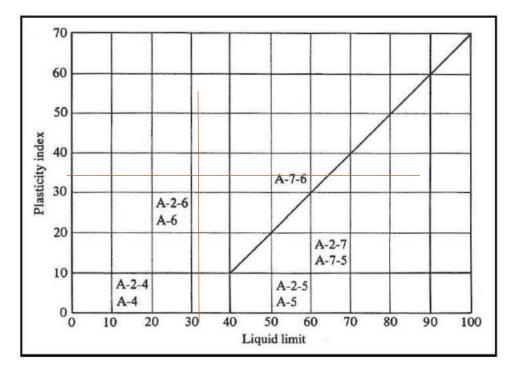


Figure 73: AASHTO Classification Chart - Sample 14

Appendix 24: Sample 15 Soil Classification

			Mass of Sieve and	Mass of	Percent	Cumulative	
Sieve #	Sieve Opening (mm)	Mass of Sieve, A (g) empty	Retained Sample, B (g)	Sample, Wn (g) A- B	Mass Retained, Rn	Mass Retained, Rn	Percent Finer
4	4.75	775.6	1613.2	837.6	47.7	47.7	52.3
10	2	445.8	898.1	452.3	25.7	73.4	26.6
20	0.85	395.7	661.4	265.7	15.1	88.5	11.5
40	0.425	360.8	441.1	80.3	4.6	93.1	6.9
60	0.25	535.9	560.8	24.9	1.4	94.5	5.5
150	0.106	344.4	370.4	26	1.5	96.0	4.0
200	0.075	326.1	336.9	6.4	0.4	96.3	3.7
Pan	NA	365.3	388.2	64.4	3.7	100.0	0.0
Sum	XX	XX	Wts =	1757.6			

Table 61: Sieve Analysis Raw Data – Sample 15

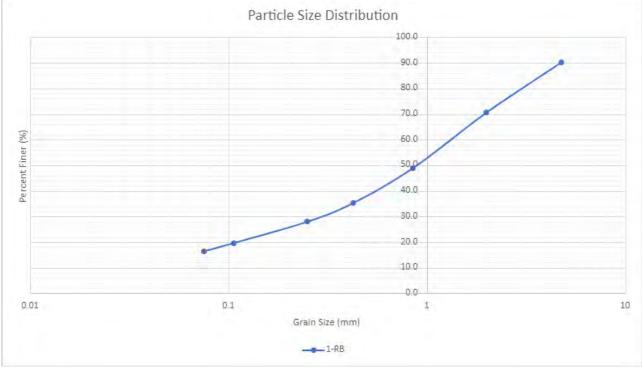


Figure 74: Particle Distribution Curve – Sample 15

RED ROCK ENGINEERING

Table 62: Liquid Limit Raw Data – Sample 15

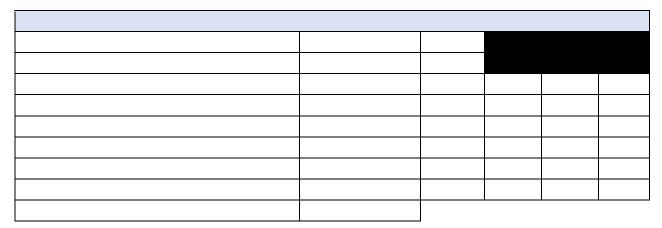


Table 63: Plastic Limit Raw Data – Sample 15

Samp	le 15			
Cross Section	3+50		5	
Location/Name	Right of Bank		5-RB	
Mass of Can, (g)		14.3	13	12.2
Mass of Can and Moist Sample, (g)		16.4	14.9	13.9
Mass of Can and Dry Sample, (g)		16.0	14.6	13.5
Moisture Content, (%)		23.5	18.8	30.8
Plastic Limit		24		

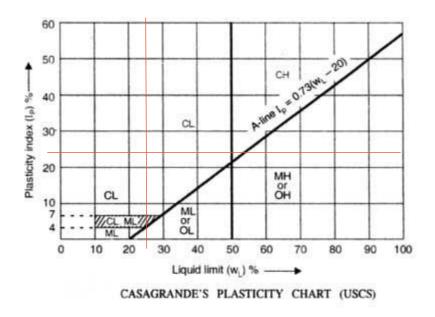


Figure 75: Casagrande's Plasticity Chart - Sample 15

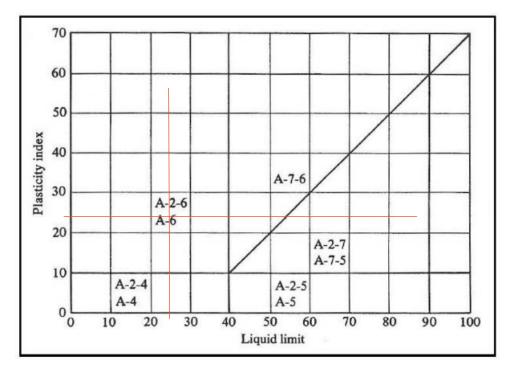


Figure 76: AASHTO Classification Chart - Sample 15

Appendix 25: Sample 16 Soil Classification

					Percent		
	Sieve	Mass of	Mass of	Mass of	Mass	Cumulativ	
	Openin	Sieve,	Sieve and	Sample,		e Mass	
Sieve #	g	A (g)	Retained	Wn (g)	Retaine	Retained,	Percent
	(mm)	empty	Sample, B (g)	A-B	d, Rn	Rn	Finer
4	4.75	515.3	704.4	189.1	17.5	17.5	82.5
10	2	469.7	859.2	389.5	36.0	53.5	46.5
20	0.85	414.7	733.3	318.6	29.5	82.9	17.1
40	0.425	360.8	477.8	117	10.8	93.8	6.2
60	0.25	345.6	368.9	23.3	2.2	95.9	4.1
150	0.106	338.6	354	15.4	1.4	97.3	2.7
200	0.075	318.4	325	5.3	0.5	97.8	2.2
Pan	NA	362.4	384.7	23.6	2.2	100.0	0.0
Sum	XX	XX	Wts =	1081.8			

Table 64: Sieve Analysis Raw Data – Sample 16

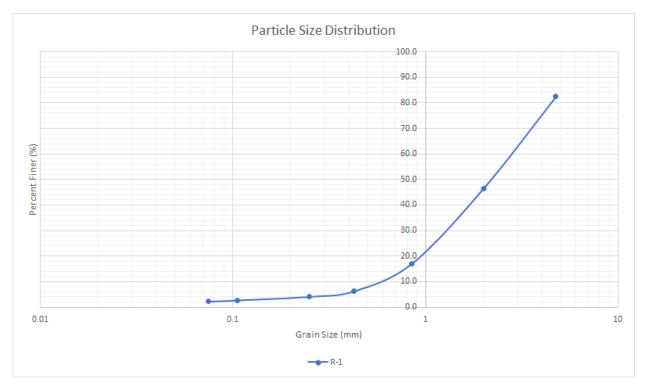


Figure 77: Particle Distribution Curve – Sample 16

Sample 16								
Cross Section	N/A							
Location/Name	Random	R-1						
Moisture Can ID	1	2	3	4	5			
Mass of Can, (g)	11.9	13.3	13	13	13.5			
Mass of Can and Moist Sample, (g)	19.6	22.5	21.8	21.8	24.6			
Mass of Can and Dry Sample, (g)	16.4	18.9	18.6	18.5	20.5			
Moisture Content, (%)	71.1	64.3	57.1	60.0	58.6			
Number of Drops, N	6	10	25.0	30	65			
Liquid Limit	63							

Table 65: Liquid Limit	t Raw Data – Sample 16
------------------------	------------------------

Table 66: Plastic Limit Raw Data – Sample 16

Sample 16						
Cross Section	N/A					
Location/Name	Random	R-1				
Mass of Can, (g)	13	12.5	13.3			
Mass of Can and Moist Sample, (g)	13.5	13.1	14			
Mass of Can and Dry Sample, (g)	13.3	12.9	13.6			
Moisture Content, (%)	66.7	50.0	133.3			
Plastic Limit	83					

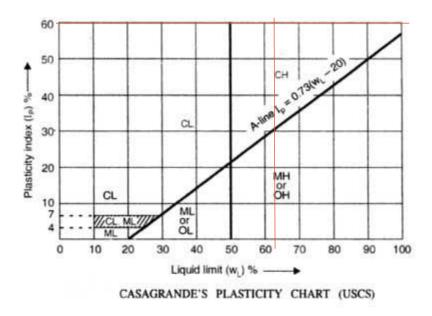


Figure 78: Casagrande's Plasticity Chart - Sample 16

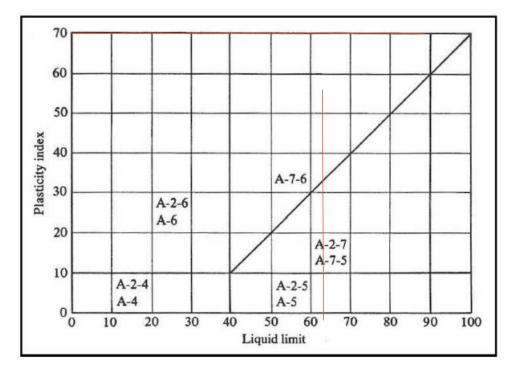


Figure 79: AASHTO Classification Chart - Sample 16

Appendix 26: Sample 17 Soil Classification

					Percent		
	Sieve	Mass of	Mass of	Mass of	Mass	Cumulativ	
	Openin	Sieve,	Sieve and	Sample,		e Mass	
Sieve #	g	A (g)	Retained	Wn (g)	Retaine	Retained,	Percent
	(mm)	empty	Sample, B (g)	A-B	d, Rn	Rn	Finer
4	4.75	768.6	1468.5	699.9	24.5	24.5	75.5
10	2	470	1135.5	665.5	23.3	47.8	52.2
20	0.85	395.3	1000.5	605.2	21.2	69.0	31.0
40	0.425	391.3	762.5	371.2	13.0	82.0	18.0
60	0.25	535.8	715.5	179.7	6.3	88.3	11.7
150	0.106	338.4	493.5	155.1	5.4	93.8	6.2
200	0.075	326	388.5	26.6	0.9	94.7	5.3
Pan	NA	369.9	485.5	151.5	5.3	100.0	0.0
Sum	XX	XX	Wts =	2854.7			

Table 67: Sieve Analysis Raw Data – Sample 17

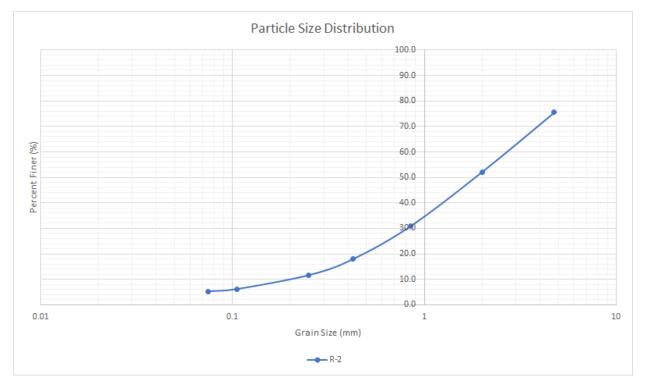


Figure 80: Particle Distribution Curve – Sample 17

Sample 17							
Cross Section	N/A						
Location/Name	Random	R-2					
Moisture Can ID	1	2	3	4	5		
Mass of Can, (g)	13.2	14.7	13.1	13.9	13.5		
Mass of Can and Moist Sample, (g)	24.2	22.1	22.5	26	25.5		
Mass of Can and Dry Sample, (g)	21.7	20.4	20.2	23.2	23.1		
Moisture Content, (%)	29.4	29.8	32.4	30.1	25.0		
Number of Drops, N	10	18	25.0	33	40		
Liquid Limit	29						

Table 68: Liquid Limit Raw Data – Sample 17

Table 69: Plastic Limit Raw Data – Sample 17

Sample 17						
Cross Section	N/A					
Location/Name	Random	R-2				
Mass of Can, (g)	13.4	19.5	13.2			
Mass of Can and Moist Sample, (g)	14.1	20.4	14			
Mass of Can and Dry Sample, (g)	14	20.3	13.9			
Moisture Content, (%)	16.7	12.5	14.3			
Plastic Limit	14					

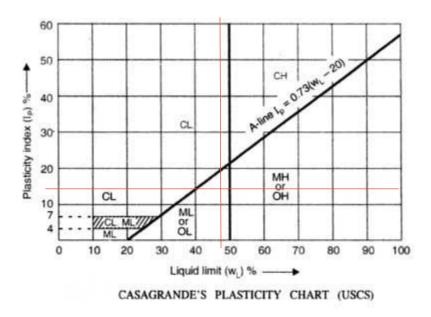


Figure 81: Casagrande's Plasticity Chart - Sample 17

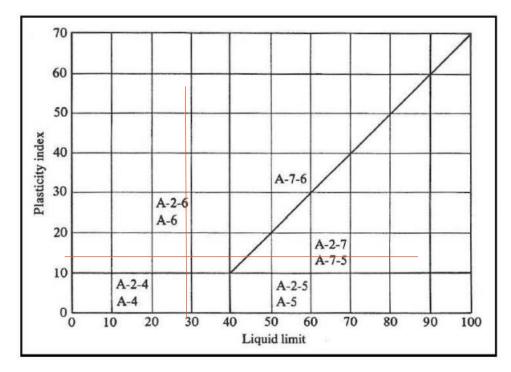


Figure 82: AASHTO Classification Chart - Sample 17

Appendix 27: Sample 18 Soil Classification

					Percent		
	Sieve	Mass of	Mass of	Mass of	Mass	Cumulativ	
	Openin	Sieve,	Sieve and	Sample,		e Mass	
Sieve #	g	A (g)	Retained	Wn (g)	Retaine	Retained,	Percent
	(mm)	empty	Sample, B (g)	A-B	d, Rn	Rn	Finer
4	4.75	773.7	1003.5	229.8	10.5	10.5	89.5
10	2	445.5	1074.5	629	28.8	39.4	60.6
20	0.85	394.4	986.5	592.1	27.1	66.5	33.5
40	0.425	380.3	668	287.7	13.2	79.7	20.3
60	0.25	348.6	457	108.4	5.0	84.7	15.3
150	0.106	339.5	456.5	117	5.4	90.0	10.0
200	0.075	296.7	347	36.6	1.7	91.7	8.3
Pan	NA	365.2	532.5	181	8.3	100.0	0.0
Sum	XX	XX	Wts =	2181.6			

Table 70: Sieve Analysis Raw Data – Sample 18

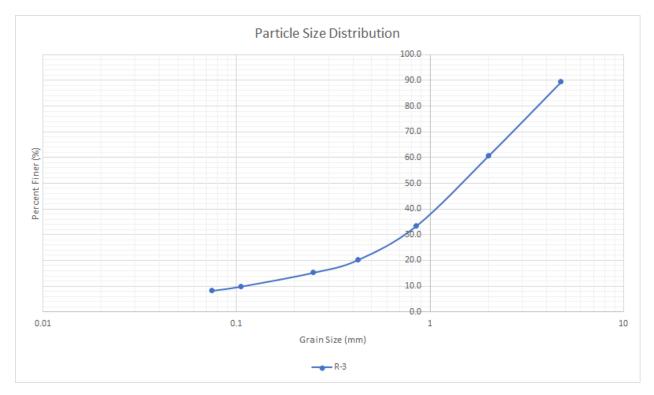


Figure 83: Particle Distribution Curve – Sample 18

Sample 18								
Cross Section	N/A							
Location/Name	Random	R-3						
Moisture Can ID	1	2	3	4	5			
Mass of Can, (g)	13.8	13.9	13.2	13.3	13.3			
Mass of Can and Moist Sample, (g)	21	21.5	18.5	20	19			
Mass of Can and Dry Sample, (g)	19	19.5	16.9	18.7	18.1			
Moisture Content, (%)	38.5	35.7	43.2	24.1	18.8			
Number of Drops, N	15	20	40.0	45	50			
Liquid Limit	36							

Table	71 · Liaui	d Limit Rav	v Data – Sam	nle 18
1 4014	, , 1 . Digni	a Dunna Itar	Duiu Sum	picito

Table 72: Plastic Limit Raw Data – Sample 18

Sample 18			
Cross Section	N/A		
Location/Name	Random	R-3	
Mass of Can, (g)	13.5	21.9	22.6
Mass of Can and Moist Sample, (g)	14.6	23.1	23.8
Mass of Can and Dry Sample, (g)	14.2	22.8	23.5
Moisture Content, (%)	57.1	33.3	33.3
Plastic Limit	41		

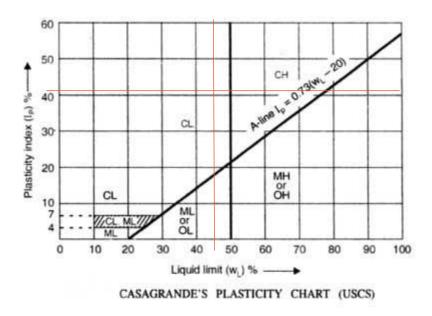


Figure 84: Casagrande's Plasticity Chart - Sample 18

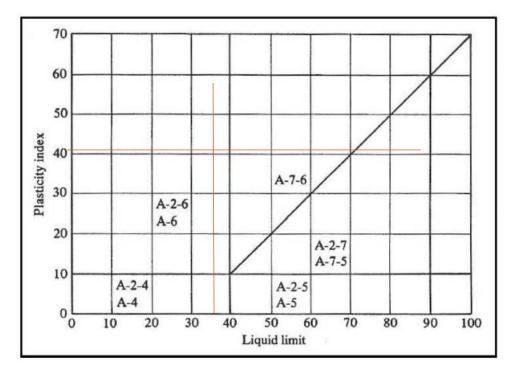
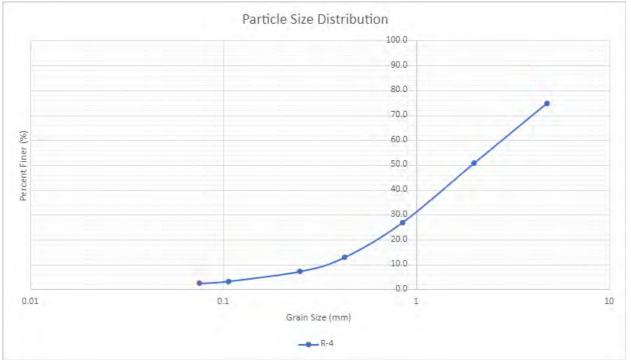



Figure 85: AASHTO Classification Chart - Sample 18

Appendix 28: Sample 19 Soil Classification

		Mass of	Mass of Sieve	Mass of	Percent	Cumulative	
	Sieve	Sieve,	and	Sample,	Mass	Mass	
Sieve #	Opening	A (g)	Retained	Wn (g)	Retained,	Retained,	Percent
	(mm)	empty	Sample, B (g)	A-B	Rn	Rn	Finer
4	4.75	768.8	1529	760.2	25.3	25.3	74.7
10	2	457.2	1180	722.8	24.0	49.3	50.7
20	0.85	630.9	1349.9	719	23.9	73.2	26.8
40	0.425	360.8	784.8	424	14.1	87.3	12.7
60	0.25	371.9	539.9	168	5.6	92.9	7.1
150	0.106	343.6	463	119.4	4.0	96.9	3.1
200	0.075	298.5	328.7	23.9	0.8	97.7	2.3
Pan	NA	365.5	429.4	70.2	2.3	100.0	0.0
Sum	XX	XX	Wts =	3007.5			

Table 73: Sieve Analysis Raw Data – Sample 19

Figure 86: Particle Distribution Curve – Sample 19

Sample 19								
Cross Section	N/A							
Location/Name	Random	R-4						
Moisture Can ID	1	2	3	4	5			
Mass of Can, (g)	13.2	13.4	19.3	13.3	19.4			
Mass of Can and Moist Sample, (g)	19.9	19.8	30.4	21.2	23.6			
Mass of Can and Dry Sample, (g)	18.8	18.7	28.5	19.7	22.9			
Moisture Content, (%)	19.6	20.8	20.7	23.4	20.0			
Number of Drops, N	15	20	25	36	60			
Liquid Limit	21							

Table 74: Liquid Limit Raw Data – Sample 19

Table 75: Plastic Limit Raw Data – Sample 19

Sample 19			
Cross Section	N/A		
Location/Name	Random	R-4	
Mass of Can, (g)	13.3	13.6	13.4
Mass of Can and Moist Sample, (g)	14.4	14.4	13.9
Mass of Can and Dry Sample, (g)	14.2	14.3	13.8
Moisture Content, (%)	22.2	14.3	25.0
Plastic Limit	21		

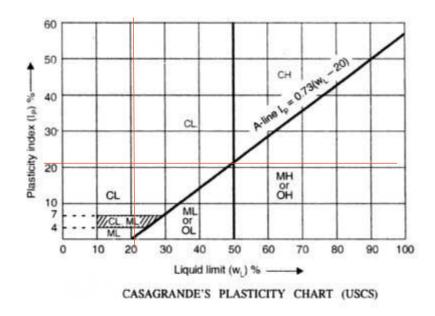


Figure 87: Casagrande's Plasticity Chart - Sample 19

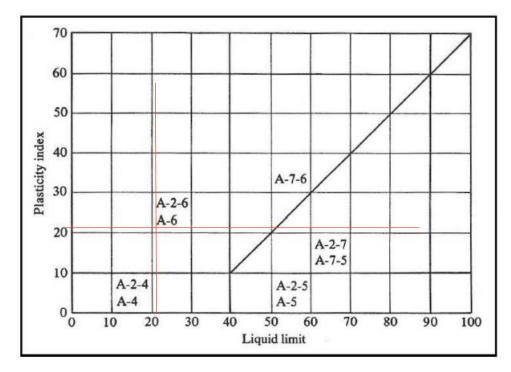


Figure 88: AASHTO Classification Chart - Sample 19

Appendix 29: Sample 20 Soil Classification

<i></i>	Sieve	Mass of Sieve,	Mass of Sieve and Retained	Mass of	Percent Mass	Cumulative Mass	
Sieve #	Opening (mm)	A (g) empty	Sample, B (g)	Sample, Wn (g) A-B	Retained, Rn	Retained, Rn	Percent Finer
4	4.75	515.8	1256.4	740.6	43.9	43.9	56.1
10	2	470.2	816.5	346.3	20.5	64.5	35.5
20	0.85	415.2	680.1	264.9	15.7	80.2	19.8
40	0.425	380.5	545.1	164.6	9.8	90.0	10.0
60	0.25	348.6	403.6	55	3.3	93.2	6.8
150	0.106	339.5	384.1	44.6	2.6	95.9	4.1
200	0.075	318.7	334.2	13.4	0.8	96.7	3.3
Pan	NA	362.3	416.4	56.2	3.3	100.0	0.0
Sum	XX	XX	Wts =	1685.6			

Table 76: Sieve Analysis Raw Data – Sample 20

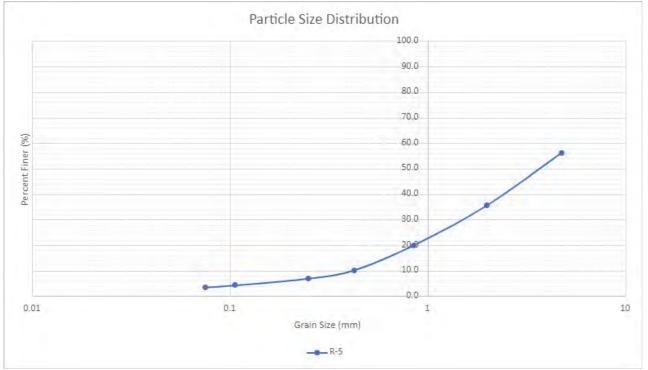


Figure 89: Particle Distribution Curve – Sample 20

Sample 20								
Cross Section	N/A							
Location/Name	Random	R-5						
Moisture Can ID	1	2	3	4	5			
Mass of Can, (g)	13.2	13.5	13.3	19.6	13.2			
Mass of Can and Moist Sample, (g)	22.7	18.7	18.4	24.1	17.7			
Mass of Can and Dry Sample, (g)	20.3	17.5	17.2	23.1	16.8			
Moisture Content, (%)	33.8	30.0	30.8	28.6	25.0			
Number of Drops, N	10	15	22.0	40	62			
Liquid Limit	30							

Table 77: Liquid Limit Raw Data – Sample 20

Table 78: Plastic Limit Raw Data – Sample 20

Sample 20			
Cross Section	N/A		
Location/Name	Random	R-5	
Mass of Can, (g)	13.4	13.4	13.4
Mass of Can and Moist Sample, (g)	13.8	14	14
Mass of Can and Dry Sample, (g)	13.7	14	14
Moisture Content, (%)	33.3	0.0	0.0
Plastic Limit	11		

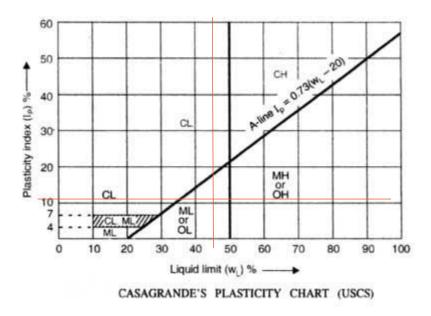
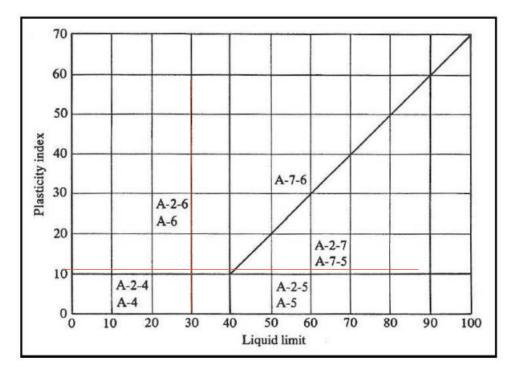
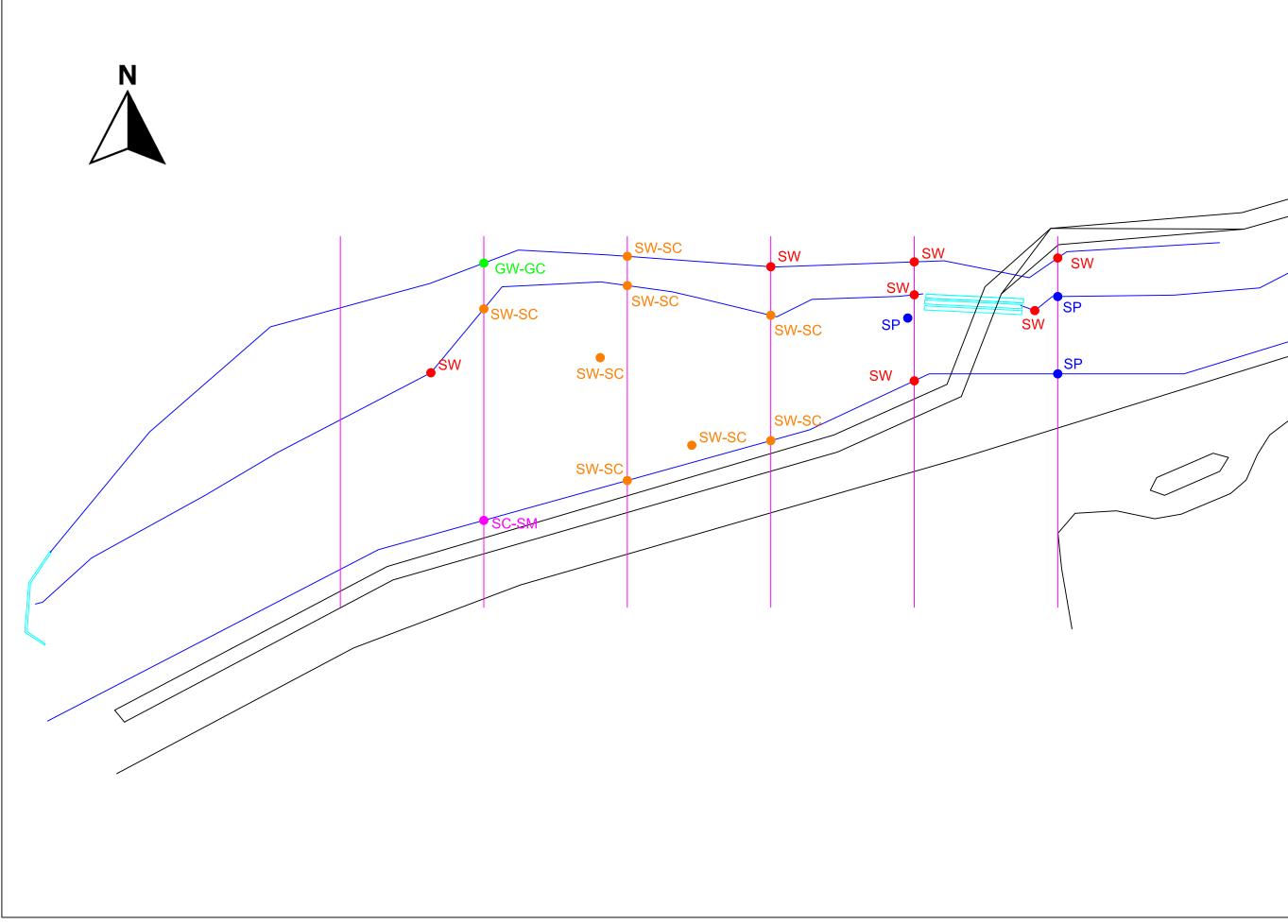
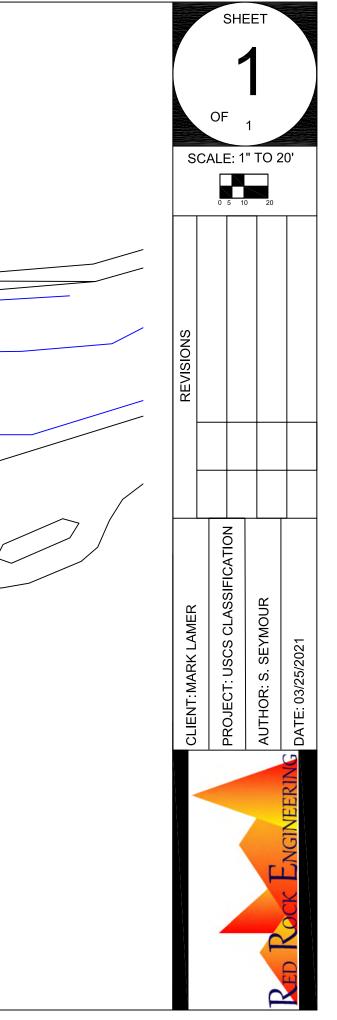
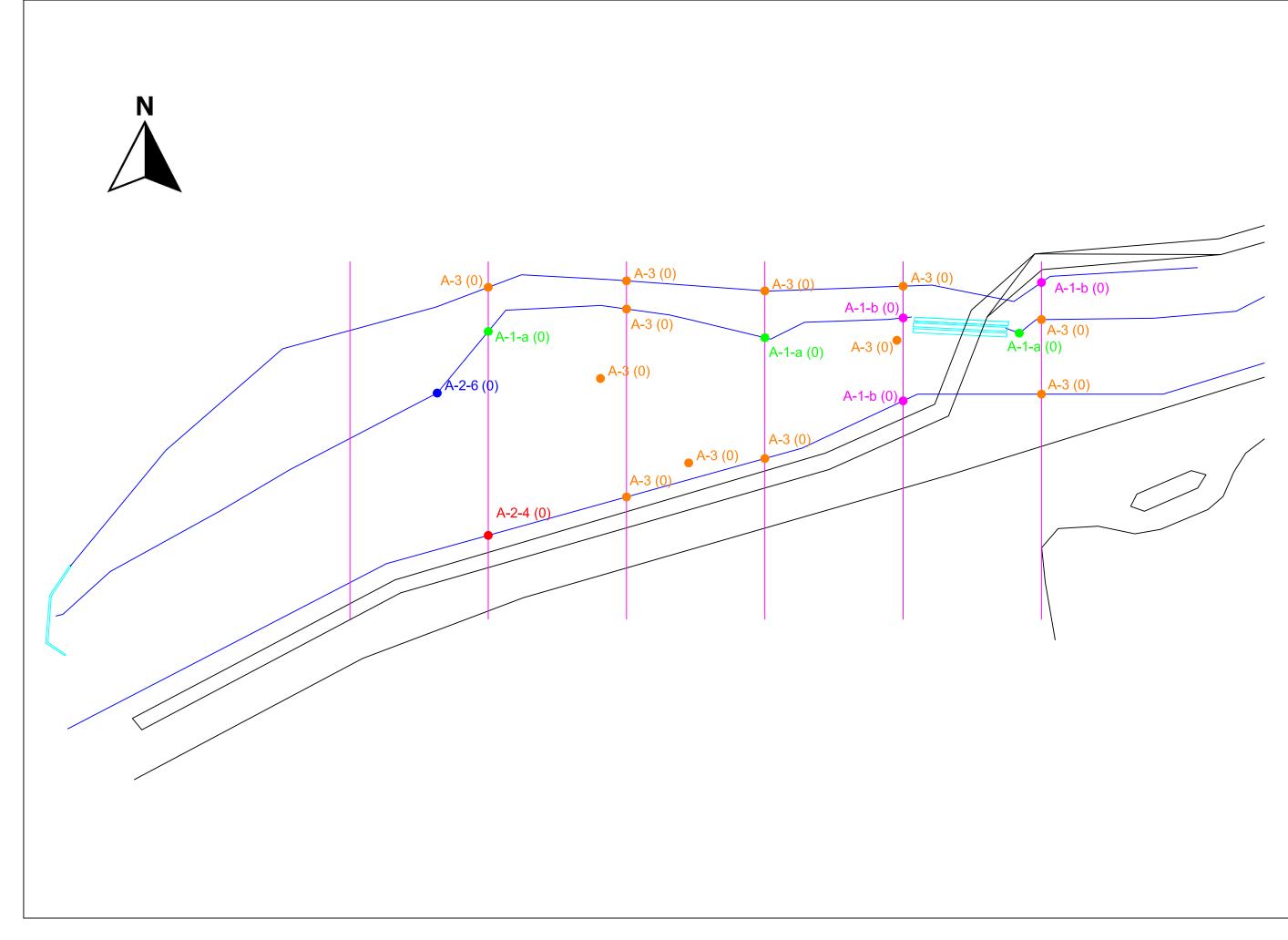
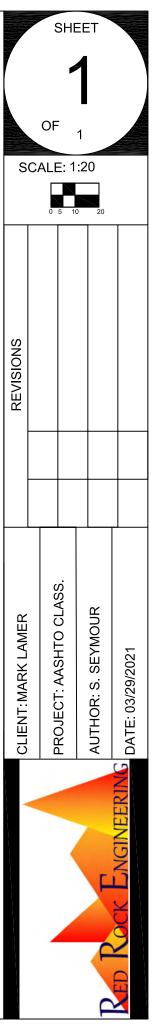


Figure 90: Casagrande's Plasticity Chart - Sample 20


Figure 91: AASHTO Classification Chart - Sample 20

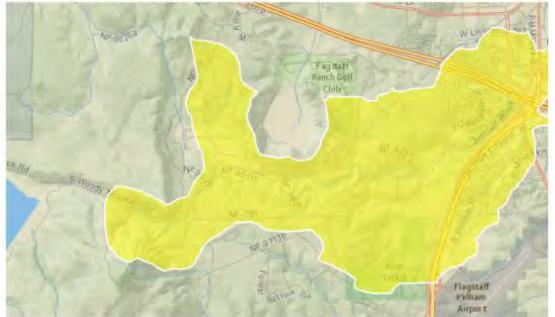

Appendix 30: USCS Classification AutoCAD Exhibit

Appendix 31: AASHTO Classification AutoCAD Exhibit

Appendix 32: USGS StreamStats Report

4/7/2021

StreamStats


StreamStats Report

 Region ID:
 AZ

 Workspace ID:
 AZ20210408000234557000

 Clicked Point (Latitude, Longitude):
 35.17917, -111.65776

 Time:
 2021-04-07 17:02:54 -0700

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
CONTDA	Area that contributes flow to a point on a stream	9.51	square miles
ELEV	Mean Basin Elevation	7088,681	feet

 Peak-Flow Statistics Parameters [100.0 Percent (9.5 square miles) Peak Region 2 Colorado Plateau 2014 5211]

 Parameter
 Code
 Parameter Name
 Value
 Units
 Min Limit
 Max Limit

https://streamstats.usgs.gov/ss/

1/3

RED ROCK ENGINEERING

		StreamStats			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CONTDA	Contributing Drainage Area	9.51	square miles	0.103	16017
ELEV	Mean Basin Elevation	7088.681	feet		

Peak-Flow Statistics Flow Report [100.0 Percent (9.5 square miles) Peak Region 2 Colorado Plateau 2014 5211]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp
50-percent AEP flood	166	ft*3/s	34.2	807	122
20-percent AEP flood	415	ft*3/s	120	1440	87.2
10-percent AEP flood	665	ft^3/s	219	2020	75.7
4-percent AEP flood	1100	ft*3/s	394	3070	68.6
2-percent AEP flood	1510	ft*3/s	551	4140	66.6
1-percent AEP flood	2010	ft^3/s	732	5520	67.3
0.5-percent AEP flood	2610	ft*3/s	933	7300	68.8
0.2-percent AEP flood	3540	ft*3/s	1200	10400	72.9

Peak-Flow Statistics Citations

4/7/2021

Paretti, N.V., Kennedy, J.R., Turney, L.A., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peak-flow data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2014-5211, 61 p., http://dx.doi.org/10.3133/sir20145211. (http://pubs.usgs.gov/sir/2014/5211/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

https://streamstats.usgs.gov/ss/

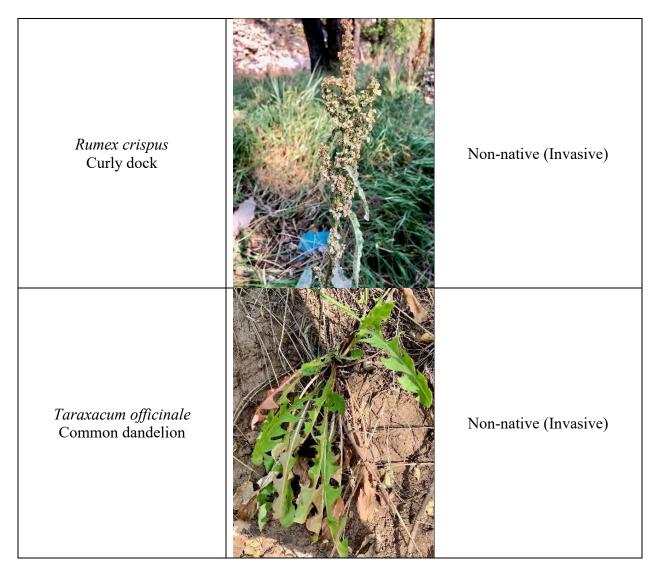
2/3

4/7/2021

StreamStats

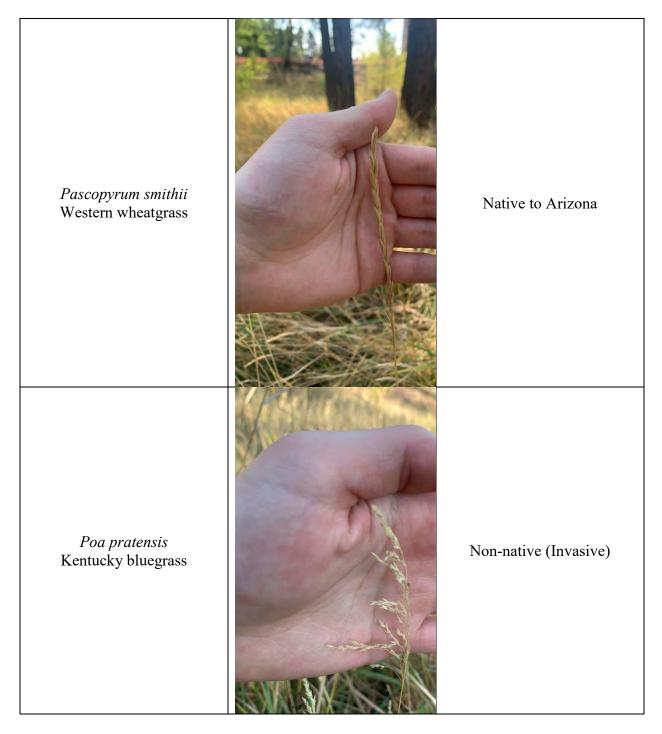
USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

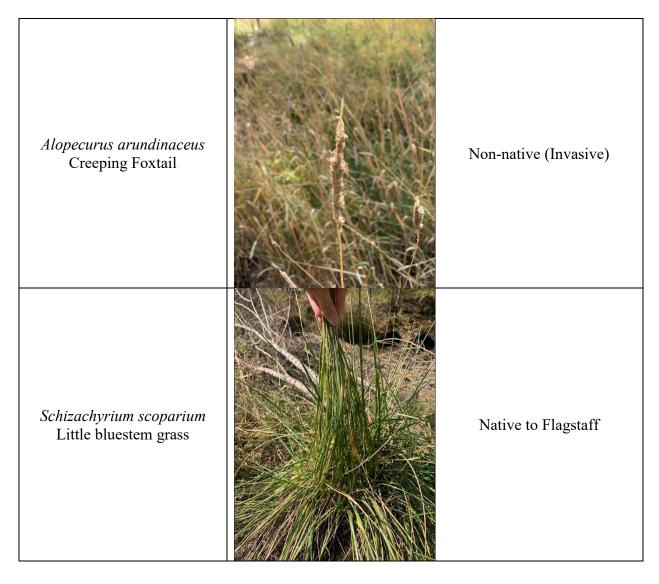
Application Version: 4.5.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.1


https://streamstats.usgs.gov/ss/

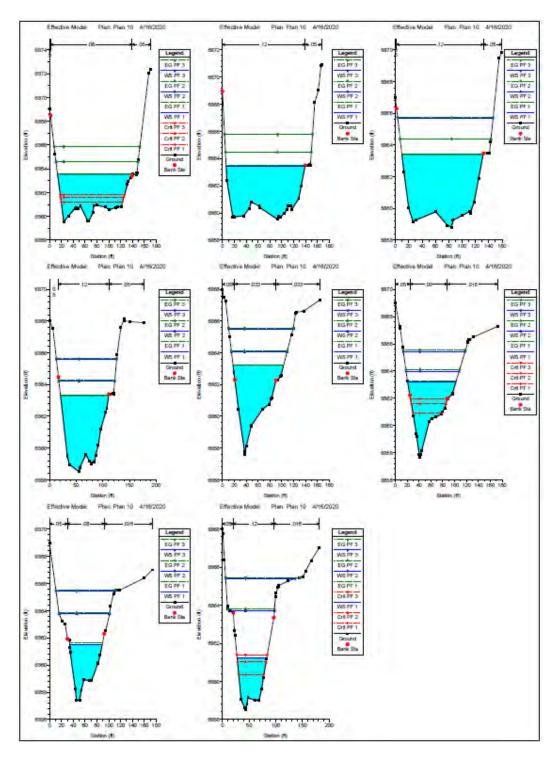
Appendix 33: Flora Identification

Classification	Photo	Native, Invasive. or Noxious
<i>Ulmus</i> Siberian Elm		Non-native (Invasive)
<i>Pinus ponderosa</i> Ponderosa pine		Native to Flagstaff


Table 79: Flora Identification

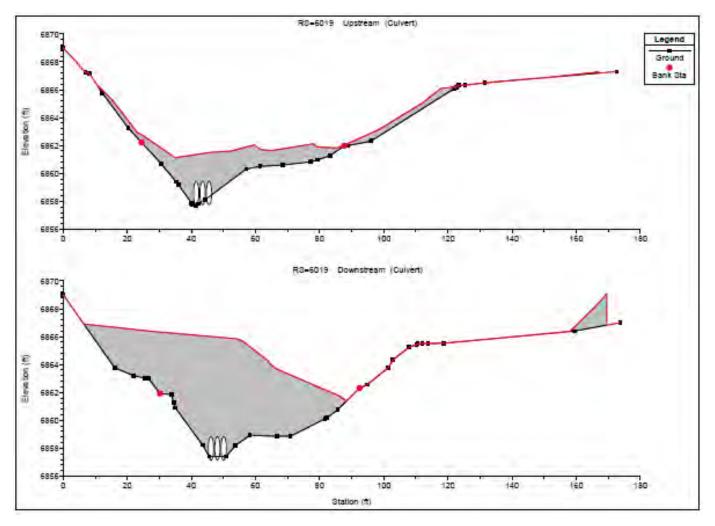

<i>Convolvulus arvensis</i> Field bindweed	Noxious
<i>Potentilla hippiana</i> Silvery cinquefoil	Native to Flagstaff

RED ROCK ENGINEERING


Appendix 34: Fauna Identification

Animal Species							
Birds							
Dark-eyed junco							
Downy and hairy woodpeckers							
Cinnamon teal							
Ibis							
Avocet							
Redtail hawk							
Western blue bird							
Williamson's Sapsucker							
Red-napped sapsucker							
Pine siskins							
Red-faced warble							
Clark's Nutcracker							
Bald eagle							
White breasted & pygmy nuthatch							
Mountain chickadee							
Northern flicker							
Acorn woodpecker							
American robin							
Western & mountain bluebirds							
White crowned sparrows							
Townsend's solitaire							
Cassin's finches							
Reptiles							
Eastern collared lizards							
Common side blotched lizard							
Tiger whiptail lizard							
Short horned lizard							
Western Fence lizard							
Plateau lizard							
Mammals							
Abert's Squirrels (Kaibab squirrel)							
Gunnison's prairie dogs							
Badgers							

Table 80: Fauna Identification


Appendix 35: Revegitation Plan

Appendix 36: Effective Hydraulic Model Cross-Section Diagram

Figure 92: Effective Hydraulic Model Cross-Section Diagram

Appendix 37: Effective Hydraulic Model Culvert Diagram

Figure 93: Effective Hydraulic Model Culvert Diagram

Appendix 38: Effective Hydraulic Model Cross-Section Summary Table

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
NAU	6378.119	PF 1	350.00	6859.53	6863.54	6861.19	6863.56	0.000834	1.03	339.19	130.66	0.11
NAU	6378.119	PF 2	670.00	6859.53	6864.57	6861.59	6864.60	0.001040	1.41	478.51	138.39	0.13
NAU	6378.119	PF 3	890.00	6859.53	6865.84	6861.81	6865.86	0.000671	1.36	657.91	144.46	0.11
NAU	6289.358	PF 1	350.00	6859.53	6863.46		6863.47	0.001100	0.86	407.22	133.30	0.09
NAU	6289.358	PF 2	670.00	6859.53	6864.46		6864.48	0.001546	1.22	549.88	144.73	0.11
NAU	6289.358	PF 3	890.00	6859.53	6865.77		6865.79	0.001033	1.19	741.20	148.33	0.09
NAU	6230.611	PF 1	350.00	6858.82	6863.41		6863.42	0.000851	0.82	424.27	121.93	0.08
NAU	6230.611	PF 2	670.00	6858.82	6864.38		6864.40	0.001372	1.22	553.19	136.27	0.10
NAU	6230.611	PF 3	890.00	6858.82	6865.71		6865.73	0.000968	1.20	739.44	143.17	0.09
NAU	6161.003	PF 1	350.00	6858.50	6863.31		6863.33	0.001844	1.17	298.96	90.49	0.11
NAU	6161.003	PF 2	670.00	6858.50	6864.21		6864.26	0.003036	1.73	390.22	104.72	0.15
NAU	6161.003	PF 3	890.00	6858.50	6865.60		6865.64	0.001880	1.64	540.59	112.98	0.12
NAU	6090.144	PF 1	350.00	6857.61	6863.22		6863.26	0.000268	1.57	229.31	85.37	0.16
NAU	6090.144	PF 2	670.00	6857.61	6864.06		6864.14	0.000429	2.33	304.49	93.87	0.21
NAU	6090.144	PF 3	890.00	6857.61	6865.50		6865.57	0.000249	2.18	449.92	108.35	0.16
NAU	6068.609	PF 1	350.00	6857.67	6863.19	6860.93	6863.25	0.001738	1.61	205.98	81.44	0.16
NAU	6068.609	PF 2	670.00	6857.67	6863.98	6861.59	6864.12	0.002378	2.20	272.96	89.44	0.20
NAU	6068.609	PF 3	890.00	6857.67	6865.41	6861.95	6865.55	0.000993	1.75	411.99	104.00	0.13
NAU	6019		Culvert									
NAU	6012.663	PF 1	350.00	6857.41	6861.50		6861.61	0.006779	2.69	130.18	54.71	0.31
NAU	6012.663	PF 2	670.00	6857.41	6863.76		6863.85	0.002371	2.36	284.47	85.29	0.20
NAU	6012.663	PF 3	890.00	6857.41	6865.42		6865.50	0.001059	1.96	435.16	99.06	0.14
NAU	5997.055	PF 1	350.00	6858.52	6861.22	6860.34	6861.40	0.035321	3.45	101.36	55.54	0.45
NAU	5997.055	PF 2	670.00	6858.52	6863.69	6861.01	6863.79	0.007780	2.50	267.75	81.26	0.24
NAU	5997.055	PF 3	890.00	6858.52	6865.40	6861.40	6865.46	0.003074	2.05	431.42	130.68	0.16

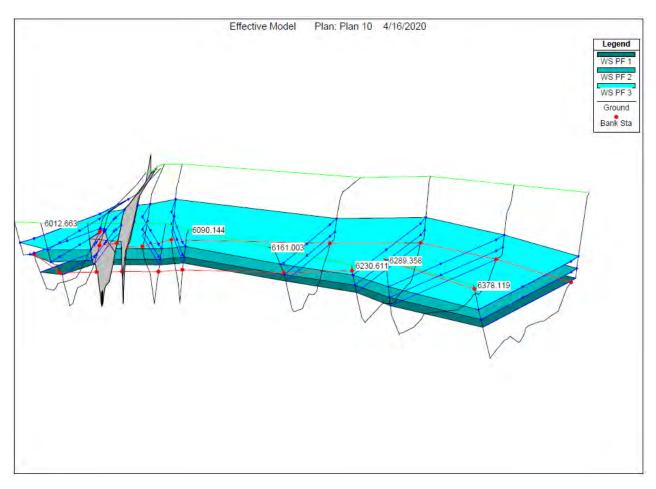
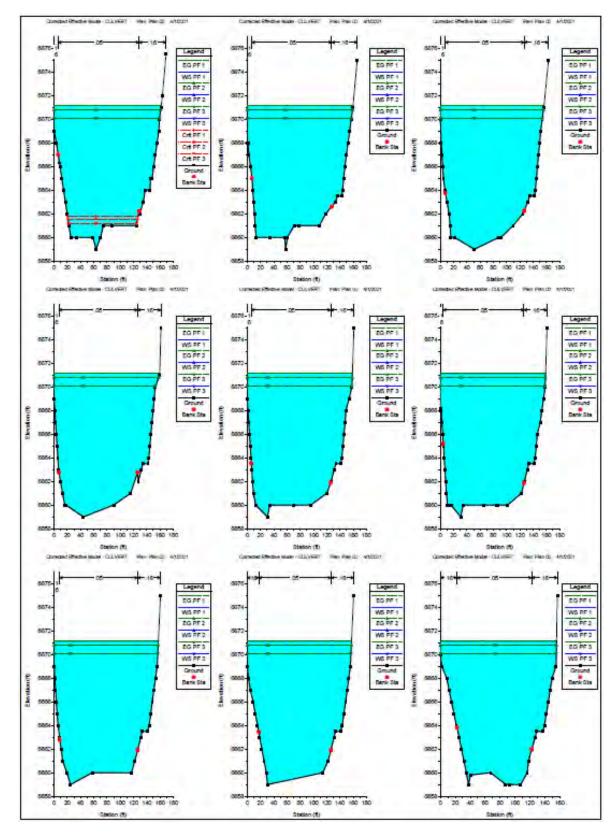
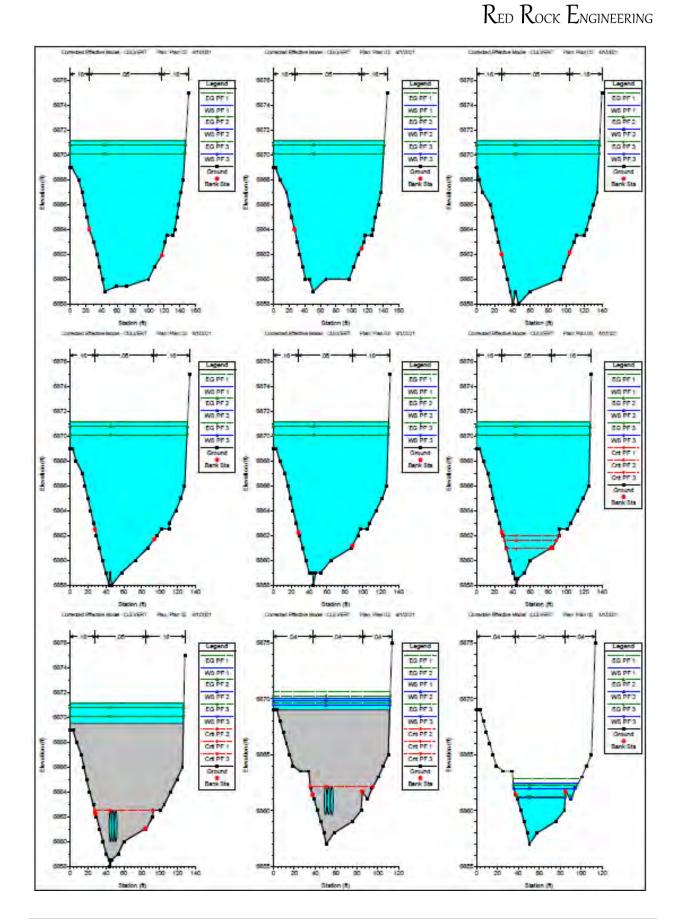
Table 81: Effective Hydraulic Model Cross-Section Summary Table

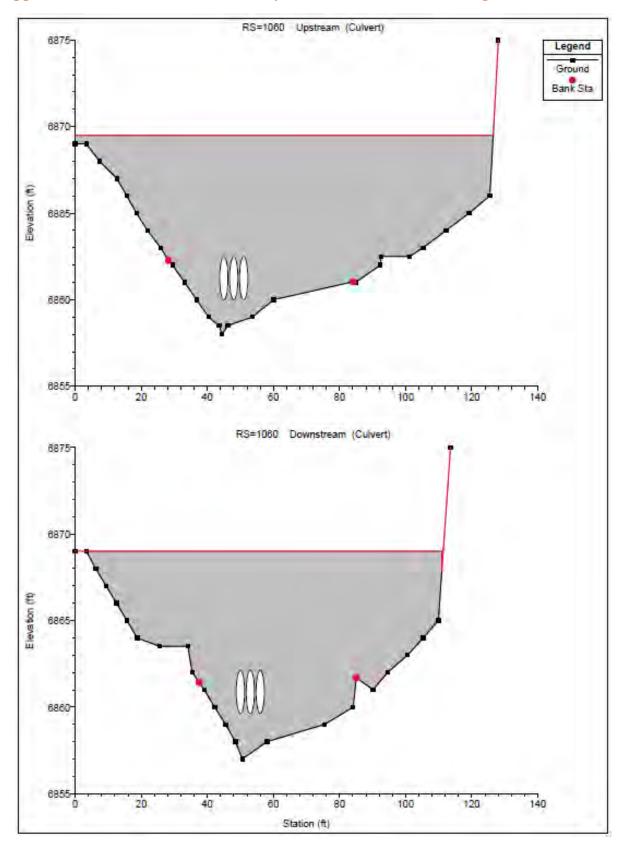
Appendix 39: Effective Hydraulic Model Culvert Summary Table

Plan: test 1 Sinclair N	AU RS: 601	9 Culv Group: Culvert #1	Profile: PF 1
Q Culv Group (cfs)	29.94	Culv Full Len (ft)	47.84
# Barrels	3	Culv Vel US (ft/s)	4.56
Q Barrel (cfs)	9.98	Culv Vel DS (ft/s)	4.56
E.G. US. (ft)	6863.25	Culv Inv El Up (ft)	6857.76
W.S. US. (ft)	6863.19	Culv Inv El Dn (ft)	6857.16
E.G. DS (ft)	6861.61	Culv Frctn Ls (ft)	1.13
W.S. DS (ft)	6861.50	Culv Exit Loss (ft)	0.21
Delta EG (ft)	1.63	Culv Entr Loss (ft)	0.29
Delta WS (ft)	1.69	Q Weir (cfs)	320.06
E.G. IC (ft)	6863.08	Weir Sta Lft (ft)	22.07
E.G. OC (ft)	6863.25	Weir Sta Rgt (ft)	99.15
Culvert Control	Outlet	Weir Submerg	0.02
Culv WS Inlet (ft)	6859.43	Weir Max Depth (ft)	2.11
Culv WS Outlet (ft)	6858.83	Weir Avg Depth (ft)	1.33
Culv Nml Depth (ft)		Weir Flow Area (sq ft)	102.35
Culv Crt Depth (ft)	1.19	Min El Weir Flow (ft)	6861.38

 Table 82: Effective Hydraulic Model Culvert Summary Table

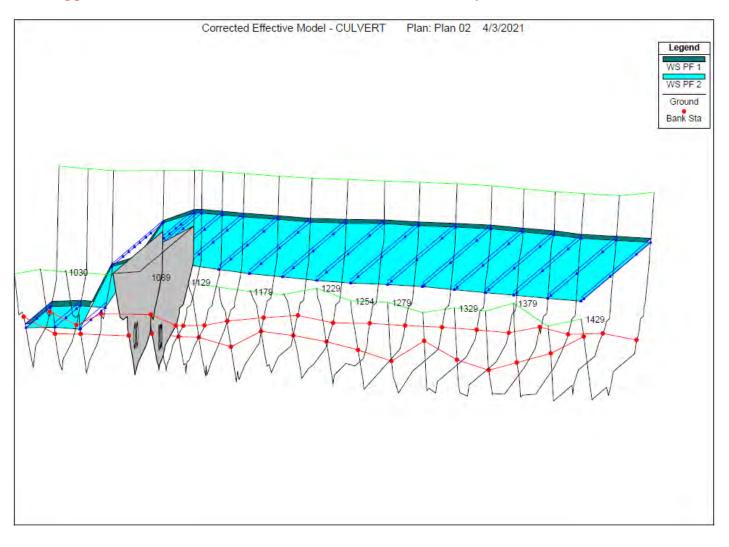
Appendix 40: Three-Dimensional Effective Hydraulic Model


Figure 94: Three-Dimensional Effective Hydraulic Model

Appendix 41: Corrected-Effective Hydraulic Model Cross-Section Diagram

127 | P a g e


Appendix 42: Corrected-Effective Hydraulic Model Culvert Diagram

Appendix 43: Corrected-Effective Hydraulic Model Cross-Section Summary Table

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
rication			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	110000 // 0111
I-17 to Culvert	1429	PF 1	890.00	6859.00	6871.15	6861.80	6871.16	0.000025	0.69	1456.68	161.94	0.04
I-17 to Culvert	1429	PF 2	670.00	6859.00	6870.78	6861.56	6870.79	0.000016	0.54	1397.13	161.09	0.03
	1420		010.00	0000.00	00/0./0	0001.00	0010.10	0.000010	0.04	1007.10	101.00	0.00
I-17 to Culvert	1404	PF 1	890.00	6859.00	6871.15		6871.16	0.000024	0.69	1466.95	159.76	0.04
I-17 to Culvert	1404	PF 2	670.00	6859.00	6870.78		6870.79	0.000016	0.54	1408.19	158.97	0.03
			070.00	0000.00	0010110		0070.70	0.000010	0.01	1100.10	100.07	0.00
I-17 to Culvert	1379	PF 1	890.00	6859.00	6871.15		6871.16	0.000020	0.66	1522.63	156.41	0.04
I-17 to Culvert	1379	PF 2	670.00	6859.00	6870.78		6870.78	0.000013	0.51	1465.10	155.61	0.03
I-17 to Culvert	1354	PF 1	890.00	6859.00	6871.15		6871.16	0.000020	0.66	1536.65	159.66	0.03
I-17 to Culvert	1354	PF 2	670.00	6859.00	6870.78		6870.78	0.000013	0.51	1477.97	158.11	0.03
I-17 to Culvert	1329	PF 1	890.00	6859.00	6871.15		6871.15	0.000020	0.66	1535.84	158.81	0.03
I-17 to Culvert	1329	PF 2	670.00	6859.00	6870.78		6870.78	0.000013	0.51	1477.33	158.59	0.03
I-17 to Culvert	1304	PF 1	890.00	6859.00	6871.15		6871.15	0.000020	0.65	1550.10	158.79	0.03
I-17 to Culvert	1304	PF 2	670.00	6859.00	6870.78		6870.78	0.000013	0.50	1491.61	158.58	0.03
I-17 to Culvert	1279	PF 1	890.00	6859.00	6871.15		6871.15	0.000020	0.66	1554.53	157.50	0.03
I-17 to Culvert	1279	PF 2	670.00	6859.00	6870.78		6870.78	0.000013	0.51	1496.52	157.19	0.03
I-17 to Culvert	1254	PF 1	890.00	6859.00	6871.15		6871.15	0.000022	0.69	1512.94	157.60	0.04
I-17 to Culvert	1254	PF 2	670.00	6859.00	6870.78		6870.78	0.000014	0.54	1454.97	157.29	0.03
I-17 to Culvert	1229	PF 1	890.00	6859.00	6871.14		6871.15	0.000026	0.75	1423.96	155.94	0.04
I-17 to Culvert	1229	PF 2	670.00	6859.00	6870.78		6870.78	0.000017	0.59	1366.57	155.83	0.03
	1											
I-17 to Culvert	1204	PF 1	890.00	6859.00	6871.14		6871.15	0.000033	0.84	1293.80	147.56	0.04
I-17 to Culvert	1204	PF 2	670.00	6859.00	6870.77		6870.78	0.000021	0.66	1239.76	147.20	0.04
		25.4								1005.01		
I-17 to Culvert	1179	PF 1	890.00	6859.00	6871.14		6871.15	0.000041	0.92	1205.94	141.73	0.05
I-17 to Culvert	1179	PF 2	670.00	6859.00	6870.77		6870.78	0.000026	0.72	1154.17	141.37	0.04
1 47 to Outwart	1151	25.4		0050.00	0074.44		0074.45	0.000000	0.00	4054.47	407.00	
I-17 to Culvert	1154	PF 1	890.00	6858.00	6871.14		6871.15	0.000038	0.93	1254.47	137.38	0.05
I-17 to Culvert	1154	PF 2	670.00	6858.00	6870.77		6870.78	0.000024	0.73	1204.40	137.15	0.04
1 47 to Outrast	4400	05.4	000.00	0050.00	0074.40		0074.45	0.000050	4.07	4454.54	424.20	0.00
I-17 to Culvert	1129	PF 1	890.00	6858.00	6871.13		6871.15	0.000053	1.07	1151.54	131.28	0.06
I-17 to Culvert	1129	PF 2	670.00	6858.00	6870.77		6870.78	0.000034	0.84	1103.95	131.05	0.04
L 17 to Culvert	1104	PF 1	890.00	6858.00	6871.13		6871.15	0.000063	1 17	1113.39	128.81	0.06
I-17 to Culvert I-17 to Culvert	1104	PF 1 PF 2	670.00	6858.00	6870.77		6870.78	0.000040	1.17 0.91	1066.81	128.65	0.06
in to ourvert	1104	112	570.00	0000.00	0010.11		0010.10	0.000040	0.31	1000.01	120.00	0.05
L17 to Culvert	1089	PF 1	200.00	6950 00	6871.13	6961.07	6871.15	0.000070	1.23	1090.81	126.98	0.07
I-17 to Culvert I-17 to Culvert	1089	PF 1 PF 2	890.00 670.00	6858.00 6858.00	6870.76	6861.97 6861.58	6870.78	0.000070	0.96	1090.81	126.98	0.07
in the outvert	1005	112	570.00	0000.00	0010.10	0001.00	0070.70	0.000040	0.30	1044.30	120.00	0.05
I-17 to Culvert	1060		Culvert									
in the outvert	1000		Curvent									
I-17 to Culvert	1030	PF 1	890.00	6857.00	6862.41		6862.81	0.003567	5.08	182.56	62.01	0.47
I-17 to Culvert	1030	PF 2	670.00	6857.00	6861.96		6862.26	0.003251	4.43	155.17	58.83	0.44
in the outvert	1050	112	570.00	0007.00	0001.90		0002.20	0.003201	4.40	100.17	00.00	0.44
I-17 to Culvert	1025	PF 1	890.00	6857.00	6862.38		6862.73	0.003141	4.84	191.28	62.37	0.45
I-17 to Culvert	1025	PF 2	670.00	6857.00	6861.93		6862.20	0.003141	4.04	163.80	59.11	0.43
in to ouivert	1025	112	570.00	0007.00	0001.93		0002.20	0.002040	4.21	103.60	08.11	0.42
				0057.00		0004.40		0.007772	0.00			0.67
I-17 to Culvert	1000	PF 1	890.00	6857.00	6862.04	6861.40	6862.61		6.06	148.47	62.27	

Appendix 44: Corrected-Effective Hydraulic Model Culvert Summary Table

Q Culv Group (cfs)	195.22	Culv Full Len (ft)	47.64
# Barrels	3	Culv Vel US (ft/s)	13.26
Q Barrel (cfs)	65.07	Culv Vel DS (ft/s)	13.26
E.G. US. (ft)	6871.15	Culv Inv El Up (ft)	6859.99
W.S. US. (ft)	6871.13	Culv Inv El Dn (ft)	6859.62
E.G. DS (ft)	6862.81	Culv Frctn Ls (ft)	4.09
W.S. DS (ft)	6862.41	Culv Exit Loss (ft)	2.34
Delta EG (ft)	8.34	Culv Entr Loss (ft)	1.91
Delta WS (ft)	8.71	Q Weir (cfs)	695.55
E.G. IC (ft)	6871.13	Weir Sta Lft (ft)	0.00
E.G. OC (ft)	6871.15	Weir Sta Rgt (ft)	126.98
Culvert Control	Outlet	Weir Submerg	0.00
Culv WS Inlet (ft)	6862.49	Weir Max Depth (ft)	1.65
Culv WS Outlet (ft)	6862.12	Weir Avg Depth (ft)	1.64
Culv Nml Depth (ft)	2.50	Weir Flow Area (sq ft)	208.63
Culv Crt Depth (ft)	2.50	Min El Weir Flow (ft)	6869.51

Appendix 45: Three-Dimensional Corrected-Effective Hydraulic Model

Appendix 46: Corrected-Effective Model HEC-RAS Cross-Section Data

Table 83: Cross-Section 1+00			
Cross Section 1+00			
STA	Elevation	POI	
0 3.43	6869		
6.36	6868 6887	LOB	
5.5063	6866.3	LUD	
9.02	6866		
11.69	6865		
14.35	6864		
17.02	6863		
19.69	6862		
22.36	6861		
25.03	6860		
33.82	6860		
58.84	6860		
63.53	6859	thalweg	
70.16	6860		
74.58	6861		
87.79	6861		
124.12	6861		
128.46	6862.2	ROB	
129.5	6862		
134.65	6863		
137.7	6868		
144.94	6868		
145.72	6865		
148.2	6865		
150.68	6866		
153.12	6867		
155.64	6868		
158.12	6869		
159.06	6870		
161.66	6871		
163.56	6872		
169.26	6875.5		

Table 83: Cross-Section 1+00

Table 84: Cross-Section 1+25		
2		
Cross Section 1+25		
STA	Elevation	POI
0	6868	
1.05	6868	
2.2	6867	
5	6866	
7.22	6865	LOB
8.38	6864	
9.57	6863	
10.77	6862	
11.96	6861	
13.15	6860	
34.78	6860	
56.52	6860	
57.94	6859	thalweg
60.51	6860	
70.9	6861	
78.43	6861	
109.08	6861	
118.56	6862	
127.42	6862.6	ROB
133.36	6863	
136.24	6868	
143.29	6868	
144.15	6864	
145.77	6865	
147.73	6866	
149.63	6867	
152.09	6868	
154.56	6869	
157.04	6870	
159.51	6871	
166.1	6875	

Table 85: Cross-Section 1+50			
3			
Cross Section 1+50			
STA	Elevation	POI	
0	6870		
1.06	6868		
2.18	6867		
3.33	6866		
4.46	6865		
6.66	6864		
7.35	6863.76	LOB	
9.88	6863		
13.11	6862		
14.56	6861		
15.73	6860		
20.91	6860		
51.13	6859	thalweg	
88.57	6860		
91.56	6860		
109.99	6861		
124.67	6862		
126.39	6862.23	ROB	
132.08	6863		
134.83	6868.4		
142.21	6868		
143.31	6864		
144.95	6865		
146.58	6866		
148.22	6867		
149.86	6868		
151.5	6869		
153.68	6870		
156.15	6871		
163.14	6875		

T.1.1. 05. C.

Table 86: Cross-Section 1+75		
4		
Cross Section 1+75		
STA	Elevation	POI
0	6868.94	
1.07	6868	
2.2	6867	
3.34	6866	
4.47	6865	
5.6	6864	
6.74	6863	
7.49	6862.74	LOB
9.65	6862	
12.88	6861	
16.12	6860	
17.99	6860	
44.28	6859	thalweg
90.22	6860	
115.68	6861	
126.13	6862.74	ROB
127.16	6862	
131.66	6863	
134.3	6868.19	
141.77	6868	
143.08	6864	
144.71	6865	
146.35	6866	
147.98	6867	
149.61	6868	
151.24	6869	
152.87	6870	
159.59	6871	
161.36	6875	

Table 87: Cross-Section 2+00		
5		
Cross Section 2+00		
STA	Elevation	POI
0	6868.95	
1.08	6868	
2.22	6867	
3.36	6866	
4.49	6865	
5.62	6864	
6.13	6863.54	LOB
6.75	6863	
7.88	6862	
9.42	6861	
12.68	6860	
30.52	6859	thalweg
34.04	6860	
70.04	6860	
96.08	6860	
120.35	6861	
126	6861.86	ROB
126.89	6862	
131.37	6863	
133.94	6868	
141.48	6868	
142.96	6864	
144.58	6865	
146.21	6866	
147.84	6867	
149.09	6868	
153.68	6869	
158.14	6870	
161.05	6875	

Table 88: Cross-Section 2+25		
6		
Cross Section 2+25		
STA	Elevation	POI
0	6868.19	
1.11	6868	
2.24	6867	
3.37	6866	
4.29	6865.19	LOB
4.51	6865	
5.64	6864	
6.77	6863	
7.9	6862	
9.03	6861	
10.49	6860	
11.6	6860	
15.85	6860	
30.43	6859	thalweg
34.46	6860	
64.56	6860	
84.5	6860	
86.25	6860	
101.34	6860	
122.29	6861	
126.06	6861.84	ROB
126.78	6862	
131.27	6863	
133.73	6868	
141.39	6868	
143.08	6864	
144.71	6865	
146.34	6866	
150.89	6867	
153.31	6868	
155.73	6869	
158.14	6870	
160.96	6875	

Table 89: Cross-Section 2+50			
7			
Cross Section 2+50			
STA	Elevation	POI	
0	6869		
1.13	6868		
2.27	6867		
3.4	6866		
4.53	6865		
6.05	6864		
8.39	6863		
8.62	6862.8	LOB	
10.74	6862		
13.09	6861		
19.29	6860		
24.81	6859	thalweg	
57.78	6860		
58.3	6860		
116.89	6860		
122.1	6861		
126.11	6861.89	ROB	
126.59	6862		
131.08	6863		
133.39	6868		
141.21	6868		
143.6	6864		
146.02	6865		
148.43	6866		
150.85	6867		
153.27	6868		
155.68	6869		
160.77	6875		

	Table	89:	Cross-Section	2+50	
_					

Table 90: Cross-Section 2+75			
8			
Cross Section 2+75			
STA	Elevation	POI	
0	6869		
1.84	6868		
4.73	6867		
8.73	6866		
12.15	6865		
15.44	6864		
17.25	6863.45	LOB	
18.74	6863		
22.04	6862		
25.33	6861		
28.63	6860		
30.72	6859	thalweg	
114.17	6860		
122.05	6861		
126.28	6861.9	ROB	
126.55	6862		
131.05	6863		
133.24	6868.19		
141.21	6868		
143.5	6864		
146.11	6865		
148.56	6866		
150.98	6867		
153.4	6868		
155.82	6869		
160.79	6875		

00. C . . ~ -

Table 91: Cross-Section 3+00		
9		
C	ross Section 3	+00
STA	Elevation	POI
0	6870	
1.78	6869	
8.3	6868	
11.56	6867	
14.81	6866	
18.06	6865	
21.32	6864	
22.27	6863.83	LOB
24.97	6863	
28.22	6862	
31.48	6861	
34.72	6860	
37.67	6859	thalweg
40.48	6859.8	
67.37	6860	
87.63	6859	
93.09	6859	
107.82	6859	
116.56	6860	
118.33	6861	
122.57	6861.99	ROB
122.7	6862	
127.22	6863	
129.3	6868.19	
137.42	6868.19	
139.56	6864	
142.19	6865	
144.81	6866	
147.33	6867	
149.76	6868	
155.31	6869	
157.07	6875	

. 0.1 0

<i>Table 92: Cross-Section 3+25</i>			
10			
Cross Section 3+25			
STA	Elevation	POI	
0	6869		
2.09	6869		
10.99	6868		
15.14	6867		
18.41	6866		
21.69	6865		
24.62	6864	ROB	
30.02	6863		
34.29	6862		
37.69	6861		
41.09	6860		
44.31	6859	thalweg	
59.41	6859.4		
72.17	6859.4		
100.07	6860		
107.93	6861		
117.12	6861.89	ROB	
121.48	6863		
123.42	6868.19		
131.69	6868.19		
133.63	6864		
136.26	6865		
138.88	6866		
141.52	6867		
144.49	6868		
151.33	6875		

Table 92: Cross-Section 3+25

Table 93: Cross-Section 3+50			
11			
Cross Section 3+50			
STA	Elevation	POI	
0	6869		
2.39	6869		
8.47	6868		
16.79	6867		
20.01	6866		
23.23	6865		
27.2	6864	ROB	
30.32	6863		
33.86	6862		
37.41	6861		
40.95	6860		
45.77	6859.99		
51.07	6859	thalweg	
67.3	6859.99		
96.64	6860		
102.84	6861		
108.04	6862		
112.58	6862.46	ROB	
115.7	6863		
117.5	6868		
125.91	6868		
127.65	6864		
130.27	6865		
133.59	6866		
137.67	6867		
145.51	6875		

Table 93: Cross-Section 3+50

Table 94: Cross-Section 3+75			
	12		
Cross Section 3+75			
STA	Elevation	POI	
0	6869		
2.56	6868		
6.55	6867		
15.23	6866		
18.27	6865		
21.48	6864		
24.69	6863		
27.98	6862	LOB	
31.11	6861		
34.32	6860		
37.53	6859		
40.74	6858		
43.35	6859	thalweg	
47.02	6858		
59.9	6859		
93.76	6860		
98	6861		
103.17	6862		
103.98	6862.14	ROB	
109.18	6863		
111.55	6868		
120.17	6868		
122.55	6864		
126.63	6865		
130.71	6866		
134.78	6867		
139.8	6875		

Table 94: Cross-Section 3+75

Table 95: Cross-Section 4+00		
13		
Cross Section 4+00		
STA	Elevation	POI
0	6869	
2.8	6869	
6.79	6868	
13.82	6867	
16.77	6866	
19.83	6865	
23.04	6864	
26.25	6863	
27.95	6862.47	LOB
29.46	6862	
32.67	6861	
36.03	6860	
39.81	6859	
43.71	6858	
44.61	6859	thalweg
46.38	6858	
57.35	6859	
72.88	6860	
86.82	6861	
93.98	6861.69	ROB
97.43	6862	
102	6868.19	
110.56	6868.19	
110.93	6863	
117.97	6864	
123.88	6865	
127.96	6866	
133.79	6875	

Table 95: Cross-Section 4+00

Table 96: Cross-Section 4+25				
14				
C	Cross Section 4+25			
STA	Elevation	POI		
0	6869			
3.24	6869			
7.22	6868			
13.14	6867			
16.09	6866			
19.03	6865			
22.19	6864			
25.48	6863			
28.15	6862.24	LOB		
28.99	6862			
32.65	6861			
36.31	6860			
40.05	6859			
43.84	6858.99			
44.82	6858	thalweg		
47.39	6858.99			
52.52	6859			
64.56	6860			
87.08	6861			
88.3	6861.17	ROB		
94.48	6862			
96.65	6868.19			
105.26	6868.19			
107.71	6863			
114.66	6864			
121.74	6865			
126.49	6866			
130.57	6875			

Table 06: Cross Section 4 + 25

Table 97: Cross-Section 4+40		
15		
Cross Section 4+40		
STA	Elevation	POI
0	6869	
3.36	6869	
7.35	6868	
12.65	6867	
15.6	6866	
18.55	6865	
21.87	6864	
25.84	6863	
28.22	6862.26	LOB
29.47	6862	
33.12	6861	
36.76	6860	
40.35	6859	
43.59	6858.5	
44.48	6858	thalweg
46.2	6858.5	
53.63	6859	
60.05	6860	
84.17	6861.03	ROB
84.91	6861	
92.36	6862	
92.68	6868	
101.23	6868	
105.33	6863	
112.27	6864	
119.2	6865	
125.52	6866	
128.08	6875	

Table 97: Cross-Section 4+40

<i>Table 98: Cross-Section 4+99</i>			
16			
	Cross Section 4+99		
STA	Elevation	POI	
0	6869		
3.38	6869		
6.22	6868		
9.36	6867		
12.5	6866		
15.64	6865		
18.78	6864		
25.53	6868		
30.26	6863		
30.57	6868		
34.13	6862		
35.39	6862		
37.55	6861.41	LOB	
39.06	6861		
42.21	6860		
45.49	6859		
48.49	6858		
50.59	6857	thalweg	
58.06	6858		
75.52	6859		
84.1	6860		
85.11	6861.69	ROB	
90.17	6861		
94.57	6862		
100.62	6863		
105.35	6864		
109.94	6865		
113.61	6875		

Table 98: Cross-Section 4+99

Table 99: Cross-Section 5+04		
17		
C	ross Section 5	+04
STA	Elevation	POI
0	6869	
1.44	6867	
5.65	6868	
7.98	6867	
11.1	6866	
14.25	6865	
17.38	6864	
22.29	6868	
26.74	6863	
32.19	6862.2	
35.07	6862	
36.07	6861.23	LOB
36.26	6861	
39.32	6860	
42.58	6859	
45.86	6858	
52.36	6857	thalweg
54.14	6858	
75.32	6859	
83.56	6860	
85.38	6860.31	ROB
89.52	6861	
94.66	6862	
100.11	6863	
104.61	6864	
109.11	6865	
112.22	6875	

Table 99: Cross-Section 5+04

Table 100: Cross-Section 5+29 18			
Cross Section 5+29			
STA	Elevation	POI	
0	6868		
2.96	6867		
5.1	6866		
7.38	6865		
9.59	6864		
10.07	6868		
18.32	6862.2		
21.71	6863		
22.11	6862.9	ROB	
25.7	6862		
29.13	6861		
32.56	6860		
35.98	6859		
44.21	6857	thalweg	
49.57	6859		
75.01	6860		
81.26	6861		
82.48	6861.19	ROB	
87.53	6862		
93.81	6863		
97.77	6864		
103.59	6875		

Table 100: Cross-Section 5+29

Table 101: HEC-RAS Cross-Section #1

Downstream Reach Lengths			
LOB	Т	ROB	
27.7	24.7	21.75	
Manning's <i>n</i> Values			
LOB	Т	ROB	
0.16	0.05	0.16	
Main Channel	Main Channel Bank Stations		
Left Bank	Left Bank Right Bank		
6.36	128.46		

Downstream Reach Lengths		
LOB	Т	ROB
29.12	25.36	20.88
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
7.22	127.42	

Table 102: HEC-RAS Cross-Section #2

Table 103: HEC-RAS Cross-Section #3

Downstream Reach Lengths		
LOB	Т	ROB
21.15	20.92	17.36
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
7.35	126.39	

Table 104: HEC-RAS Cross-Section #4

Downstream Reach Lengths		
LOB	Т	ROB
22.23	23.26	15.1
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
7.49	126.13	

Table 105: HEC-RAS Cross-Section #5

Downstream Reach Lengths		
LOB	Т	ROB
22.74	23.96	21.07
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
6.13	126	

Table 106: HEC-RAS	Cross-Section #6
--------------------	------------------

Downstream Reach Lengths		
LOB	Т	ROB
25.02	25	24.85
Manning's <i>n</i> Values		
LOB	T ROB	
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
4.29	126.06	

Table 107: HEC-RAS Cross-Section #7

Downstream Reach Lengths		
LOB	Т	ROB
30.99	26	26.97
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
8.62	126.11	

Table 108: HEC-RAS Cross-Section #8

Downstream Reach Lengths		
LOB	Т	ROB
30	24.86	25.31
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
17.25	126.28	

Table 109: HEC-RAS Cross-Section #9

Tuble 109. TIEC-RAS Cross-Section #9		
Downstream Reach Lengths		
LOB	Т	ROB
24.23	25.81	24.07
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
22.27	122.57	

RED ROCK ENGINEERING

Downstream Reach Lengths		
LOB	Т	ROB
23.84	25	23.95
Manning's <i>n</i> Values		
LOB	T ROB	
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
24.62	117.12	

Table 111: HEC-RAS Cross-Section #11

Downstream Reach Lengths		
LOB	Т	ROB
28.58	23.81	27.38
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
27.2	112.58	

Table 112: HEC-RAS Cross-Section #12

Downstream Reach Lengths		
LOB	Т	ROB
25.7	25.36	26.4
Manning's <i>n</i> Values		
LOB	Т	ROB
0.16	0.05	0.16
Main Channel Bank Stations		
Left Bank	Right Bank	
27.98	103.98	

Table 113: HEC-RAS Cross-Section #13

Tuble ITS. TIEC-A	AD CIUSS-L	
Downstream	Reach L	engths
LOB	Т	ROB
16	15.85	16.03
Manning	's <i>n</i> Valu	es
LOB	Т	ROB
0.16	0.05	0.16
Main Channe	el Bank S	tations
Left Bank	Right	Bank
27.95	93.	.98

RED ROCK ENGINEERING

Downstream	Reach L	engths
LOB	Т	ROB
9.51	15.18	11.02
Manning	g's <i>n</i> Valu	es
LOB	Т	ROB
0.16	0.05	0.16
Main Channe	el Bank S	tations
Left Bank	Right	Bank
28.15	88	3.3

Table 115: HEC-RAS Cross-Section #15

Downstream l	Reach L	engths
LOB	Т	ROB
58.81	59.4	54.63
Manning'	s <i>n</i> Valı	ies
LOB	Т	ROB
0.16	0.05	0.16
Main Channel	Bank S	tations
Left Bank	Righ	t Bank
28.22	84	4.17

Table 116: HEC-RAS Cross-Section #16 **Downstream Reach Lengths** LOB Т ROB 4.5 18.66 4.92 Manning's *n* Values LOB Т ROB 0.04 0.04 0.04 **Main Channel Bank Stations** Left Bank **Right Bank** 37.55 85.11

Table 117: HEC-RAS Cross-Section #17

Tuble II7. IILC-R	AD CIUSS-L	$\pi 1/2$
Downstream	Reach L	engths
LOB	Т	ROB
22.63	21.47	21.99
Manning	's <i>n</i> Valu	es
LOB	Т	ROB
0.04	0.04	0.04
Main Channe	el Bank S	tations
Left Bank	Right	Bank
36.07	85.	.38

Table 118: HEC-RA	S Cross-L	section #10
Downstream F	Reach L	engths
LOB	Т	ROB
N/A	N/A	N/A
Manning's	s <i>n</i> Valu	es
LOB	Т	ROB
0.04	0.04	0.04
Main Channel	Bank S	tations
Left Bank	Righ	t Bank
22.11	82	2.48

Table 118: HEC-RAS Cross-Section #18

Appendix 47: Existing Culvert CulvertMaster Report Design Storm

Analysis Component Storm Event 470.00 cfs Design Discharge Peak Discharge Method: User-Specified Design Discharge 470.00 cfs Check Discharge 890.00 cfs Tailwater properties: Irregular Channel Component:Weir Hydraulic Component(s): Roadway (Constant Elevation) Discharge 437.76 cfs Allowable HW Elevation 6,863.96 ft 2.97 US Roadway Width 20.50 ft Overtopping Coefficient Length 53.62 ft Crest Elevation 6,862.00 ft Headwater Elevation 6,863.96 ft Discharge Coefficient (Cr) 2.97 Submergence Factor (Kt) 1.00 Sta (ft) Elev. (ft) 0.00 6,862.00 53.62 6,862.00

Culvert Designer/Analyzer Report Corrective Effective

Component:Culvert-1

		-			-
Computed Headwater Eleva	6,863.96		Discharge	32.24	
Inlet Control HW Elev.	6,863.88		Tailwater Elevation	6,860.70	ft
Outlet Control HW Elev.	6,863.96	π	Control Type	Outlet Control	
Headwater Depth/Height	1.59				
Grades					
Upstream Invert	6,859.99	ft	Downstream Invert	6,859.62	ft
Length	47.63	ft	Constructed Slope	0.007770	ft/ft
Hydraulic Profile					
Profile CompositeM2Pres	ssureProfile		Depth, Downstream	1.93	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.93	ft
Velocity Downstream	7.91	ft/s	Critical Slope	0.023633	ft/ft
Section					
Section Section Shape	Circular		Mannings Coefficient	0.024	
	Circular CMP		Mannings Coefficient Span	2.50	
Section Shape			-		
Section Shape Section Material	CMP		Span	2.50	
Section Shape Section Material Section Size Number Sections	CMP 30 inch		Span	2.50	
Section Shape Section Material Section Size Number Sections	CMP 30 inch 1 6,863.96		Span Rise Upstream Velocity Head	2.50	ft
Section Material Section Size Number Sections Outlet Control Properties	CMP 30 inch 1		Span Rise	2.50 2.50	ft
Section Shape Section Material Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke	CMP 30 inch 1 6,863.96		Span Rise Upstream Velocity Head	2.50 2.50 0.67	ft
Section Shape Section Material Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke	CMP 30 inch 1 6,863.96 0.70	ft	Span Rise Upstream Velocity Head Entrance Loss	2.50 2.50 0.67 0.47	ft
Section Shape Section Material Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control Properties Inlet Control HW Elev.	CMP 30 inch 1 6,863.96 0.70 6,863.88	ft	Span Rise Upstream Velocity Head Entrance Loss Flow Control	2.50 2.50 0.67 0.47 Submerged	ft ft
Section Shape Section Material Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control Properties Inlet Control HW Elev. Inlet Type Mite	CMP 30 inch 1 6,863.96 0.70 6,863.88 red to slope	ft	Span Rise Upstream Velocity Head Entrance Loss Flow Control Area Full	2.50 2.50 0.67 0.47 Submerged 4.9	ft ft
Section Shape Section Material Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control Properties Inlet Control HW Elev. Inlet Type Miter K	CMP 30 inch 1 6,863.96 0.70 6,863.88 red to slope 0.02100	ft	Span Rise Upstream Velocity Head Entrance Loss Flow Control Area Full HDS 5 Chart	2.50 2.50 0.67 0.47 Submerged 4.9 2	ft ft
Section Shape Section Material Section Size Number Sections Outlet Control Properties Outlet Control HW Elev. Ke Inlet Control Properties Inlet Control HW Elev. Inlet Type Mite	CMP 30 inch 1 6,863.96 0.70 6,863.88 red to slope	ft	Span Rise Upstream Velocity Head Entrance Loss Flow Control Area Full	2.50 2.50 0.67 0.47 Submerged 4.9	ft ft

Appendix 48: Existing Culvert CulvertMaster Report Check Storm

Culvert Designer/Analyzer Report Corrective Effective

Analysis Component			
Storm Event	Check	Discharge	890.00 cfs
Peak Discharge Method: Us	ser-Specified		
Design Discharge	470.00 cfs	Check Discharge	890.00 cfs
Tailwater properties: Irregula	ar Channel		

Component:Weir

Discharge	851.45	cfs	Allowable HW Elevation	6,865.02	ft
Roadway Width	20.50	ft	Overtopping Coefficient	3.03	US
Length	53.62	ft	Crest Elevation	6,862.00	ft
Headwater Elevation	6,865.02	ft	Discharge Coefficient (Cr)	3.03	
Submergence Factor (Kt)	1.00				

Sta (ft)	Elev. (ft)
0.00	6,862.00
53.62	6,862.00

Component:Culvert-1

Culvert Summary					
Computed Headwater Elev	v: 6,865.02	ft	Discharge	38.58	cfs
Inlet Control HW Elev.	6,864.74	ft	Tailwater Elevation	6,861.85	ft
Outlet Control HW Elev.	6,865.02	ft	Control Type	Outlet Control	
Headwater Depth/Height	2.01				
Grades					
Upstream Invert	6,859.99	ft	Downstream Invert	6,859.62	ft
Length	47.63	ft	Constructed Slope	0.007770	ft/ft
Hydraulic Profile					
Profile CompositeM2Pr	ressureProfile		Depth, Downstream	2.22	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	2.10	ft
Velocity Downstream	8.36	ft/s	Critical Slope	0.028980	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	ft
Section Size	30 inch		Rise	2.50	
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	6,865.02	ft	Upstream Velocity Head	0.96	ft
Ke	0.70		Entrance Loss	0.67	ft
Inlat Control Propadias					
Inlet Control Properties	0.004.74		Flow Control	Outros	
Inlet Control HW Elev.	6,864.74	π	Flow Control	Submerged	47
	tered to slope		Area Full	4.9	n-
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
c	0.04630		Equation Form	1	
Y	0.75000				

Appendix 49: Six Barrel CMP CulvertMaster Designer/Analyzer Report

Culvert Designer/Analyzer Report Double Barrel

Design Discharge	470.00	cfs	Check Discharge	890.00	cfs
Grades Model: Inver	ts				
Invert Upstream	6,860.00	ft	Invert Downstream	6,859.87	ft
Length	30.00	ft	Slope	0.004272	ft/ft
Drop	0.13	ft			
Headwater Model: N	Maximum Allowable HW	V			
Headwater Elevation	on 6,864.40	ft			
Tailwater properties:	Irregular Channel				
	-				
Tailwater conditions f	for Design Storm.	cfs	Actual Depth	0.00	ft
	for Design Storm. 470.00	cfs ft/s	Actual Depth	0.00	ft
Tailwater conditions f	for Design Storm. 470.00 0.00		Actual Depth	0.00	ft
Tailwater conditions f Discharge Velocity	for Design Storm. 470.00 0.00	ft/s	Actual Depth Actual Depth	0.00	
Tailwater conditions f Discharge Velocity Tailwater conditions f	for Design Storm. 470.00 0.00 for Check Storm. 890.00	ft/s			
Tailwater conditions f Discharge Velocity Tailwater conditions f Discharge	for Design Storm. 470.00 0.00 for Check Storm. 890.00	ft/s cfs ft/s			

Design:Trial-1

Solve For: Section Size

		Storm Event		
-	ft	Discharge		
			0.00	ft
		Control Type	Outlet Control	
6,864.40	ft			
6,860.00	ft	Downstream Invert	6,859.87	ft
30.00	ft	Constructed Slope	0.004272	ft/ft
M2		Depth, Downstream	3.03	ft
		· · ·		
		Critical Slope		
Circular		Manufactor Occofficient	0.004	
		-		
		Rise	0.00	п
0				
6,864.40	ft	Upstream Velocity Head	0.80	ft
0.20		Entrance Loss	0.16	ft
0.004.45		Flow Control		
-	π			# 2
.5.1) bevels				11-
0.00400				
0.00180		HDS 5 Chart	3	
0.00180 2.50000 0.02430		HDS 5 Chart HDS 5 Scale Equation Form	3 B 1	
	6,864.40 0.55 6,864.15 6,864.40 6,860.00 30.00 30.00 Mild Subcritical 8.50 Circular CMP 96 inch 6 8.64.40 0.20	0.55 6,864.15 ft 6,864.40 ft 6,860.00 ft 30.00 ft Mild Subcritical 8.50 ft/s Circular CMP 96 inch 6 6,864.40 ft 0.20	6,864.40 ft Discharge 0.55 Tailwater Elevation 6,864.15 ft Control Type 6,860.00 ft Downstream Invert 30.00 ft Constructed Slope M2 Depth, Downstream Mild Normal Depth Subcritical Critical Depth 8.50 ft/s Critical Slope Circular Mannings Coefficient Span Span 96 inch Rise 6 Entrance Loss	6,864.40ftDischarge890.000.55Tailwater Elevation0.006,864.15ftControl TypeOutlet Control6,864.40ftDownstream Invert6,859.8730.00ftDownstream Invert6,859.8730.00ftConstructed Slope0.004272M2Depth, Downstream3.03MildNormal Depth3.81SubcriticalCritical Depth3.038.50ft/sCritical Slope0.009715CircularMannings Coefficient0.024CMPSpan8.006666,864.40ftUpstream Velocity Head0.800.20Entrance Loss0.166,864.15ftFlow ControlN/A

Appendix 50: Triple Box Culvert CulvertMaster Designer/Analyzer Report

		-				
Design Discharge	470.00	cfs	Check Discharge	89	0.00	cfs
Grades Model: Invert	s					
Invert Upstream	6,859.99	ft	Invert Downstrea	m 6,85	9.93	ft
Length	15.00	ft	Slope	0.004	4270	ft/ft
Drop	0.06	ft				
Headwater Model: M	aximum Allowable HW	1				
Headwater Elevatio	n 6.864.40	ft				
Tailwater properties: I	rregular Channel					
	-					
Tailwater properties: I Tailwater conditions for Discharge	-	cfs	Actual Depth		0.00	ft
Tailwater conditions for	or Design Storm.		Actual Depth		0.00	ft
Tailwater conditions for	or Design Stom. 470.00 0.00		Actual Depth		0.00	ft
Tailwater conditions fo Discharge Velocity	or Design Stom. 470.00 0.00	ft/s	Actual Depth Actual Depth		0.00	
Tailwater conditions fo Discharge Velocity Tailwater conditions fo	or Design Storm. 470.00 0.00 or Check Storm.	ft/s cfs				
Tailwater conditions fo Discharge Velocity Tailwater conditions fo Discharge	or Design Storm. 470.00 0.00 or Check Storm. 890.00 0.00	ft/s cfs ft/s	Actual Depth			

Culvert Designer/Analyzer Report Double Box

Design:Trial-1

Solve For: Section Size

Culvert Summary					
Allowable HW Elevation	6,864.40	ft	Storm Event	Check	
Computed Headwater Eleva	6,864.26	ft	Discharge	890.00	cfs
Headwater Depth/Height	0.47		Tailwater Elevation	0.00	ft
Inlet Control HW Elev.	6,864.19		Control Type	Entrance Control	
Outlet Control HW Elev.	6,864.26	ft			
Grades					
Upstream Invert	6,859.99	ft	Downstream Invert	6,859.93	ft
Length	15.00	ft	Constructed Slope	0.004270	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	2.51	ft
Slope Type	Steep		Normal Depth	2.34	ft
	supercritical		Critical Depth	2.67	ft
Velocity Downstream	9.84	ft/s	Critical Slope	0.002900	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	12.00	ft
Section Size	12 x 9 ft		Rise	9.00	ft
Number Sections	3				
Outlet Control Properties					
Outlet Control HW Elev.	6,864.26	ft	Upstream Velocity Hea	d 1.33	ft
Ke	0.20		Entrance Loss	0.27	ft
Inlet Control Properties					
Inlet Control HW Elev.	6,864.19	ft	Flow Control	N/A	
Inlet Type 90° headwall w			Area Full	324.0	
К	0.49500		HDS 5 Chart	10	
М	0.66700		HDS 5 Scale	2	
С	0.03140		Equation Form	2	
Y	0.82000				

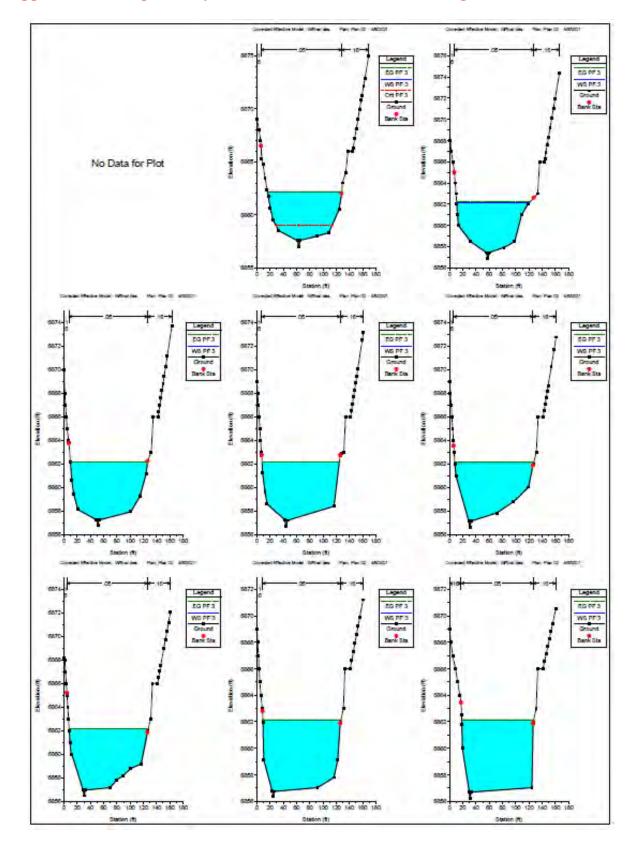
Appendix 51: 3-Sided Culvert CulvertMaster Designer/Analyzer Report

Design Discharge	470.00	cfs	Check Discha	irge	890.00	cfs
Grades Model: Invert	s					
Invert Upstream	6,859.99	ft	Invert Downst	ream	6,859.93	ft
Length	15.00		Slope		0.004270	
Drop	0.06					
Headwater Model: M	laximum Allowable HW	1				
Headwater Elevation	on 6,864.40	ft				
Tailwater properties: I	rregular Channel					
Tailwater properties: I	irregular Channel					
Tailwater properties: I Tailwater conditions f	-					
	-	cfs	Actual Depth		0.00	ft
Tailwater conditions f	or Design Storm.		Actual Depth		0.00	ft
Tailwater conditions f	or Design Storm. 470.00 0.00		Actual Depth		0.00	ft
Tailwater conditions f Discharge Velocity	or Design Storm. 470.00 0.00	ft/s	Actual Depth Actual Depth		0.00	
Tailwater conditions f Discharge Velocity Tailwater conditions f	or Design Storm. 470.00 0.00 or Check Storm.	ft/s cfs				
Tailwater conditions for Discharge Velocity Tailwater conditions for Discharge	or Design Storm. 470.00 0.00 or Check Storm. 890.00 0.00	ft/s cfs ft/s	Actual Depth	Velocity		

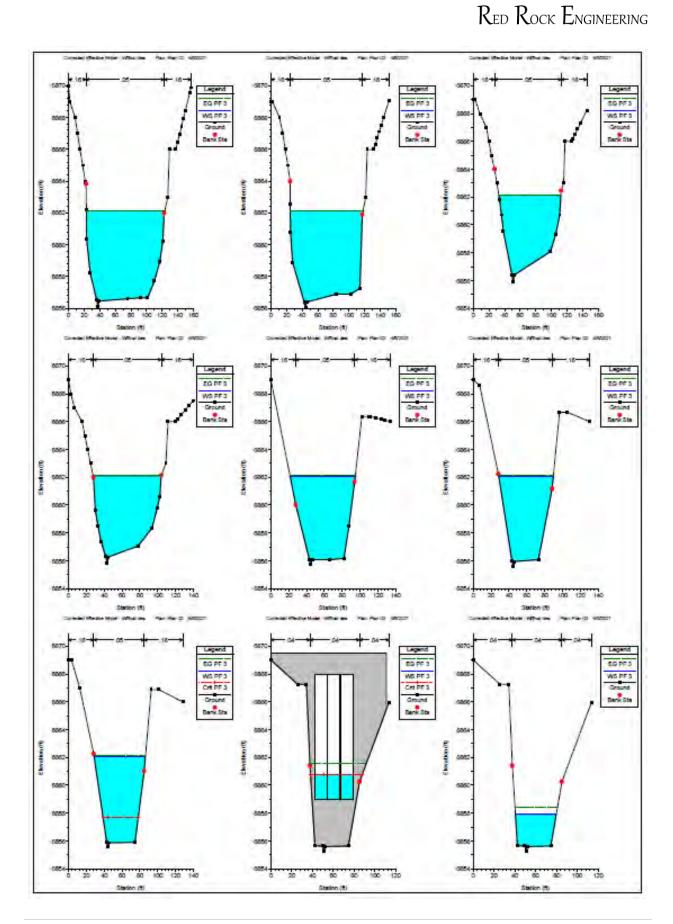
Culvert Designer/Analyzer Report 3 Sided Bridge

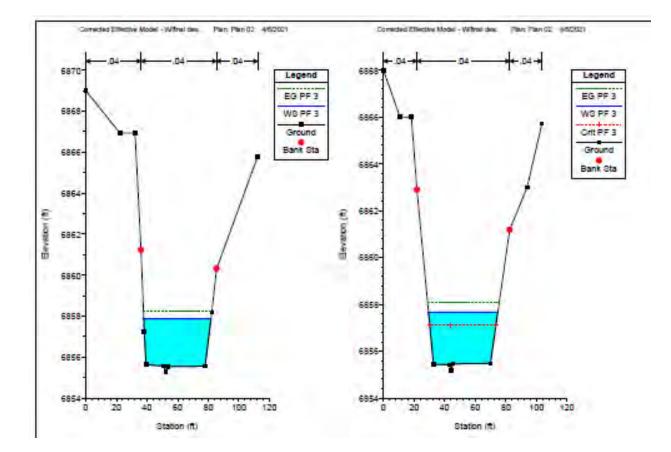
Design:Trial-1

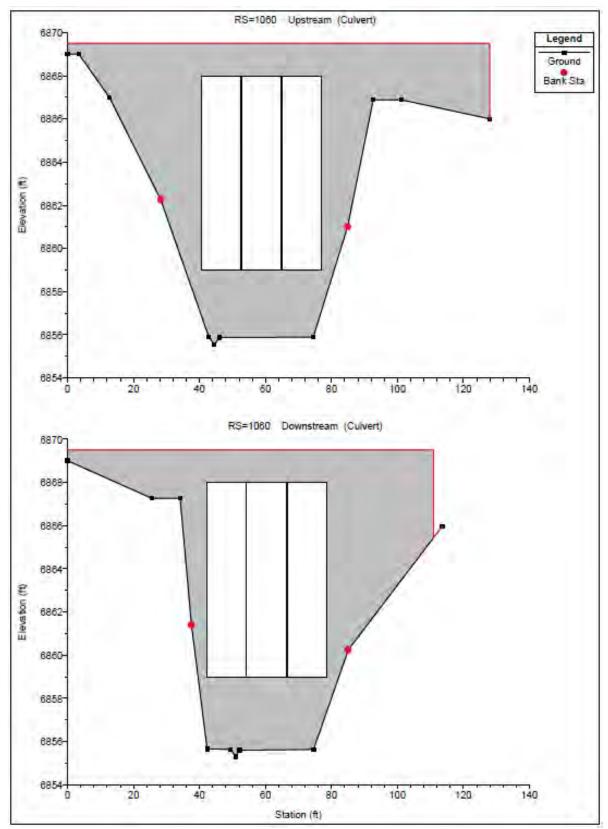
Solve For: Section Size


Culvert Summary					
Allowable HW Elevation	6,864.40		Storm Event	Check	
Computed Headwater Eleva		ft	Discharge	890.00	cfs
Headwater Depth/Height	0.49		Tailwater Elevation	0.00	ft
Inlet Control HW Elev.	6,864.19		Control Type	Outlet Control	
Outlet Control HW Elev.	6,864.37	ft			
Grades					
Upstream Invert	6,859.99	ft	Downstream Invert	6,859.93	ft
Length	15.00	ft	Constructed Slope	0.004270	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	2.67	ft
Slope Type	Mild		Normal Depth	5.16	ft
Flow Regime	Subcritical		Critical Depth	2.67	ft
Velocity Downstream	9.27	ft/s	Critical Slope	0.027454	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.040	
Section Material	Concrete		Span	12.00	ft
Section Size	12 x 9 ft		Rise	9.00	ft
Number Sections	3				
Outlet Control Properties					
Outlet Control HW Elev.	6,864.37	ft	Upstream Velocity Head	0.83	ft
Ke	0.20		Entrance Loss	0.17	ft
Inlet Control Properties					
Inlet Control HW Elev.	6,864.19	ft	Flow Control	N/A	
Inlet Type 90° headwall w			Area Full	324.0	
K	0.49500		HDS 5 Chart	10	
M	0.66700		HDS 5 Scale	2	
C	0.03140		Equation Form	2	
Y	0.82000			-	

Culverts								
Item	Unit	Unit Price	Size	Quantity	Total			
96" CMP	L.F.	\$300.00	30	6	\$54,000.00			
Tripple Box	L.F.	\$1,487.00	12' × 9'	45	\$66,915.00			
3-Sided Bridge	L.F.	\$1,487.00	12' × 9'	45	\$66,915.00			
Wing Wals	EA	\$3,562.00	9'	4	\$14,248.00			


Appendix 52: Cost Calculations for Proposed Culvert Designs


Appendix 53: FEMA FIS Sinclair Wash Water Surface Elevations


FLOODING S	DURCE	1	FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)							
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE				
Sinclair Wash		1. 1										
A	211	59	103	6.9	6.854.5	6,854.5	6,854.7	0.2				
в	370	75	758	1.2	6,855.1	6.855.1	6.855.5	0.4				
C	845	75	646	1.4	6,855,1	6,855.1	6,855.5	0.4				
D	1,584	63	523	1.7	6.855.2	6,855 2	6,855.6	0.4				
E	2.693	55	257	3.5	6,855.3	6.855.3	6.855.8	0.5				
F	2,851	21	115	7.7	6,855.6	6,855.6	6,855.9	0.3				
G	3,010	55	302	2.9	6,856,8	6,856.8	6,856.9	0.1				
H	3.643	25	96	9.3	6.856.8	6,856.8	6,856.9	0.1				
1	4,541	29	138	6.4	6,861.1	6.861.1	6.861.6	0.5				
J	4,699	21	81	11.0	6,863.0	6,863.0	6.863.0	0.0				
K	4,752	21	106	8.4	6,864,4	6,864.4	6,864.4	0.0				
L	4,805	26	125	7.1	6.864.4	6,864.4	6,864.4	0.0				
M	5,702	21	123	7.3	6,865.6	6,865,6	6,866.3	0.7				
N	8.237	49	130	5.7	6.877.2	6,877.2	6.877.3	01				
0	8,290	49	188	4.1	6.877.3	6.877.3	6,877.7	0.4				
P	8,976	31	88	6.2	6,879.9	6,879.9	6,880.2	0.3				
Q	9,134	37	274	2.0	6,885.9	6,885.9	6,885.9	00				
R	10.032	48	135	4.1	6,886.2	6,886,2	6,886 3	0.1				
S	10,718	31	97	5.7	5,888.6	6,888 6	6,888.6	0.0				
Ť.	10,930	134	636	0.9	6,894.2	6,894 2	6,895.2	10				
0	12,514	33	67	8.2	6,900.0	6,900.0	6,900.0	0.0				
V	13,517	45	137	4.0	6,904.9	6,904.9	6,905.9	0.1				
W.	13,992	30	67	7.0	6,908,4	6,908.4	6,908,5	0.1				
X	14,203	47	246	1.9	6,909.0	6,909.0	6,909.7	0.7				
Y	14,573	66	418	1.1	6,913,7	6,913.7	6,914.7	1.0				
Z	14,784	95	433	1.1	6,913.7	6,913.7	6,914.7	1.0				
AA	14,890	112	362	1.3	6,913.9	6,913.9	6,914,7	0.8				
AB	15,576	51	129	3.6	6,913,9	6,913.9	6,914,9	1.0				
	SENCY MANAGEMEN			-	FLOOI	OWAY DA	ТА					
AND INCOM	NO COUNTY RPORATED		SINCLAIR WASH									

Appendix 55: Proposed Hydraulic Model Culvert Diagram

171 | P a g e

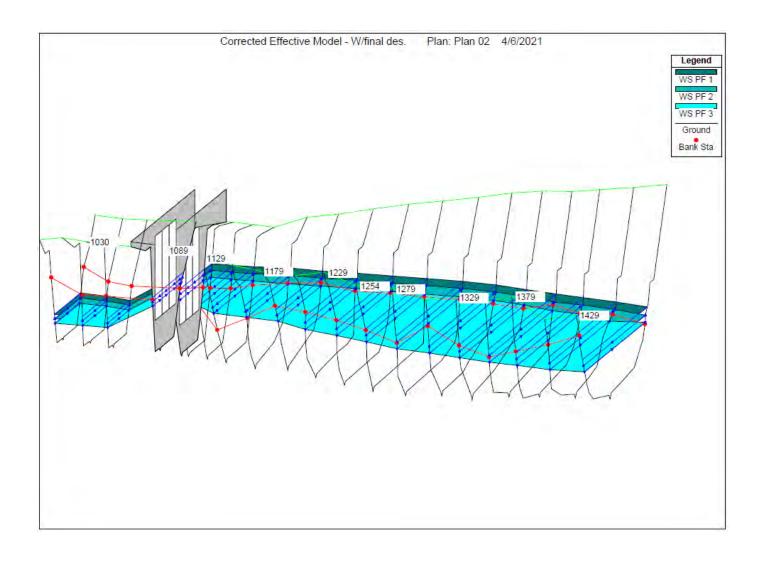
Appendix 56: Proposed Hydraulic Model Cross-Section Summary Table

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
-17 to Culvert	1429	PF 1	890.00	6857.00	6863.63	6859.53	6863.67	0.000327	1.55	577.48	120.73	0.1
-17 to Culvert	1429	PF 2	670.00	6857.00	6862.91	6859.27	6862.94	0.000305	1.36	492.24	115.47	0.1
-17 to Culvert	1429	PF 3	470.00	6857.00	6862.17	6858.98	6862.19	0.000273	1.15	408.07	112.61	0.1
I-17 to Culvert	1404	PF 1	890.00	6856.89	6863.62		6863.66	0.000400	1.63	551.37	125.12	0.1;
I-17 to Culvert	1404	PF 2	670.00	6856.89	6862.90		6862.93	0.000395	1.45	461.65	122.14	0.1
I-17 to Culvert	1404	PF 3	470.00	6856.89	6862.16		6862.19	0.000351	1.25	376.00	110.35	0.13
I-17 to Culvert	1379	PF 1	890.00	6856.78	6863.62		6863.65	0.000240	1.40	642.94	125.10	0.1
I-17 to Culvert	1379	PF 2	670.00	6856.78	6862.90		6862.92	0.000218	1.21	553.22	122.79	0.10
I-17 to Culvert	1379	PF 3	470.00	6856.78	6862.16		6862.18	0.000186	1.01	465.17	116.73	0.0
I-17 to Culvert	1354	PF 1	890.00	6856.68	6863.61		6863.64	0.000230	1.38	650.92	126.16	0.1
I-17 to Culvert	1354	PF 2	670.00	6856.68	6862.89		6862.92	0.000210	1.20	560.49	121.81	0.1
I-17 to Culvert	1354	PF 3	470.00	6856.68	6862.16		6862.17	0.000177	0.99	473.52	116.96	0.09
I-17 to Culvert	1329	PF 1	890.00	6856.57	6863.60		6863.64	0.000292	1.48	609.19	125.83	0.12
I-17 to Culvert	1329	PF 2	670.00	6856.57	6862.88		6862.91	0.000232	1.40	518.99	123.96	0.12
I-17 to Culvert	1329	PF 3	470.00	6856.57	6862.15		6862.17	0.000214	1.09	429.47	120.00	0.10
I-II to ouvert	1023	110	470.00	0000.07	0002.10		0002.11	0.000247	1.05	420.47	110.04	0.10
I-17 to Culvert	1304	PF 1	890.00	6856.47	6863.60		6863.63	0.000232	1.37	652.95	125.67	0.10
I-17 to Culvert	1304	PF 2	670.00	6856.47	6862.88		6862.90	0.000209	1.20	562.91	123.83	0.10
I-17 to Culvert	1304	PF 3	470.00	6856.47	6862.15		6862.16	0.000179	0.99	473.49	119.70	0.09
1.47 to Outred	1070	DE 4	000.00	0050.000	6060.60		6969.69	0.000451	4.04	740.50	101.50	0.00
I-17 to Culvert	1279	PF 1	890.00	6856.36 6856.36	6863.60 6862.88		6863.62 6862.90	0.000151	1.21	740.59	124.56	0.09
I-17 to Culvert I-17 to Culvert	1279 1279	PF 2 PF 3	670.00 470.00	6856.36	6862.88		6862.90	0.000129	1.03 0.83	651.59 563.40	122.01 118.19	0.08
I-17 to Culvert	1275	FFS	470.00	0000.00	6662.13		6002.10	0.000101	0.05	363.40	110.13	0.07
I-17 to Culvert	1254	PF 1	890.00	6856.25	6863.60		6863.62	0.000160	1.26	711.34	114.71	0.09
I-17 to Culvert	1254	PF 2	670.00	6856.25	6862.88		6862.89	0.000133	1.07	629.47	112.67	0.08
I-17 to Culvert	1254	PF 3	470.00	6856.25	6862.14		6862.15	0.000102	0.86	548.28	108.83	0.07
I-17 to Culvert	1229	PF 1	890.00	6856.15	6863.58		6863.61	0.000194	1.39	646.85	105.24	0.10
I-17 to Culvert	1229	PF 2	670.00	6856.15	6862.87		6862.89	0.000161	1.18	571.69	103.91	0.09
I-17 to Culvert	1229	PF 3	470.00	6856.15	6862.14		6862.15	0.000124	0.95	497.07	100.28	0.07
I-17 to Culvert	1204	PF 1	890.00	6856.04	6863.57		6863.61	0.000225	1.49	602.87	97.23	0.10
I-17 to Culvert	1204	PF 2	670.00	6856.04	6862.86		6862.88	0.000187	1.26	533.52	96.30	0.09
I-17 to Culvert	1204	PF 3	470.00	6856.04	6862.13		6862.15	0.000143	1.01	464.44	93.31	0.0
I-17 to Culvert	1179	PF 1	890.00	6855.93	6863.54		6863.60	0.000496	1.98	450.82	87.38	0.1
I-17 to Culvert I-17 to Culvert	1179 1179	PF 2 PF 3	670.00 470.00	6855.93 6855.93	6862.83 6862.11		6862.88 6862.14	0.000433 0.000351	1.72	390.00 331.43	83.93 79.47	0.14
I-17 to Culvert	1179	PFS	470.00	6600.90	0002.11		0002.14	0.000351	1.42	331.43	19.41	0.12
I-17 to Culvert	1154	PF 1	890.00	6855.83	6863.53		6863.59	0.000419	1.96	462.90	86.60	0.14
I-17 to Culvert	1154	PF 2	670.00	6855.83	6862.82		6862.87	0.000362	1.67	402.88	82.82	0.13
I-17 to Culvert	1154	PF 3	470.00	6855.83	6862.10		6862.13	0.000290	1.36	345.76	76.30	0.1
I-17 to Culvert	1129	PF 1	890.00	6855.72	6863.51		6863.58	0.000415	2.07	449.96	80.04	0.14
I-17 to Culvert	1129	PF 2	670.00	6855.72	6862.81		6862.86	0.000346	1.75	395.02	76.66	0.13
I-17 to Culvert	1129	PF 3	470.00	6855.72	6862.09		6862.12	0.000265	1.40	341.49	73.22	0.1
I-17 to Culvert	1104	PF 1	890.00	6855.61	6863.47		6863.56	0.000649	2.45	369.15	67.69	0.18
I-17 to Culvert	1104	PF 2	670.00	6855.61	6862.78		6862.85	0.000554	2.09	323.47	64.36	0.16
I-17 to Culvert	1104	PF 3	470.00	6855.61	6862.07		6862.12	0.000433	1.69	279.18	61.11	0.14
I-17 to Culvert	1089	PF 1	890.00	6855.55	6863.46	6858.59	6863.55	0.000644	2.49	362.79	63.87	0.18
I-17 to Culvert	1089	PF 2	670.00	6855.55	6862.77	6858.14	6862.84	0.000538	2.11	319.90	60.70	0.10
I-17 to Culvert	1089	PF 3	470.00	6855.55	6862.07	6857.68	6862.11	0.000409	1.69	278.37	57.65	0.13
I-17 to Culvert	1060		Culvert									
			carron									
I-17 to Culvert	1030	PF 1	890.00	6855.30	6858.85		6859.70	0.010358	7.36	120.91	42.26	0.77
I-17 to Culvert	1030	PF 2	670.00	6855.30	6858.40		6859.07	0.009810	6.57	102.03	40.84	0.73
I-17 to Culvert	1030	PF 3	470.00	6855.30	6857.91		6858.42	0.009224	5.69	82.55	39.33	0.69
1174-01-1	1005	05.4		00000				0.007.4				
I-17 to Culvert	1025	PF 1	890.00	6855.27	6858.84		6859.47	0.007196	6.36	139.87	45.94	0.64
I-17 to Culvert	1025	PF 2	670.00	6855.27	6858.37		6858.87	0.006879	5.67	118.21	45.00	0.62
I-17 to Culvert	1025	PF 3	470.00	6855.27	6857.86		6858.23	0.006564	4.91	95.66	43.95	0.59
I-17 to Culvert	1000	PF 1	890.00	6855.17	6858.67	6857.94	6859.31	0.007770	6.41	138.87	48.95	0.67
	1000	PF 2	670.00	6855.17	6858.18	6857.52	6858.71	0.007769	5.82	115.20	40.35	0.60
I-17 to Culvert												

172 | P a g e

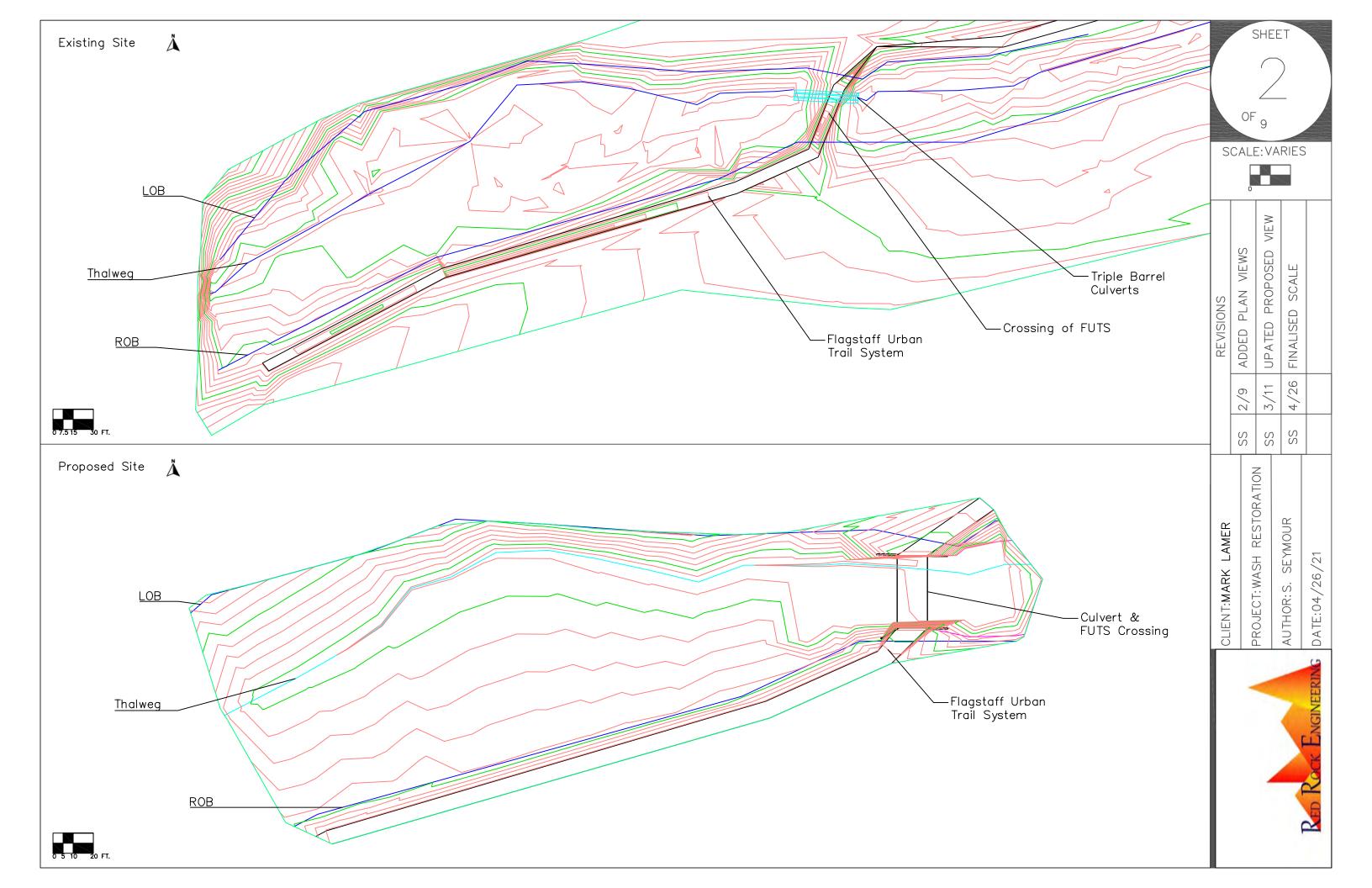
Plan: Plan 02 Sinclair	Wash I-17 t	o Culvert RS: 1060 Culv	Group: 3 sided RCB	Profile: PF 1
Q Culv Group (cfs)	890.00	Culv Full Len (ft)		
# Barrels	3	Culv Vel US (ft/s)	6.42	
Q Barrel (cfs)	296.67	Culv Vel DS (ft/s)	9.27	
E.G. US. (ft)	6863.56	Culv Inv El Up (ft)	6859.00	
W.S. US. (ft)	6863.46	Culv Inv El Dn (ft)	6858.99	
E.G. DS (ft)	6859.70	Culv Frctn Ls (ft)	0.50	
W.S. DS (ft)	6858.85	Culv Exit Loss (ft)	3.30	
Delta EG (ft)	3.86	Culv Entr Loss (ft)	0.06	
Delta WS (ft)	4.60	Q Weir (cfs)		
E.G. IC (ft)	6863.33	Weir Sta Lft (ft)		
E.G. OC (ft)	6863.56	Weir Sta Rgt (ft)		
Culvert Control	Outlet	Weir Submerg		
Culv WS Inlet (ft)	6862.85	Weir Max Depth (ft)		
Culv WS Outlet (ft)	6861.66	Weir Avg Depth (ft)		
Culv Nml Depth (ft)	9.00	Weir Flow Area (sq ft)		
Culv Crt Depth (ft)	2.67	Min El Weir Flow (ft)	6866.01	

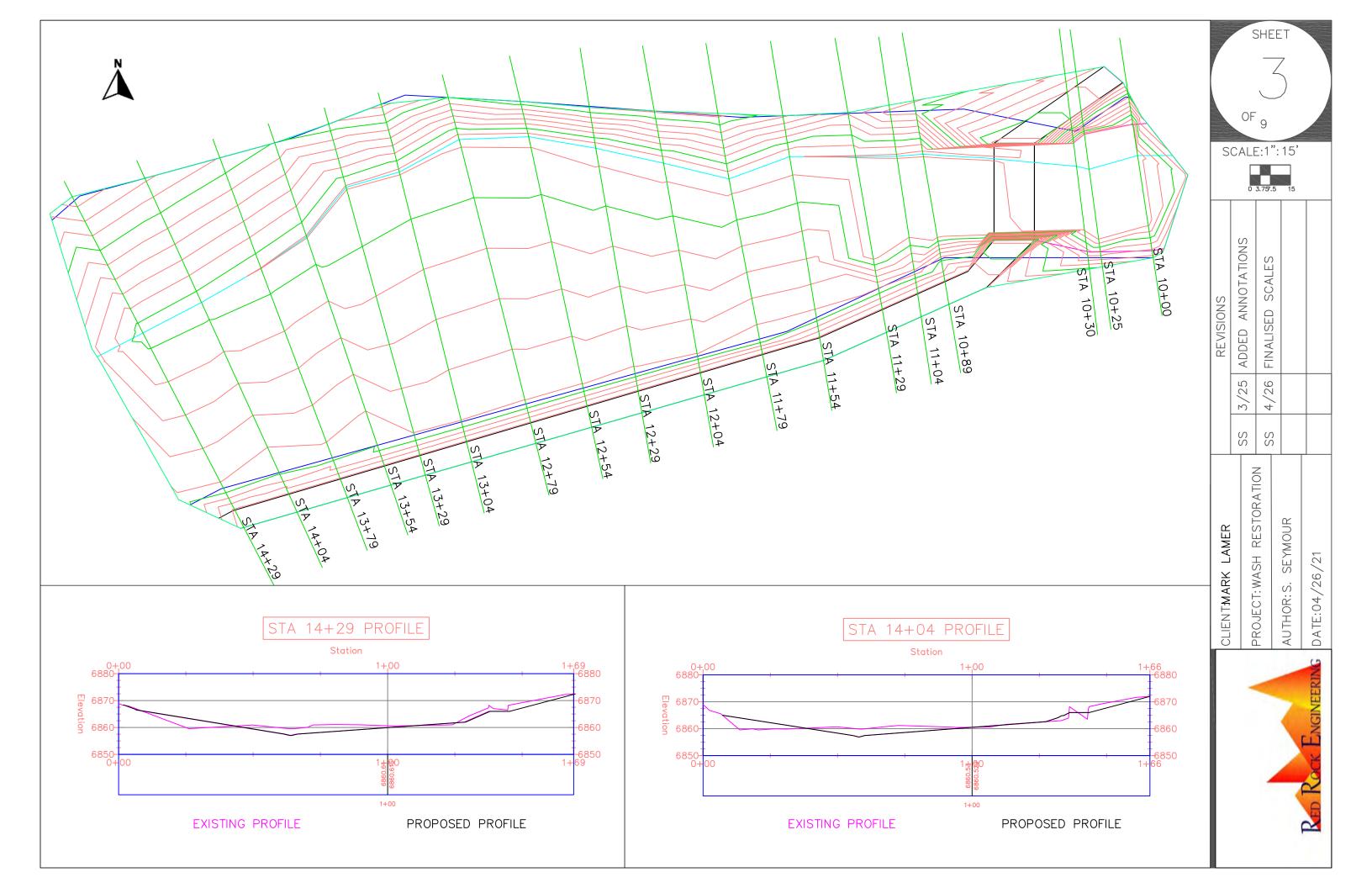
Appendix 57: Proposed Hydraulic Model Culvert Summary Table

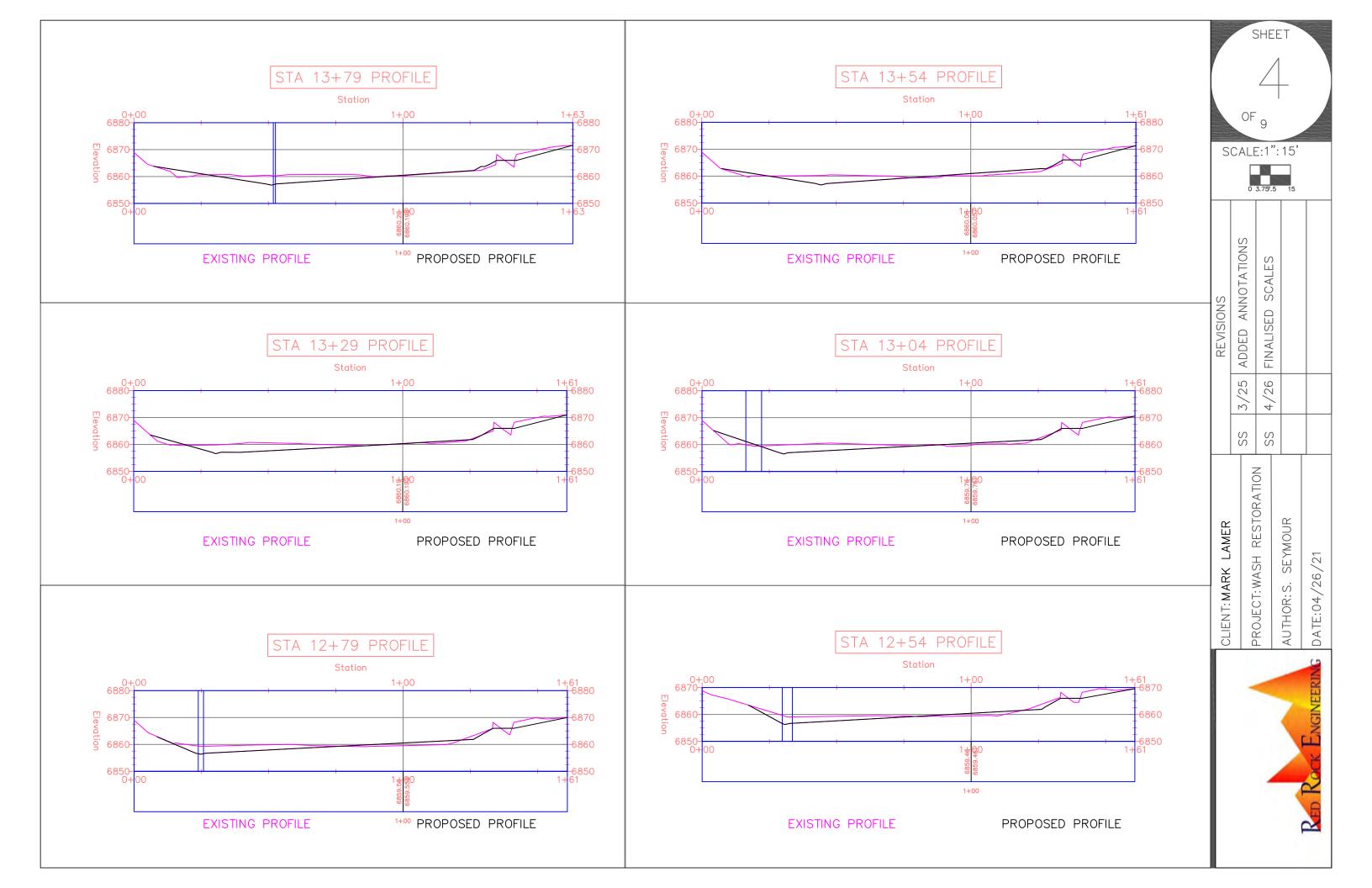

2.12

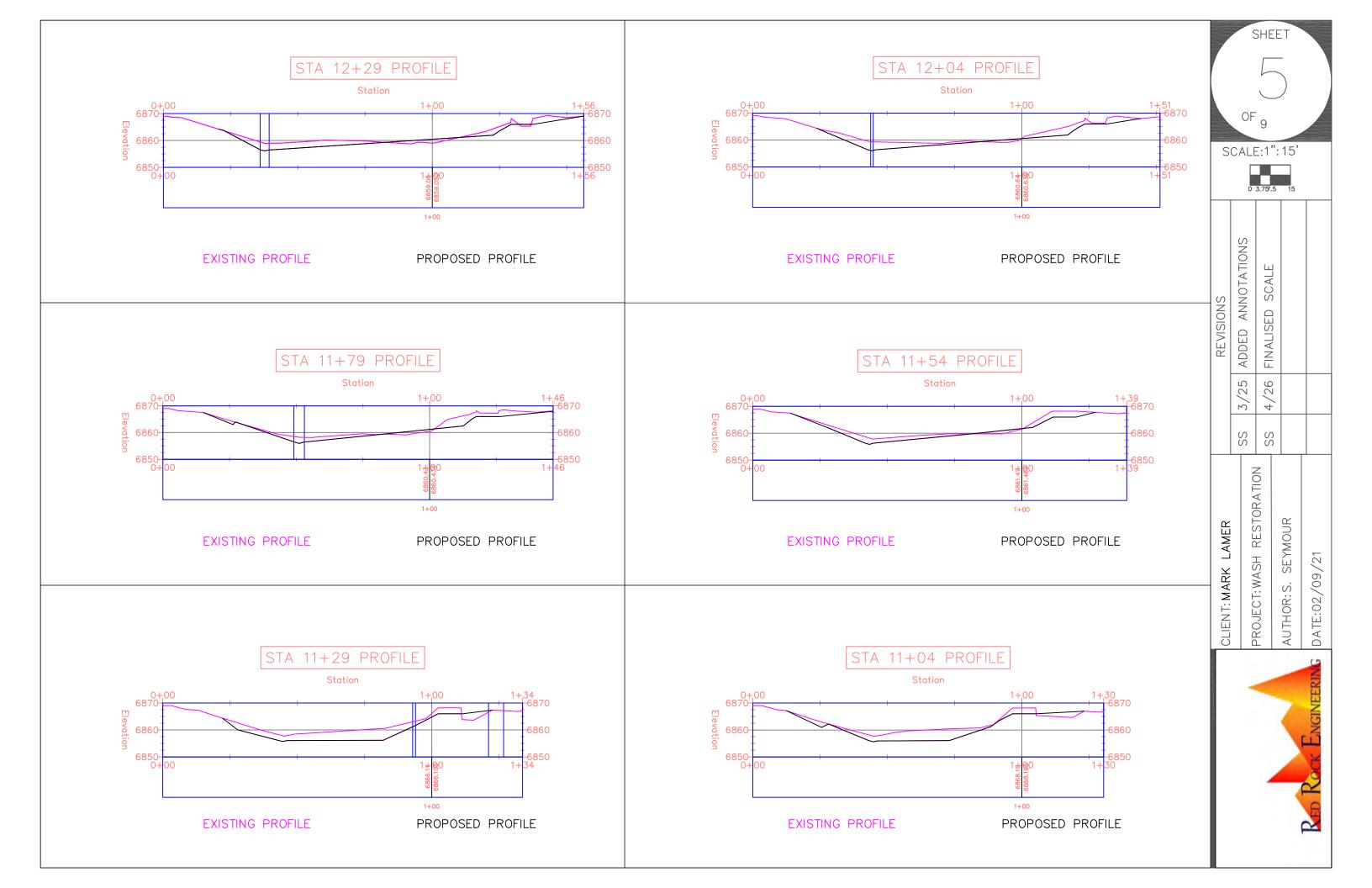
Plan: Plan 02 Sinclair Wash I-17 to Culvert RS: 1060 Culv Group: 3 sided RCB Profile: PF 2 Q Culv Group (cfs) 670.00 Culv Full Len (ft) # Barrels 3 Culv Vel US (ft/s) 5.65 8.43 Q Barrel (cfs) 223.33 Culv Vel DS (ft/s) E.G. US. (ft) 6862.84 Culv Inv El Up (ft) 6859.00 6862.77 W.S. US. (ft) Culv Inv El Dn (ft) 6858.99 E.G. DS (ft) 6859.07 Culv Frctn Ls (ft) 0.49 W.S. DS (ft) Culv Exit Loss (ft) 3.23 6858.40 Delta EG (ft) Culv Entr Loss (ft) 3.77 0.05 Delta WS (ft) 4.37 Q Weir (cfs) E.G. IC (ft) 6862.58 Weir Sta Lft (ft) Weir Sta Rgt (ft) E.G. OC (ft) 6862.84 Culvert Control Outlet Weir Submerg Culv WS Inlet (ft) 6862.29 Weir Max Depth (ft) Culv WS Outlet (ft) 6861.20 Weir Avg Depth (ft) Culv Nml Depth (ft) 9.00 Weir Flow Area (sq ft) Culv Crt Depth (ft) 2.21 Min El Weir Flow (ft) 6866.01

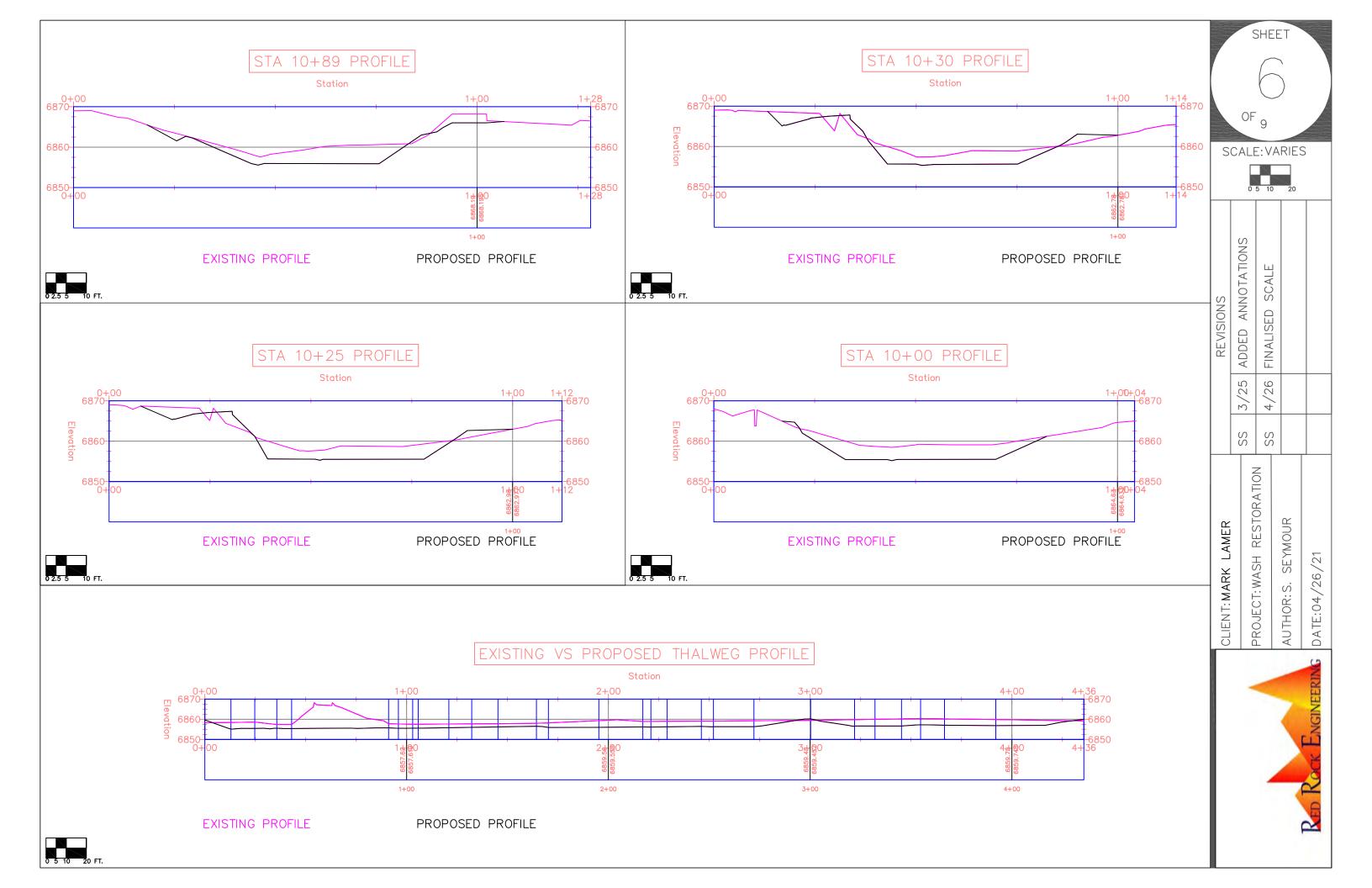

Q Culv Group (cfs)	670.00	Culv Full Len (ft)	1
# Barrels	3	Culv Vel US (ft/s)	5.65
Q Barrel (cfs)	223.33	Culv Vel DS (ft/s)	8.43
E.G. US. (ft)	6862.84	Culv Inv El Up (ft)	6859.00
W.S. US. (ft)	6862.77	Culv Inv El Dn (ft)	6858.99
E.G. DS (ft)	6859.07	Culv Frctn Ls (ft)	0.49
W.S. DS (ft)	6858.40	Culv Exit Loss (ft)	3.23
Delta EG (ft)	3.77	Culv Entr Loss (ft)	0.05
Delta WS (ft)	4.37	Q Weir (cfs)	1.00
E.G. IC (ft)	6862.58	Weir Sta Lft (ft)	
E.G. OC (ft)	6862,84	Weir Sta Rgt (ft)	
Culvert Control	Outlet	Weir Submerg	
Culv WS Inlet (ft)	6862.29	Weir Max Depth (ft)	
Culv WS Outlet (ft)	6861.20	Weir Avg Depth (ft)	
Culv Nml Depth (ft)	9.00	Weir Flow Area (sq ft)	
Culv Crt Depth (ft)	2.21	Min El Weir Flow (ft)	6866.01

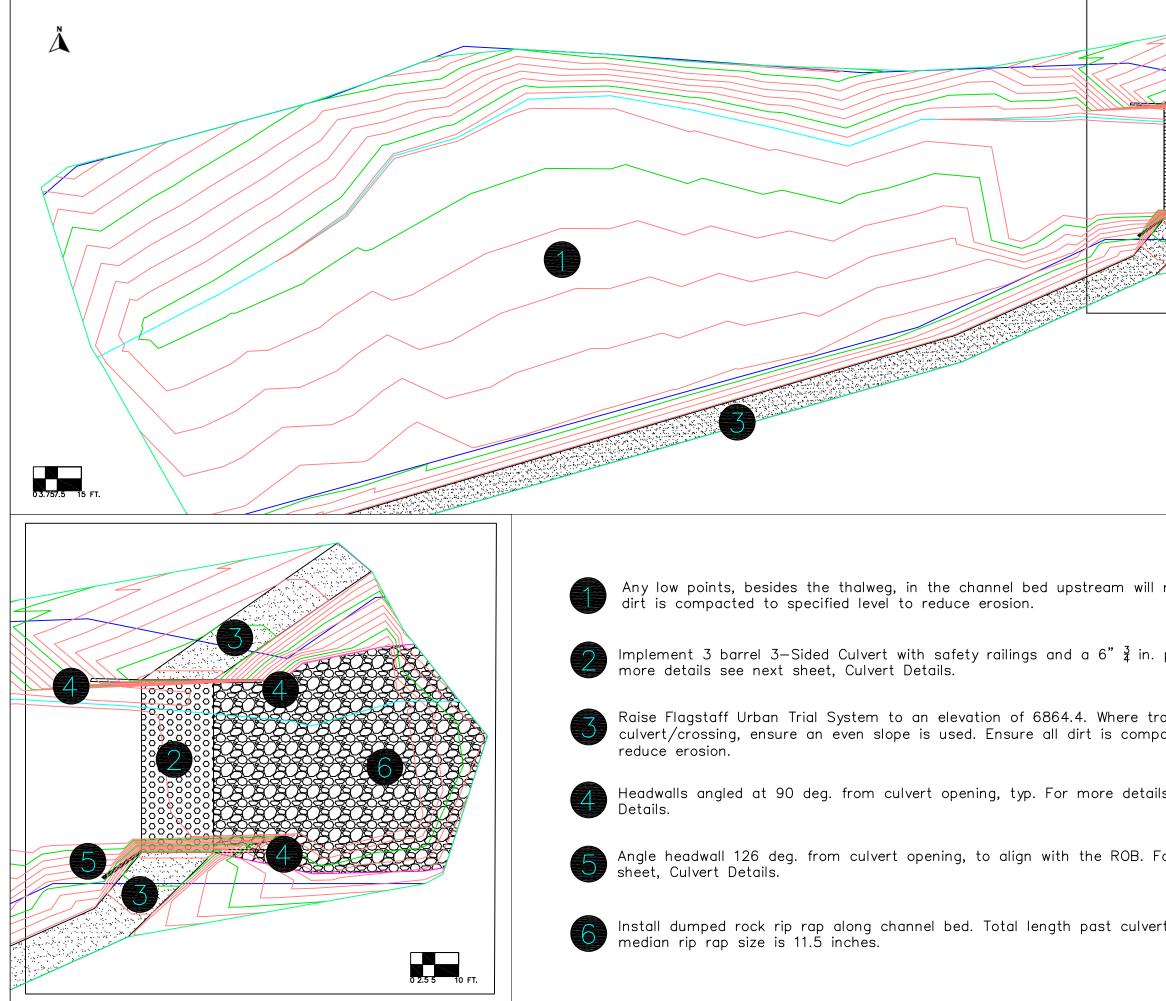

Plan: Plan 02 Sinclair Wash I-17 to Culvert RS: 1060 Culv Group: 3 sided RCB Profile: PF 2

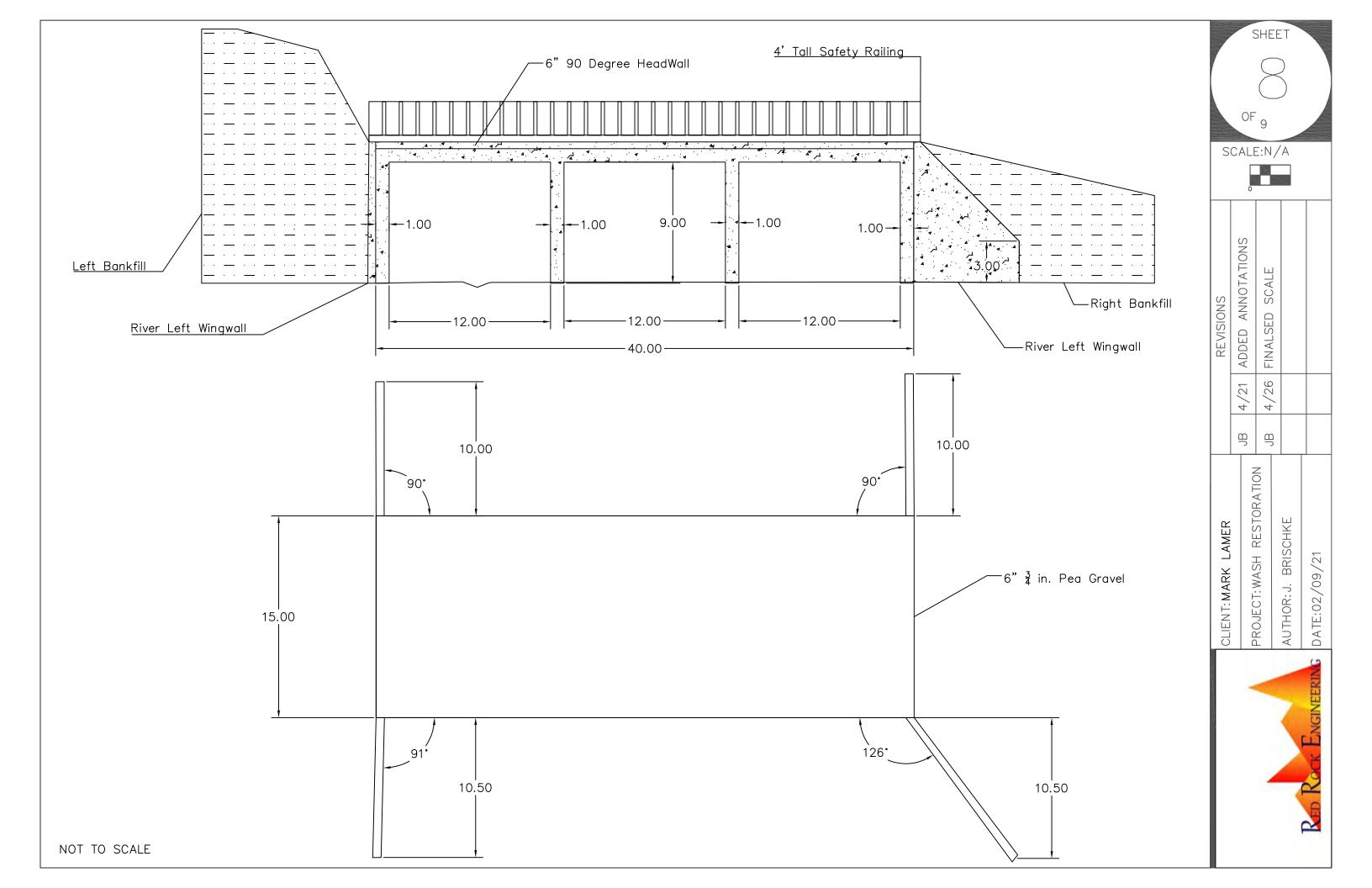

Appendix 58: Three-Dimensional Proposed Hydraulic Model

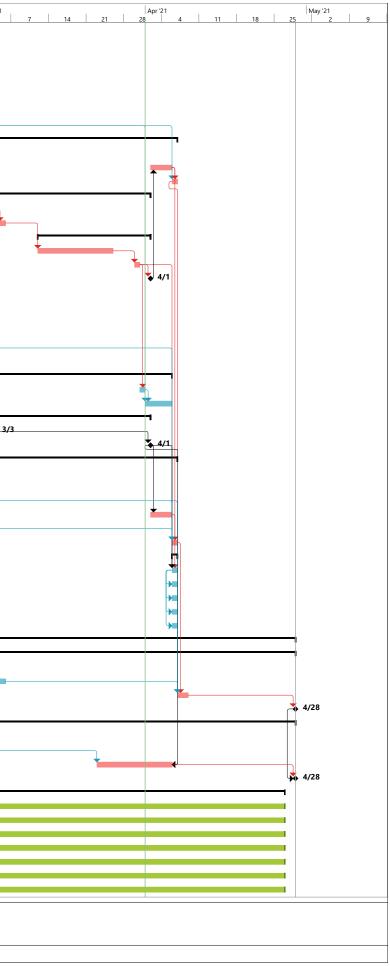


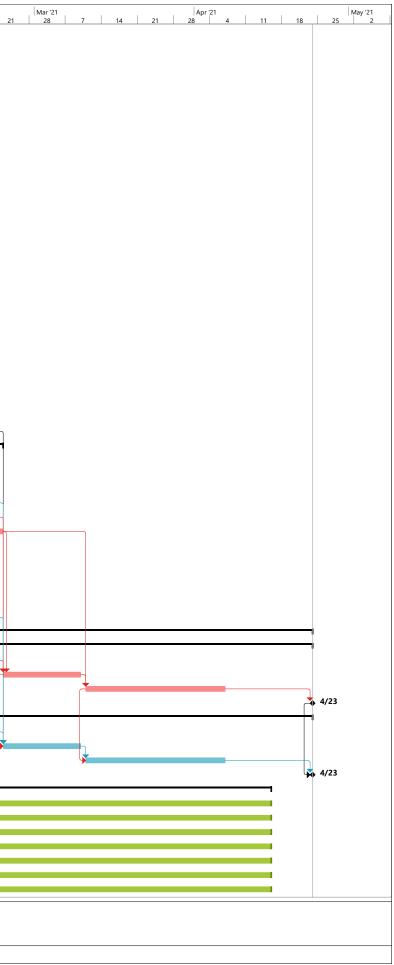

Appendix 59: Final Plan Set








	S	SHE 		6
	REVISIONS			
need to be filled. Ensure pea gravel cover. For rail angles to meet pacted to specified level to	CLIENT:MARK LAMER	PROJECT: WASH RESTORATION	AUTHOR:S. SEYMOUR	DATE:02/09/21
ls see next sheet, Culvert For more details see next rt outlet is 104 feet. The				RED ROCK ENGINEERING


Appendix 61: Updated Project Schedule

ID Ta	ask Name	Duration	Start	Finish				Nov	'20			Doc '20				lan '21			Feb '21			Mar '21
					11	18	25		1	8 15	22	Dec '20 29	6 1	3 20	27	3	10 17	7 24	31	7	14 21	
		2 days	Mon 10/19/20	Tue 10/20/20																		
		1 day	Mon 10/19/20	Mon 10/19/20	_	н																
3		1 day	Mon 10/19/20	Mon 10/19/20	_	≫■																
4		1 day	Mon 10/19/20	Mon 10/19/20	_																	
5		1 day	Mon 10/19/20	Mon 10/19/20	_	⋟∎																
6		1 day	Mon 10/19/20	Mon 10/19/20		⋟⊫∔																
7		1 day	Mon 10/19/20	Mon 10/19/20																		
8	Geomorphologic Design	1 day	Mon 10/19/20	Mon 10/19/20		>∎-																
9 (Geomorphic Assessment	79 days	Mon 11/2/20	Tue 4/6/21																		
10		3 days	Mon 11/2/20	Wed 11/4/20																		
11	Channel Conditions	2 days	Fri 4/2/21	Mon 4/5/21																		
12	Restoration Targets/Priorities	1 day	Tue 4/6/21	Tue 4/6/21																		
13 (Geotechnical Analysis	83 days	Thu 10/22/20	Thu 4/1/21																		
14	Field Sampling Plan	1 day	Thu 10/22/20	Thu 10/22/20																		
15	Data Collection	1 day	Fri 3/5/21	Fri 3/5/21																		1
16	Sample Testing	15 days	Fri 3/12/21	Thu 4/1/21																		
17	Sieve Analysis & Atterberge Limits	10 days	Fri 3/12/21	Thu 3/25/21																		
18	Soil Classification	1 day	Tue 3/30/21	Tue 3/30/21																		
19	Analysis	2 days	Wed 3/31/21	Thu 4/1/21																		
20 E	Biological and Ecological Assessment	51 days	Wed 10/21/20	Mon 2/15/21		_ ⊧⊢													_		1	
21	Identify Surrounding Site Interactions	1 day	Wed 10/21/20	Wed 10/21/20		🛓																
22		5 days	Tue 1/12/21	Mon 1/18/21	1												-					
23		1 day	Tue 1/12/21	Tue 1/12/21																		
24		1 day	Tue 1/26/21	Tue 1/26/21	-																	
25		4 days	Wed 2/10/21	Mon 2/15/21	-													-			2/15	
		27 days	Fri 2/26/21	Mon 4/5/21	_																	
27	• •	1 day	Wed 3/31/21	Wed 3/31/21	_																	-
28		3 days	Thu 4/1/21	Mon 4/5/21	_																	
29		25 days	Fri 2/26/21	Thu 4/1/21	_																	
30	•	4 days	Fri 2/26/21	Wed 3/3/21	_																	3/3
31		14 days	Mon 3/15/21	Thu 4/1/21	_																	•
	Plan Set	48 days	Fri 1/29/21	Tue 4/6/21																		
33																						
34		1 day	Fri 1/29/21	Fri 1/29/21	_																	
	-	1 day	Fri 1/29/21	Fri 1/29/21	_													9				
35		1 day	Mon 2/1/21	Mon 2/1/21																		
36	Channel Plan, Profile, and Cross-Sections		Fri 4/2/21	Mon 4/5/21	_																Ļ	
37		2 days	Tue 2/16/21	Wed 2/17/21	_																	
38		1 day	Tue 4/6/21	Tue 4/6/21																		
		1 day	Tue 4/6/21	Tue 4/6/21																		
40		1 day	Tue 4/6/21	Tue 4/6/21																		
41	Health	1 day	Tue 4/6/21	Tue 4/6/21																		
42	Environmental	1 day	Tue 4/6/21	Tue 4/6/21																		
43	Economic	1 day	Tue 4/6/21	Tue 4/6/21																		
44	Social	1 day	Tue 4/6/21	Tue 4/6/21																		
45 F	Project Deliverables	63 days	Mon 2/1/21	Wed 4/28/21															h		+	
46	Client Deliverables	63 days	Mon 2/1/21	Wed 4/28/21															┢┤ ────		+	
47	30% Plan Set	5 days	Mon 2/1/21	Fri 2/5/21															-			
48	60% Plan Set	4 days	Tue 3/2/21	Fri 3/5/21																		*
49	90% Plan Set	2 days	Wed 4/7/21	Thu 4/8/21																		
50		5 days	Thu 4/22/21	Wed 4/28/21																		
51	Course Deliverables	62 days	Tue 2/2/21	Wed 4/28/21																	+	
52		5 days	Tue 2/2/21	Mon 2/8/21																		
53		6 days	Tue 2/16/21	Tue 2/23/21	-															-	₩	
55	90% Deliverables	10 days	Tue 3/23/21	Tue 4/6/21	_																	
55		2 days	Tue 4/27/21	Wed 4/28/21	-																	
	Project Management	103 days	Mon 10/19/20	Mon 4/26/21	-																	
57	Client Meetingigs	103 days	Mon 10/19/20	Mon 4/26/21	-																	
58	Team meatings	103 days	Mon 10/19/20	Mon 4/26/21	-																	
59	Technical Advisor Meetings	103 days	Mon 10/19/20 Mon 10/19/20	Mon 4/26/21	_																	
60	Gradingin Instructor Meetings	103 days 103 days	Mon 10/19/20 Mon 10/19/20	Mon 4/26/21 Mon 4/26/21	_																	
					_																	
61	Correspondence	103 days	Mon 10/19/20	Mon 4/26/21	_																	
62	Schedule Management	103 days	Mon 10/19/20	Mon 4/26/21	_																	
63	Resource Management	103 days	Mon 10/19/20	Mon 4/26/21																		
	Task		Summary		l In	active Miles	tone 🔷		D	uration-only		Start-	only	C	E	xternal Milestone	\$	Critical Sp	lit			
	ct: Capstone Schedule - N		Project Sum	mary		active Sumr				anual Summary Ro	ollup	Finish	-	3		eadline	÷	Progress				
Date:	Thu 4/1/21 Split Milestone	٠	Inactive Task			lanual Task				anual Summary	·		nal Tasks	-		ritical		Manual Pr	rogress			
	I									,				D-					-			
														Page	el							

Appendix 60: Proposed Schedule

Mode	5				Start	Finish	11	18		20 1 8	15	Dec 22 29	6	13 20	27	'21 3	10	17 24	Feb '21 31	7 1
-4	1		Site Investigation	2 days	Mon 10/19/20	Tue 10/20/20														
-4	2		Previous Studies	1 day	Mon 10/19/20	Mon 10/19/20														
-4	2.1	L	Feasibility Study	1 day	Mon 10/19/20	Mon 10/19/20		≫■												
-4	2.2	2	Surveying	1 day	Mon 10/19/20	Mon 10/19/20						-							<u> </u>	
	2.3	3	Hydrologic	1 day	Mon 10/19/20	Mon 10/19/20													_	
	2.4	1	Hydraulic	1 day	Mon 10/19/20	Mon 10/19/20													_	
	2.5	5	Modeling	1 day	Mon 10/19/20	Mon 10/19/20														
	2.6	5	Geomorphologic Design	1 day	Mon 10/19/20	Mon 10/19/20														
-4	3		Geomorphic Assessment	18 days	Mon 11/2/20	Mon 1/11/21						-								
-4	3.1	L	Identify and Catalouge Instability Areas	3 days	Mon 11/2/20	Wed 11/4/20			¥											
-4	3.2	2	Channel Conditions	3 days	Thu 11/12/20	Mon 11/16/20				*										
-4	3.3	3	Restoration Targets/Priorities	1 day	Mon 1/11/21	Mon 1/11/21										*			_	
-4	4		Geotechnical Analysis	31 days	Thu 10/22/20	Tue 1/19/21						-						á 👘		
-4	4.1	L	Field Sampling Plan	1 day	Thu 10/22/20	Thu 10/22/20		_												
-4	4.2	2	Sample Collection	1 day	Wed 11/18/20	Wed 11/18/20					•									
-4	4.3	3	Sample Testing	7 days	Mon 1/11/21	Tue 1/19/21												6		
-4	4.3	3.1	Sieve Analysis	3 days	Mon 1/11/21	Wed 1/13/21										+				
-4	4.3		Soil Classification	3 days	Mon 1/11/21	Wed 1/13/21										+				
-4	4.3		Analysis	3 days	Fri 1/15/21	Tue 1/19/21											- 4	1/19		
-4	5		Biological and Ecological Assessment	41 days	Wed 10/21/20	Mon 2/1/21													_	
	5.1		Surrounding Interactions	1 day	Wed 10/21/20 Wed 10/21/20	Wed 10/21/20														_
	5.2		Exsisiting Flora Identification	4 days	Wed 10/21/20 Wed 10/21/20	Mon 10/26/20														
-			•																	
-4	5.3		Exsisting Fauna Identification	4 days	Wed 10/21/20	Mon 10/26/20		-											וך	
-4	5.4		Invasive Species Abatement	4 days	Thu 1/21/21	Tue 1/26/21													2/1	
-4	5.5		Native Species Re-Vegitation Plan	4 days	Wed 1/27/21	Mon 2/1/21													• 2/1	
-4	6		Open Channel Design	14 days	Wed 1/20/21	Mon 2/8/21														1
	6.1	L	Materials	3 days	Wed 1/20/21	Fri 1/22/21														
-4	6.2	2	Geomorphic Stability	4 days	Mon 1/25/21	Thu 1/28/21														
	6.3	3	Hydraulics	7 days	Fri 1/29/21	Mon 2/8/21													- I	2/8
-4	7		Plan Set	26 days	Mon 1/18/21	Mon 2/22/21														+
-4	7.1	L	Template	2 days	Mon 1/18/21	Tue 1/19/21											*			
	7.2	2	Cover Page	1 day	Mon 1/18/21	Mon 1/18/21													<u> </u>	
-4	7.3	3	Construction Notes	1 day	Thu 2/4/21	Thu 2/4/21													1	
-4	7.4	1	Channel Plan, Profile, and Cross-Sections	4 days	Tue 2/9/21	Fri 2/12/21														╇━─┼
-4	7.5	5	Re-Vegitation Plan	2 days	Tue 2/16/21	Wed 2/17/21														🕇
-4	7.6	5	Construction Details	2 days	Fri 2/19/21	Mon 2/22/21														
-4	8		Project Impacts	2 days	Wed 2/10/21	Thu 2/11/21														
-4	8.1		Regulatory	2 days	Wed 2/10/21	Thu 2/11/21														
-4	8.2		Health	2 days	Wed 2/10/21	Thu 2/11/21														
	8.3		Environmental	2 days	Wed 2/10/21	Thu 2/11/21														
	8.4		Economic	2 days	Wed 2/10/21 Wed 2/10/21	Thu 2/11/21														
	8.5		Social	2 days 2 days	Wed 2/10/21 Wed 2/10/21	Thu 2/11/21														
-																				7
-4	9		Project Deliverables	58 days	Wed 2/3/21	Fri 4/23/21														
-4	9.1		Client Deliverables	58 days	Wed 2/3/21	Fri 4/23/21														
-4	9.1		30% Plan Set	5 days	Wed 2/3/21	Tue 2/9/21														
-4	9.1		60% Plan Set	11 days	Tue 2/23/21	Tue 3/9/21														
-4	9.1		90% Plan Set	19 days	Thu 3/11/21	Tue 4/6/21														
-4	9.1	L.4	Final Plan Set	12 days	Thu 4/8/21	Fri 4/23/21														
-4	9.2	2	Course Deliverables	58 days	Wed 2/3/21	Fri 4/23/21														
-4	9.2	2.1	30% Deliverables	5 days	Wed 2/3/21	Tue 2/9/21													4	
-5	9.2	2.2	60% Deliverables	11 days	Tue 2/23/21	Tue 3/9/21														
-4	9.2	2.3	90% Deliverables	19 days	Thu 3/11/21	Tue 4/6/21														
-4	9.2	2.4	Final Deliverables	12 days	Thu 4/8/21	Fri 4/23/21														
-4	10		Project Management	96 days	Mon 10/19/20	Thu 4/15/21														
*	10.		Client Meetingigs	96 days	Mon 10/19/20	Thu 4/15/21														
*	10.		Team meatings	96 days	Mon 10/19/20	Thu 4/15/21														
*	10.		Technical Advisor Meetings	96 days	Mon 10/19/20	Thu 4/15/21														
*	10.		Gradingin Instructor Meetings	96 days	Mon 10/19/20	Thu 4/15/21														
*	10.		Correspondence	96 days	Mon 10/19/20	Thu 4/15/21														
*	10.		Schedule Management	96 days	Mon 10/19/20	Thu 4/15/21														
*	10.	.7	Resource Management	96 days	Mon 10/19/20	Thu 4/15/21														
			Task	Summary	I	Inactive Milestor	e	>	Duration-o	only		Start-only	C	Evte	ernal Milestone	\$		Critical Split		
ect: Car	ostone S	Sche	edule - N			Inactive Summa]		mmary Rollup 🚃		Finish-only	-		adline	÷		Progress		
	11/2/20	h	Split																	

Appendix 62: Summary of Staffing Hours

POSITION		SENIOR EGR	PROJ EGR	LAB TECH	INTERN			
HOURLY WAGE (\$)		218.79	141.68	98.01	32.13			
Σ DURATION (hour)		108	170	103	117			
$\Sigma \text{ COST } (\$)$		\$20,839.75	\$25,785.76	\$7,742.79	\$4,690.98			
TASK	SCHEDULED DURATION (day)	BILLABLE DURATION (hours)						
Task 1 – Site Investigation	2		5					
Task 2 – Previous Studies			0.222		2.7			
Task 2.1 – Feasibility Study	1		0.037		0.45			
Task 2.2 – Surveying	1		0.037		0.45			
Task 2.3 – Hydrologic	1		0.037		0.45			
Task 2.4 – Hydraulic	1		0.037		0.45			
Task 2.5 – Modeling	1		0.037		0.45			
Task 2.6 – Geomorphologic Design	1		0.037		0.45			
Task 3 – Geomorphic Assessment		0.6	7	0	1.3			
Task 3.1 – Identify and Catalogue	3		1		0.175			
Instability Areas	5		1		0.175			
Task 3.2 – Channel Conditions	3		4		0.75			
Task 3.3 – Restoration Targets and	1	0.6	2		0.375			
Priorities Task 4 – Geotechnical			0	81.75				
	1	3.72	U		9.29			
Task 4.1 – Field Sampling Plan Task 4.2 - Data Colection	1	1.72		2 2	5 2			
					Z			
Task 4.2 – Sample Testing	4			41.25				
Task 4.2.1 – Sieve Analysis	4			41.25				
Task 4.2.2 – Soil Classification	3	2		36.5	2.20			
Task 4.3 – Analysis Task 5 – Biological and Ecological	3	2			2.29			
Assessment		1.75	15.75	0	5.25			
Task 5.1 – Identify Surrounding Site	-		2					
Interactions	1		2					
Task 5.2 – Existing Flora Identification	4		6					
Task 5.3 – Existing Fauna Identification	4		2		2			
Task 5.4 – Invasive Species Abatement	4		2		1.25			
Task 5.5 – Native Species Re-Vegetation Plan	4	1.75	3.75		2			
POSITION		SENIOR EGR	PROJ EGR	LAB TECH	INTERN			

Red Rock Engineering

Task 6 – Open Channel Design		2	57	0	0
Task 6.1 – Materials	3		5		
Task 6.2 – Geomorphic Stability	4		20		
Task 6.3 – Hydraulics					
Task 6.3.1 - Channel Analysis	4	1	20		
Task 6.3.2 - Culvert Analysis	3	1	12		
Task 7 – Plan Set		1.65	9.32	0.55	5.48
Task 7.1 – Template	2		0.75		1
Task 7.2 – Cover Page	1		0.75		1
Task 7.4 – Construction Notes	1		0.75		1
Task 7.5 – Channel Plan, Profile, and	4	0.55	3		0.5
Cross-Sections	7	0.55	5		0.5
Task 7.6 – Re-Vegetation Plan	2	0.55	2		0.5
Task 7.7 – Construction Details	2	0.55	2.07	0.55	1.48
Task 8 – Project Impacts		0.13	0	0	2.11
Task 8.1 – Regulatory	2	0			0
Task 8.2 – Health	2	0			0
Task 8.3 – Environmental	2	0.1			0.75
Task 8.4 – Economic	2	0.015			0.75
Task 8.5 – Social	2	0.015			0.61
Task 9 – Project Deliverables		25.47	36.55	4.43	52.05
Task 10 – Project Management		72.37	38.97	16.7	38.97

Red Rock Engineering

Title Abreviations	Position Title	Base Pay (\$/Hr)	Benefits % of base pay	Actual Pay	OH % of base pay	Actual Pay +Oh (\$/hr)	Profit % of actual pay + OH	Billing Rate (\$/Hr)
SEN.	Senior Engineer	\$90.00	30%	\$117.00	70%	\$198.90	10%	\$218.79
Eng. 1	Engineer 1	\$70.00	60%	\$112.00	15%	\$128.80	10%	\$141.68
LT	Lab Tech	\$45.00	80%	\$81.00	10%	\$89.10	10%	\$98.01
INT	Intern	\$25.00	20%	\$30.00	5%	\$31.50	2%	\$32.13

Appendix 63: Billing Rate Breakdown for Personnel Work