SINCLAIR WASH RESTORATION PROJECT

CENE 486 Engineering Design April 16, 2021

JAKOB BRISCHKE

HANNAH FISCHER

KYLIE HEMMELE

STEPHANIE SEYMOUR

Figure 1: Sinclair Wash Reach

Introduction

[∧] Client

Mark Lamer, Senior Lecturer NAU, P.E.

- Construction plan set for stream revitalization
- Healthy, restored section of the wash

- Site features multiple low points not on thalweg
- Large volume of vegetation and debris
- Culverts are undersized

Site Location

Figure 2: Site Location With Respect to NAU Boundary [1]

Figure 3: Site Location With Respect to I-17

Preliminary Work

Site Investigation

- Upstream culvert entrances blocked by debris
- Scour pool directly downstream of culvert

Previous Studies

- Surveying data of the channel reach
- HEC-RAS Effective Model

Biological and Ecological Assessment

- Flora: 52.6% invasive, 10.5% noxious, 36.8% native
- Fauna: 100% native species
- Interaction with Flagstaff Urban Trail System, NAU, and construction on I-17

Figure 4: Ponding in Thalweg Upstream of Culvert

Figure 5: Field Bindweed - Noxious

Figure 6: Revegetation Plan Set

Revegetation Plan

Figure 7: Soil Sampling Plan

Geotechnical Work

Geomorphic Assessment

Table 1: Stream Classifications

Characteristic	Upstream	Downstream
Entrenchment Ratio, ER (ft/ft)	0.70	0.77
Width/Depth Ratio (W _{bkf} / d _{bkf})	19.9	5.14
Channel Sinuosity, K	1.19	1.07
Water Surface Slope, S (ft/ft)	0.01	0.03
Channel Materials (Particle Size Index), D ₅₀ (mm)	3.00	1.98
Stream Type	F4-F5	G4-G5

Figure 9: Rosgen Geomorphic Classification

Figure 8: Rosgen Geomorphic Classification

Channel Cross-Sections

Figure 10: Effective Model Cross-sections

Corrected-Effective Model

Table 2: Corrected Effective Model Data

HEC-RAS Data - 100 Year Storm					
Location	Values	W.S Elevation (ft)	Velocity (ft/s)	Q (ft^3)	Froude #
Unstream Min.		6871.13	0.66	890	0.03
Opsiteani	Max	6871.15	1.23	890	0.07
Downstream 1	Min.	6862.04	4.48	890	0.45
	Max	6862.41	6.06	890	0.67

Table 3: Corrected Effective Model Assessment

Model Assessment						
Characteristics W.S Elevation Velocity Q Froude #						
Requirement	6864.4 ft (FEMA FIS Data)	Not exceed 18 fps (COFSDM)	Storm Event Interval (FEMA FIS)	Max of 0.86 (COFSDM)		
Pass/Fail	Fail	Pass	Pass	Pass		

Figure 12: FUTS Crossing of Sinclair Wash

Existing Culvert Conditions

Figure 13: Culvert Inlet Conditions

Figure 14: Culvert Outlet Conditions

Figure 15: Scour Pool Ponding

Culvert Outlet

Table 4: Existing Culvert Data

Storm Intervale	Storm Interval Flow Rate	Culvert Discharge	Culvert Exit Velocity
Storm Intervals	ft³/s	ft³/s	ft/s
25 Year	470	38.58	8.36
100 Year	890	32.24	7.91

Proposed Culvert Designs

Alternative #1

- 6 Barrel CMP Culverts
- 96 in. Diameter
- Mitered to Slope Entrance
- Total Cost: \$54,000.00

Figure 16: 96" CMP Barrels

Alternative #2

- Triple Box Concrete Culverts
- 12 x 9 ft
- 90° Headwall w 45 ° Bevels
- Total Cost: \$66,915.00

Figure 17: Triple Box Culvert

Alternative #3

- 3-Sided Triple Box Culvert
- 12 x 9 ft
- 90° Headwall with Wingwalls
- Total Cost: \$81,163.00

Figure 18: Triple box Culvert with Wingwalls

Parameters								
Alternatives Upstream Water Surface Downstream Velocity Aesthetics Cost								
Weights	0.30	0.30	0.15	0.25	1.0			
6 Barrel 96" 1		2	1	3	1.8			
Triple Box Culvert	3	1	2	2	2.0			
3-Sided Triple Box Culvert	2	3	3	1	2.2			

Proposed HEC-RAS

Table 6: Proposed Model Data

HEC-RAS Data - 100 Year Storm						
Location	Values	W.S Elevation (ft)	Velocity (ft/s)	Q (ft^3)	Froude #	
Upstream	Min.	6863.3	1.21	890	0.09	
	Max	6863.63	2.49	890	0.18	
Downstream	Min.	6858.67	6.36	890	0.64	
	Max	6858.85	7.36	890	0.77	

Table 7: Proposed Model Assessment

Model Assessment						
Characteristics	W.S Elevation	Velocity	Q	Froude #		
Requirement	6864.4 ft per FEMA FIS Data	Not exceed 18 fps per COF Stormwater Design Manual	Storm Event Interval per FEMA FIS Data	0.86 per COF Stormwater Design Manual		
Pass/Fail	Pass	Pass	Pass	Pass		

Figure 19: Proposed HEC-RAS Model

Site Modifications

Figure 21: Proposed Site

Proposed Site

TRIPLE BARREL THREE SIDED CULVERT WITH 90 DEG. HEADWALL AND LAYER OF $\frac{3}{4}$ IN. PEA GRAVEL

CONCRETE WINGWALL, TYP.

DUMPED ROCK RIP RAP APRON

Figure 23: Proposed Culvert Plan View Call Outs

Figure 22: Proposed Culvert Plan View

Figure 25: Cross Section 10+30 Profile

Figure 26: Thalweg Profile

Figure 24: Cross Section 10+30 Profile

Figure 25: Thalweg Profile

Table 8: Project Cost

Item	Unit	Unit Price	Quantity/Area	Total				
Revegetation								
Clearing and grubbing	acres	\$4,037.50	0.316	\$1,275.85				
Removal of trees	per tree	\$800.00	87	\$69,600.00				
Miscellaneous work (Control of noxious plants - Manual)	Sq.Yd.	\$0.70	7637.035	\$5,345.92				
Miscellaneous work (Control of noxious plants - Herbicide)	Sq.Yd.	\$0.39	7637.035	\$2,978.44				
Seeding (Projects great than 1 acre)	acres	\$5,537.73	1.52	\$8,417.35				
3	3 Culverts (12 X 9)							
Gravel	Ton	\$40.00	9.867	\$394.68				
Contractor quality Control	L.Sum	\$31,051.13	1	\$31,051.13				
Construction survey and layout	L.Sum	\$20,000.00	1	\$20,000.00				
Box culvert and labor	L.F.	\$1,540.50	45	\$66,915.00				
Wingwalls and labor	L.F.	\$3,562.00	4	\$14,248.00				
Earthwork								
Remove and dispose of excess dirt	Cu.Yd.	\$47.15	270.65	\$12,761.15				
Cut/Fill	Cu.Yd.	\$8.00	3112.93	\$24,903.44				
Riprap (Dumped)	Cu.Yd.	\$190.24	154	\$29,296.96				
TOTAL								

Project Cost

- Revegetation Work \$87,617.57
- Culvert Work \$132,608.81
- Earthwork \$66,961.55

Project Impacts

SOCIAL

- Geomorphologic design alternatives
 - Nearby establishments impacted
- Negative impacts expected during construction
 - Positive following implementation
 - Functionality and aesthetic appearance expected to improve
 - Increased accessibility/usability
 - Increased safety

ENVIRONMENTAL

- Removal of debris
- Removal of invasive species
- Introduction of new, native vegetation
- Improved water quality

ECONOMIC

Ecotourism

Conclusion

References

[1] Google. Maps Data. 2020 [Online]. [Accessed: 02- Nov- 2020].

- [2] "Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis," [Online]. Available: <u>https://compass-astmorg.libproxy.nau.edu/EDIT/html_annot.cgi?D6913+17</u>. [Accessed: 02- Nov- 2020].
- [3] A. O. a. L. E. Epple, A Field Guide to The Plants of Arizona, Connecticut: The Globe Pequot Press, 1995.
- [4] University of Arizona Cooperative Extension and Flagstaff Chapter of the Arizona Native Plant Society, "Northern Arizona Invasive Plants," Coconino County, 2016. [Online]. Available: <u>https://www.nazinvasiveplants.org/by-image</u>. [Accessed 13 January 2021].
- [5] Oldcastle Infrastructure. 2021. DOUBLE CELL BOX CULVERT / Oldcastle Infrastructure. [online] Available at: <u>https://oldcastleinfrastructure.com/product/double-cell-box-culvert/</u>. [Accessed 8 March 2021].
- [6]"Bid Tabulations | ADOT", *Azdot.gov*, 2021. [Online]. Available: https://azdot.gov/business/contracts-and-specifications/bid-tabulations. [Accessed: 03- Apr- 2021]