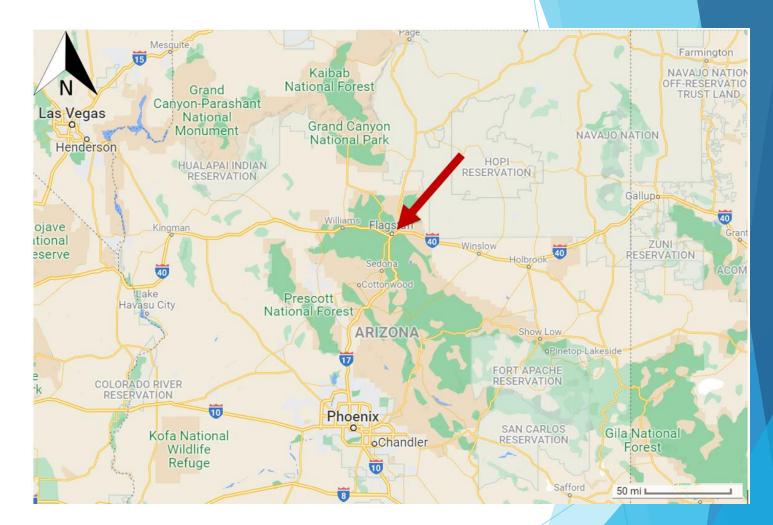
Fanning Wash Low-Water Crossing Design

 AAMP Engineering Inc.
 Austin Simmons, Abdalla Alatar, Muhammad Muhammad, Preston Meek
 CENE 486C

▶12/3/2021

► Final Presentation

Figure 1: Soliere Ave running adjacent to I-40 Culvert


Project Background

Purpose

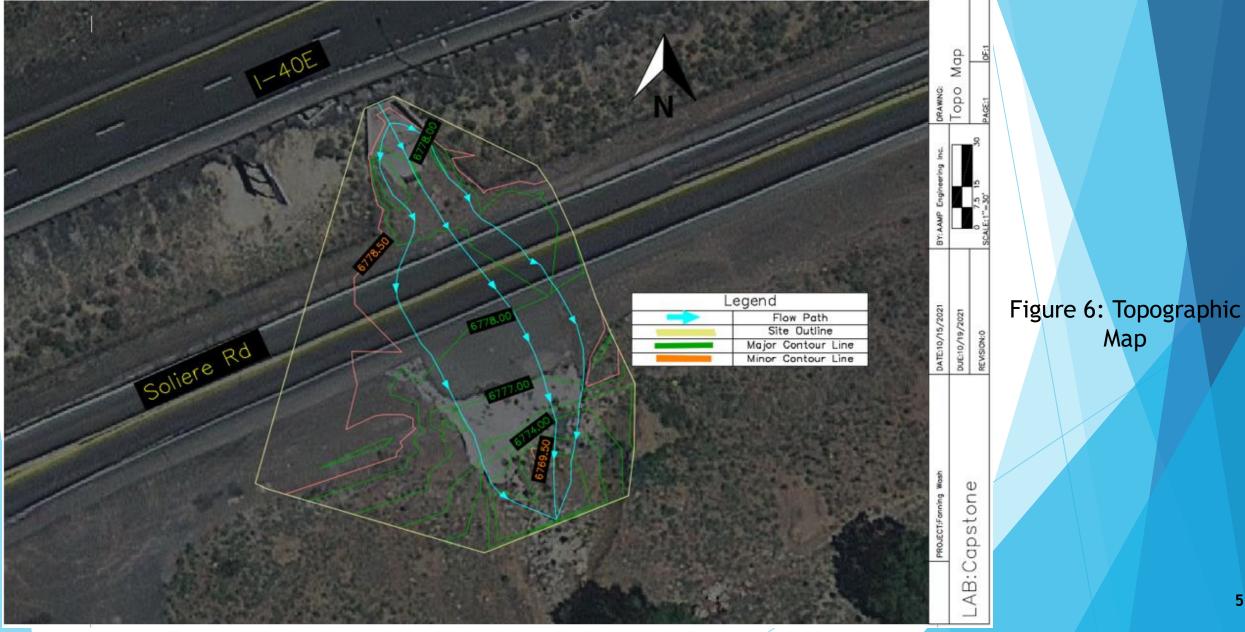
Create design alternatives for the Low-Water Crossing at Fanning Wash & Soliere Ave to mitigate flooding.

Goals

- Improve flooding across Soliere Ave.
- Create an accurate flow model of existing site.
- Propose improved culvert designs.

Figure 2: Location Map for the City of Flagstaff

Figure 3: Flow Path of Fanning Wash & Rio de Flag


Figure 4: Location Map of Existing Culvert along I-40

Site Investigation

Legend 140E Clogged Existing Culvert Inlet Existing I-40 Culvert and Site 40E Culvert Outlet · Concrete Pad EL. 6780 Research Paved Pull-Off Existing Culvert Clogged Inlet 11. 11. 11. Rip Rap Site map created from Vegetation survey data and site I-40E Culvert Dimensions I-40E Culvert sketch. 10'x6'2" Existing Culvert RIII II 0 . Used to illustrate existing -Fencing structures and land Street features. Soliere Rd Control Point 11 11 11, 1 -Existing Culvert Outlet 24" Metal Pipe Control Point 1002 EL. 6778.92 Right Overbank Left Overbank PROJECT:Fanning Wash and Soliere Ave-DATE:9/20/202 BY: AAMP Engineering Inc. DRAWING: Site Map DUE:9/21/2021 LAB:Capstone REVISION:0

Figure 5: Site Map

Topographic Map Surveying was conducted to collect these data points (around 125 shots were taken)

5

Мар

Station Interval Method

- Placed cross sections where change in geometry and material was found
- Placed 11 Cross Sections
- 2' Station Interval's for large amounts elevation change
- 5' Station Intervals for small amounts of elevation change

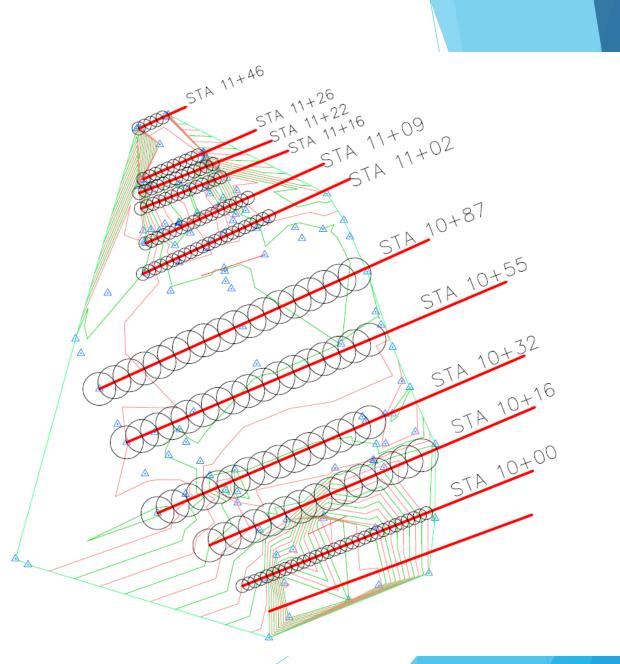
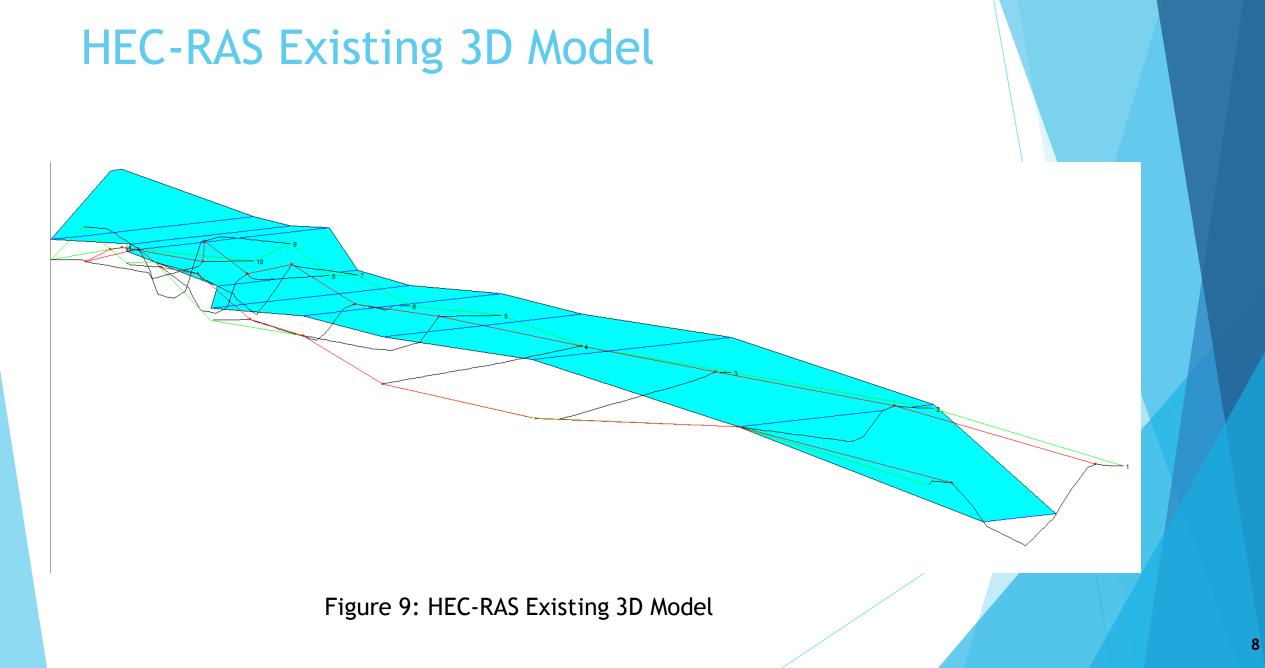


Figure 7: Cross Section Intervals

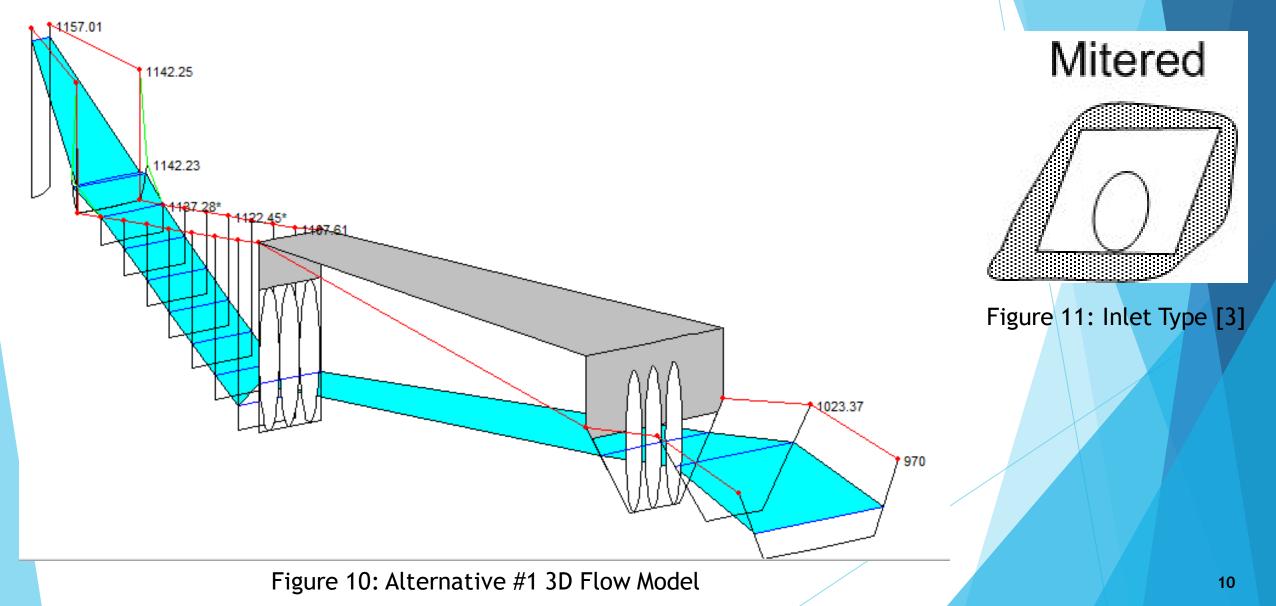
HEC-RAS Model of Existing Site Location

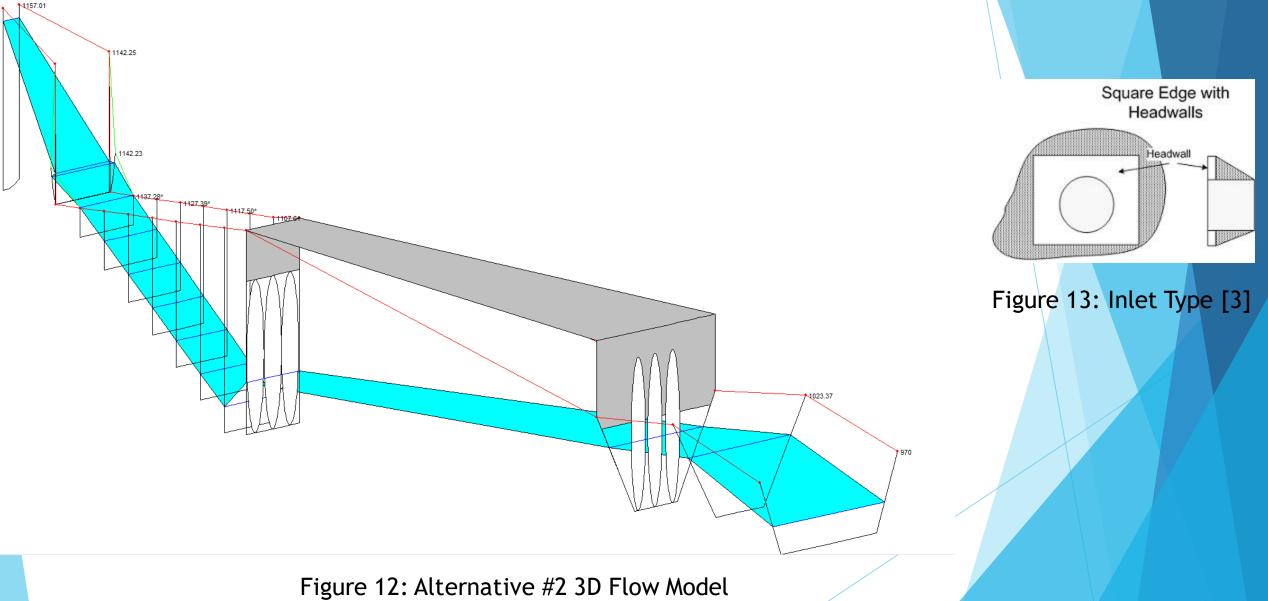

6780

Elevation (ft)

		River Sta	Profile			w.s. Elev	E.G. Elev	E.G. Slope	vei Chhi	Flow Area
				(cfs)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)
		11+46	100 YR	730	6778	6785.77	6789.58	0.006709	15.66	46.6
		11+46	50 YR	570	6778	6784.59	6787.82	0.006069	14.42	39.52
		11+26	100 YR	730	6772.7	6780.29	6780.37	0.000085	2.45	321.11
		11+26	50 YR	570	6772.7	6779.63	6779.71	0.000103	2.38	253.11
Fanning Wash Pre Model Plan: Plan 03 12/2/021 Fanning Wash 1	Legend	11+22	100 YR	730	6774.7	6779.1	6780.26	0.437214	6.36	101.03
	EG 100 YR EG 50 YR	11+22	50 YR	570	6774.7	6778.9	6779.64	0.38909	5.88	90.62
	Crit 100 YR Crit 50 YR WS 100 YR									
	WS 100 YR WS 50 YR Ground	11+16	100 YR	730	6774.1	6778.22	6779.01	0.021566	1.28	177.18
		11+16	50 YR	570	6774.1	6778.03	6778.61	0.018415	1.15	161.39
		11+09	100 YR	730	6774.48	6777.33	6778.25	0.04833	1.92	170.02
		11+09	50 YR	570	6774.48	6777.01	6777.83	0.065516	2.03	140.44
		11+02	100 YR	730	6773.6	6777.14	6777.42	0.004105	4.64	177.75
		11+02	50 YR	570	6773.6	6776.45	6776.95	0.010931	5.94	108.17
		10+87	100 YR	730	6773.88	6777.27	6777.34	0.000131	2.19	328.26
		10+87	50 YR	570	6773.88	6776.73	6776.8	0.000145	2.04	273.18
		10+55	100 YR	730	6773.6	6777.25			2.34	312.38
		10+55	50 YR	570	6773.6	6776.71	6776.78	0.000155	2.22	257.2
100 200 300 400 500 Main Channel Distance (tt)	600	10+32	100 YR	730	6771	6777.18		0.005721	1.12	515.56
		10+33	50 YR	570	6771	6776.65	6776.74	0.00503	0.97	462.17
Figure 8: Existing HEC-RAS Model										
5 5		10+16	100 YR	730	6771.7	6774.28		1.321229	6.45	117.5
		10+16	50 YR	570	6771.7	6774.03	6774.61	1.421334	6.16	94.14
		10+00	100 YR	730	6766	6768.66	6771.11	0.008422	12.56	58.1
		10+00	50 YR	570	6766	6768.39	6770.58	0.008995	11.87	48.01
		-	· /		'					

Table 1: Existing HEC-RAS Data


7


Design Alternatives

Potential Design:				
Description:	Three 6'Diameter Corrugated Metal Pipes (CMP)	Three 6' Diameter Concrete Pipes	Two 12'x 7' Box Culverts	Two 5.9'(W) x 4.5'(H) Arched Culverts
		Table 2: Design A	lternatives	

Alternative #1: Triple Barrel Corrugated Metal Pipes

Alternative #2: Triple Barrel Concrete Pipes

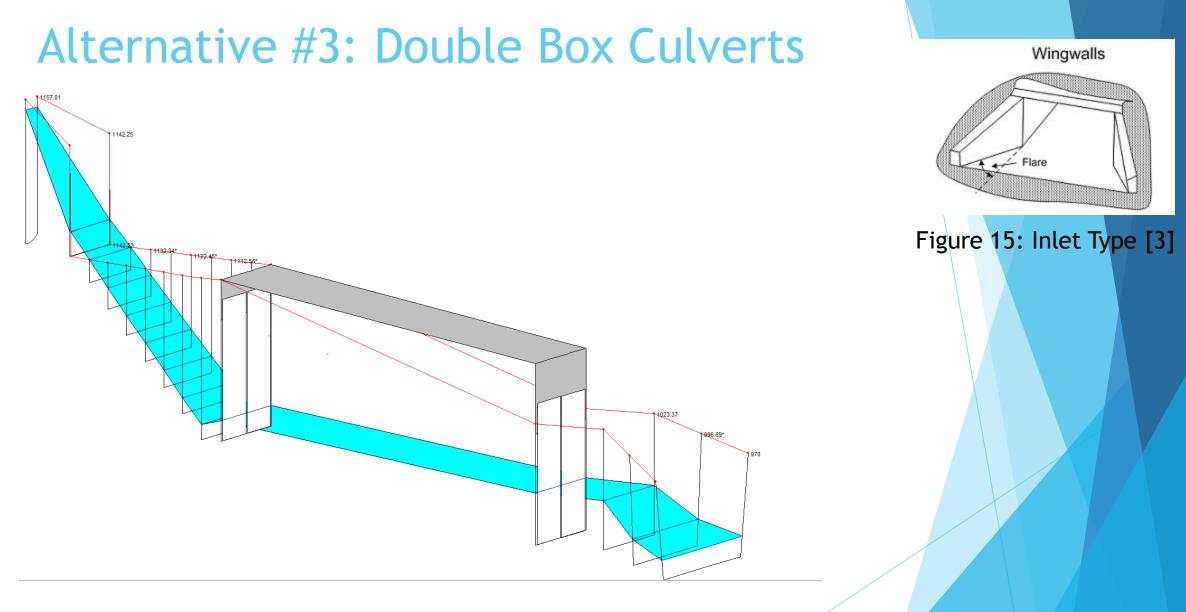
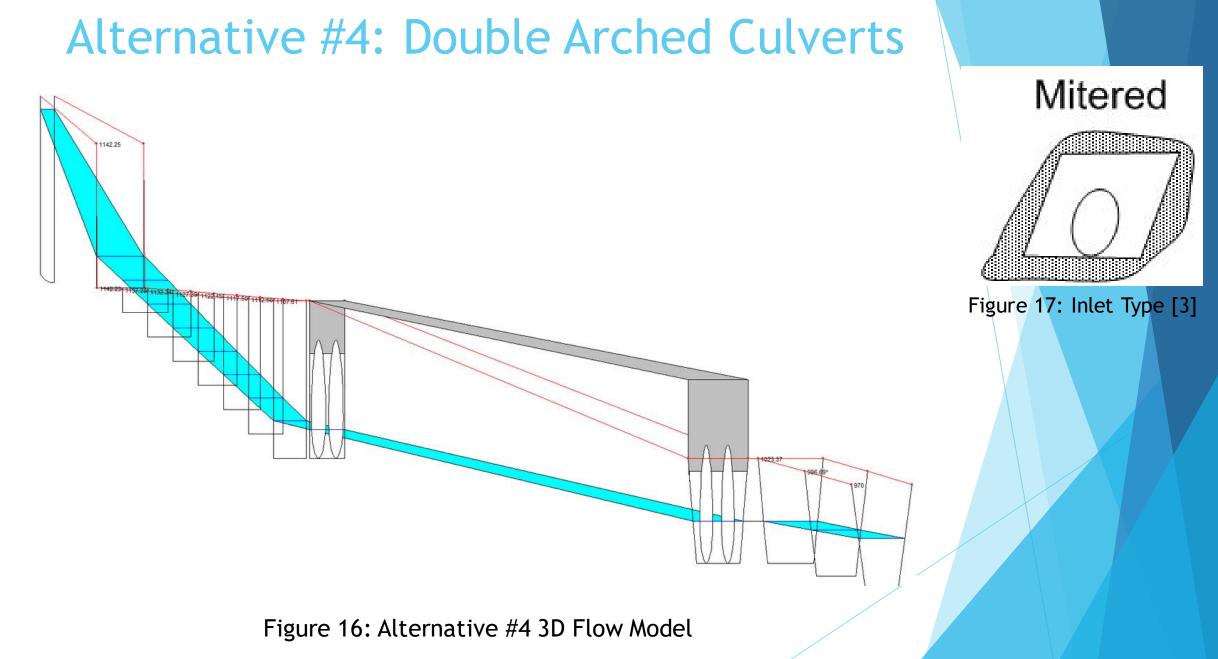



Figure 14: Alternative #3 3D Flow Model

Comparison of Alternative Outputs

Criteria U= Upstream D = Downstream	Q Total (cfs)	W.S. Elev (ft)	Invert Elev (ft)	Velocity (ft/s)	Flow Regime
Triple Barrel 7' CMP (U)	570	6771.02	6770	22.40	Supercritical
Triple Barrel 7' CMP (D)	570	6770.57	6768	15.32	Supercritical
Triple Barrel 7' Conc. (U)	570	6771.02	6770	22.40	Supercritical
Triple Barrel 7' Conc. (D)	570	6770.57	6768	21.45	Supercritical
Double 12' x 7' Box Culvert (U)	570	6770.76	6770	24.44	Supercritical
Double 12' x 7' Box Culvert (D)	570	6768.46	6766	9.14	Supercritical
Two 5.9' x 4.5' Arched (U)	570	6773.43	6772	23.57	Supercritical
Two 5.9' x 4.5' Arched (D)	570	6772.01	6768	6.40	Supercritical

Table 3: Key HEC-RAS Outputs for Alternatives

HEC-RAS and Culvert master comparison

		50-	year flood (570 c	:fs)		
Analysis	Culvert	Exit Velocity (ft/s)	WSE (ft)	HW/D	Normal Depth (ft)	Flow Regime
HEC-RAS	5.9' x 4.5' Double Pipe Arch	6.40	6773.43	0.37	1.7	Subcritical
Culvert Master	5.9' x 4.5' Double Pipe Arch	8.37	6775.69	0.95	1.47	Supercritical
HEC-RAS	12' x 7' Double Box	9.14	6770.76	0.70	2.60	Supercritical
Culvert Master	12' x 7' Double Box	18.53	6773.55	0.65	1.04	Supercritical
HEC-RAS	6' Triple Barrel CMP	15.32	6772.04	0.523	3.14	Supercritical
Culvert Master	6' Triple Barrel CMP	9.49	6773.5	1.08	2.57	Supercritical
HEC-RAS	6' Triple Barrel Concrete	21.45	6772.04	0.37	2.22	Supercritical
Culvert Master	6' Triple Barrel Concrete	9.77	6702.72	0.82	1.86	Supercritical

Table 4: HEC-RAS and Culvert Master Comparison (50-year flood)

HEC-RAS and Culvert master comparison

		100-year fl	ood (730 cfs)			
Analysis	Culvert	Exit Velocity (ft/s)	WSE (ft)	HW/D	Normal Depth (ft)	Flow Regime
HEC-RAS	5.9' x 4.5' Double Pipe Arch	17.02	6773.74	0.44	2.0	Supercritical
Culvert Master	5.9' x 4.5' Double Pipe Arch	10.71	6775.75	1.13	1.68	Supercritical
HEC-RAS	12' x 7' Double Box	9.93	6770.91	0.85	5.92	Supercritical
Culvert Master	12' x 7' Double Box	19.46	6772.36	0.77	1.22	Supercritical
HEC-RAS	6' Triple Barrel CMP	16.77	6772.35	0.61	3.67	Supercritical
Culvert Master	6' Triple Barrel CMP	16.74	6775.98	0.99	2.96	Supercritical
HEC-RAS	6' Triple Barrel Concrete	22.85	6772.35	0.42	2.54	Supercritical
Culvert Master	6' Triple Barrel Concrete	20.21	6773.62	0.95	2.12	Supercritical

Table 5: HEC-RAS and Culvert Master Comparison (100-year flood)

Decision Matrix (100 year)

	100 Year Flood (730 cfs) CHECK STORM								
Potential Solution	Control			Material Cost Estimate (\$)					
Double Pipe Arch 5.9' x 4.5'	Inlet	17.02	No	Yes	25,500				
12' x 7' Double Box			No	Yes	38,000				
3 - 6' CMP	Outlet	16.77	No	Yes	30,500				
3 - 6' Concrete	Outlet	22.85	No	No	51,000				

Table 6: Decision Matrix (100-year flood)

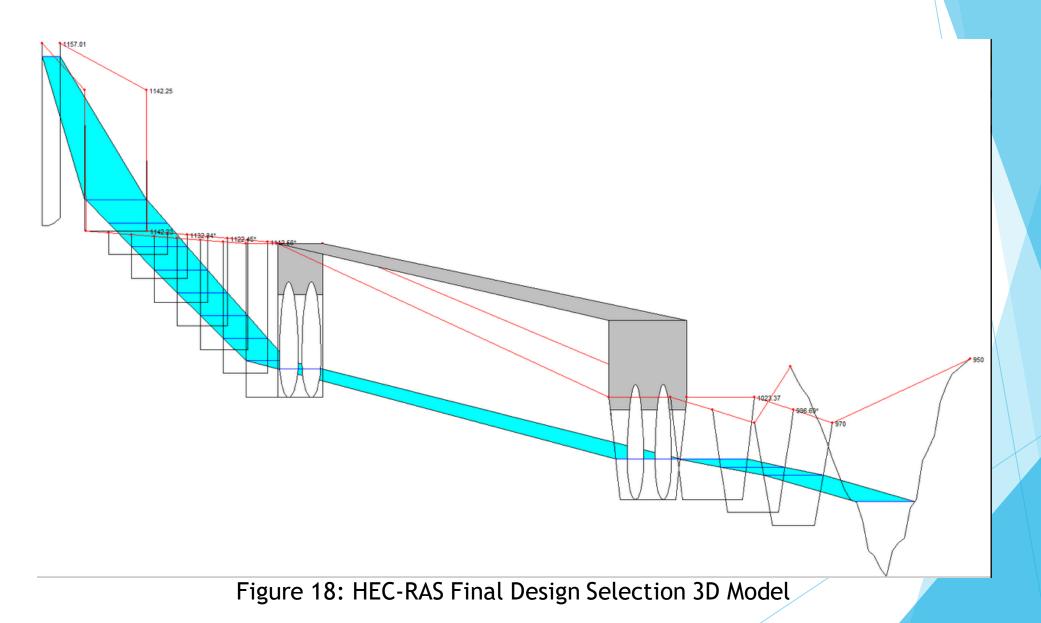
Decision Matrix (50 year)

	50 Year Flood (570 cfs) DESIGN STORM								
Potential Solution	Control	Outlet Velocity (ft/s)	Overtopping	Meets COF Requirements	Material Cost Estimate (\$)				
Double Pipe Arch 5.9' x 4.5'	Inlet	6.4	No	Yes	25,500				
12' x 7' Double Box	Inlet	9.14	No	Yes	38,000				
3 - 6' CMP	Outlet	15.32	No	Yes	30,500				
3 - 6' Concrete	Inlet	21.45	No	No	51,000				

Table 7: Decision Matrix (50-year flood)

Decision Matrix (cont.)

	Outlet Velocity		Constru	ction Duration	Cost		
Rating Description	Rating	Description	Rating	Description	Rating	Description	
3 - Highest Rating	3	10 ft/s and below	3	Shortest Time (< 2 Months)	3	Least Amount (<30000\$)	
2 - Average Rating	2	10 ft/s - 20 ft/s	2	Average Time (2-4 Months)	2	Average Amount (\$30000-\$40000)	
1 - Lowest Rating	1	20 ft/s and above	1	Longest Time (> 4 Months)	1	Highest Amount (>\$40000)	


 Table 8: Decision Matrix Criteria [6] & [8]
 East

Final Design Selection

Fanning Wash Culvert Decision Matrix										
	Weight (percent)		Double Pipe Arch 5.9' x 4.5'		12' x 7' Double Box		3 - 6' CMP		3 - 6' Concrete	
		Score	WT Score	Score	WT score	Score	WT score	Score	WT score	
Outlet Velocity	50.00%	3	150	2	100	2	100	1	50	
Constructability	25.00%	2	50	2	50	2	50	2	50	
Cost	25.00%	3	75	2	50	2	50	1	25	
Sum			275		200		200		125	

Table 9: Final Design Selection [8]

Final Design Selection Model

Cross Sections Modifications

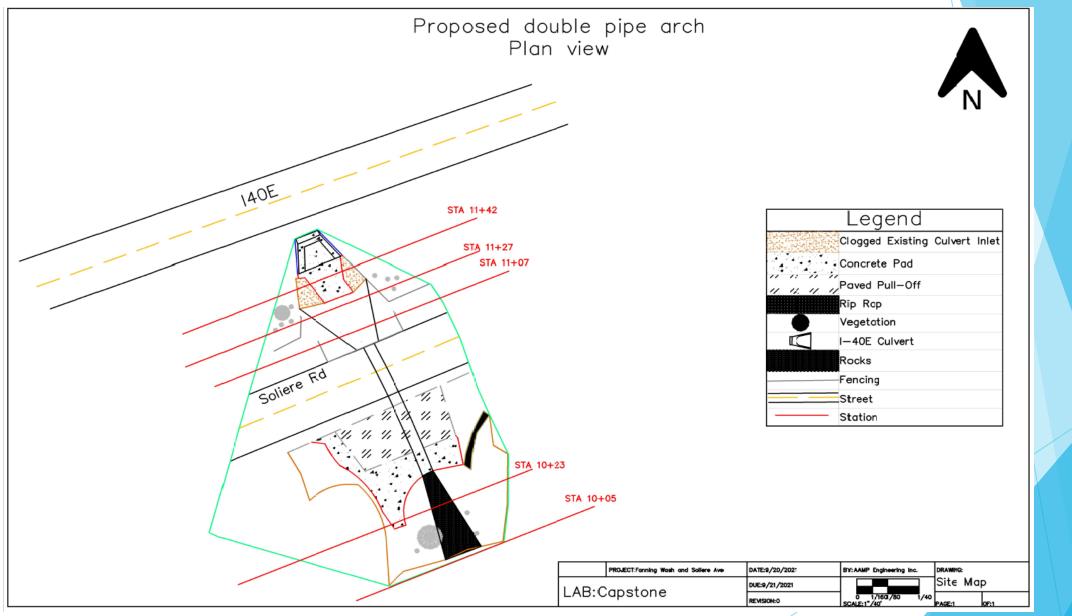


Figure 19: Modified Channel Cross Sections

Channel Cross Sections

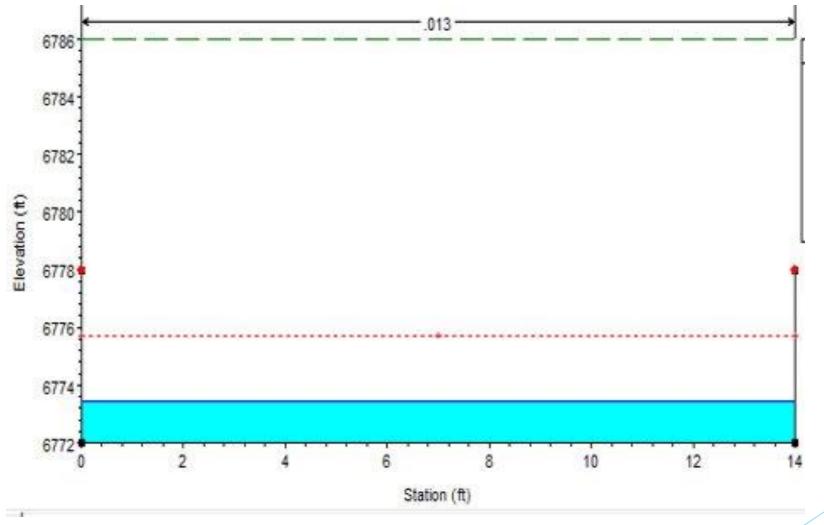
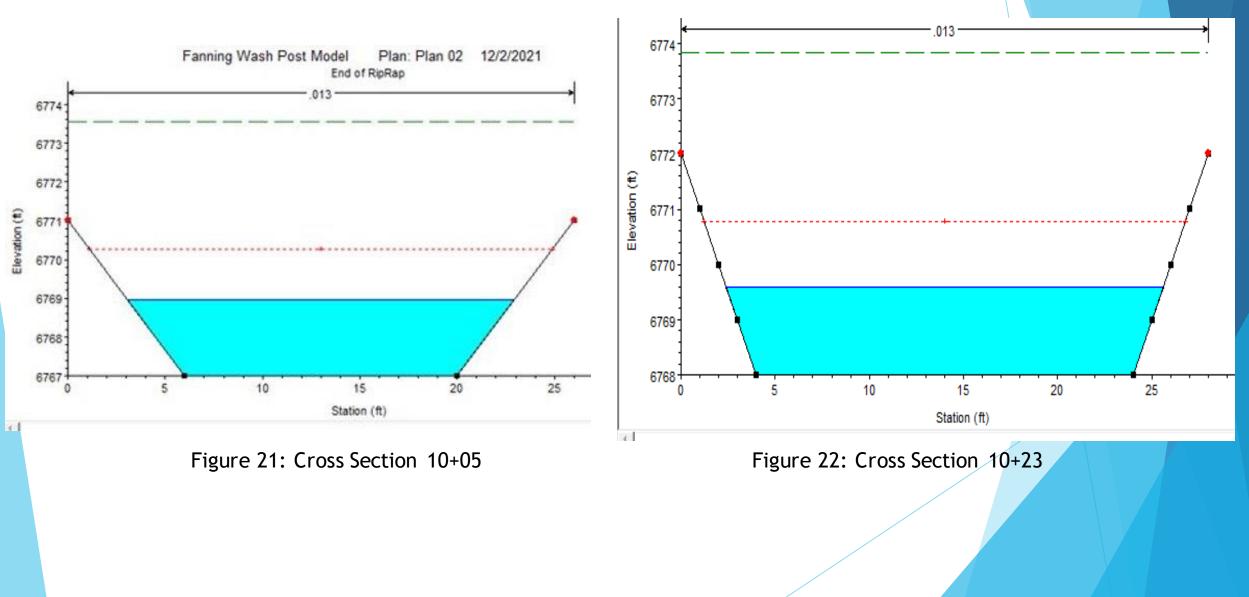



Figure 20: Cross Section 11+42

Channel Cross Sections (cont.)

Upstream Culvert Entrance Dimensions

- Channel Height is 6 ft
- Channel Width 12 ft
- Each Culvert is 5.9 ft x 4.5 ft
- The cover is 1.5 ft
- Concrete Blocks are 3 ft x 1.5 ft x 1.5 ft
- Blocks Requested by Client (Edward Schenck)

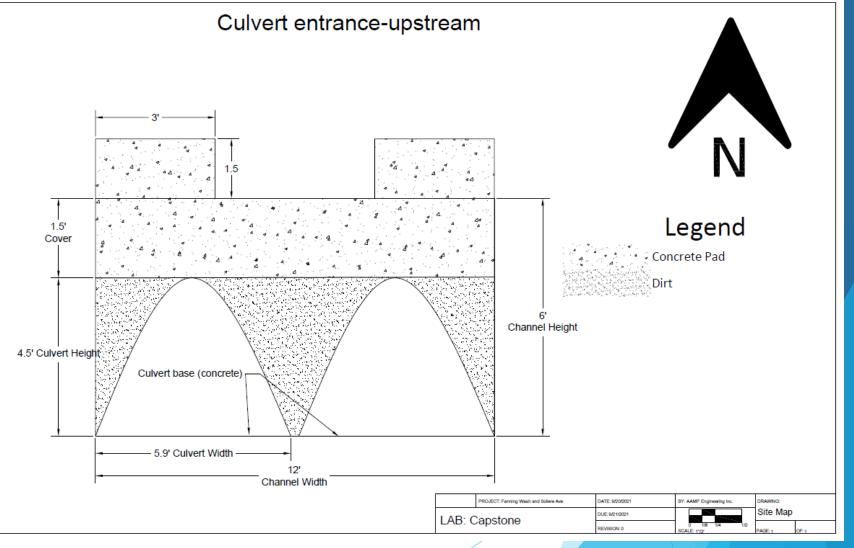


Figure 23: Culvert Entrance (Upstream)

Concrete Blocks Plan View

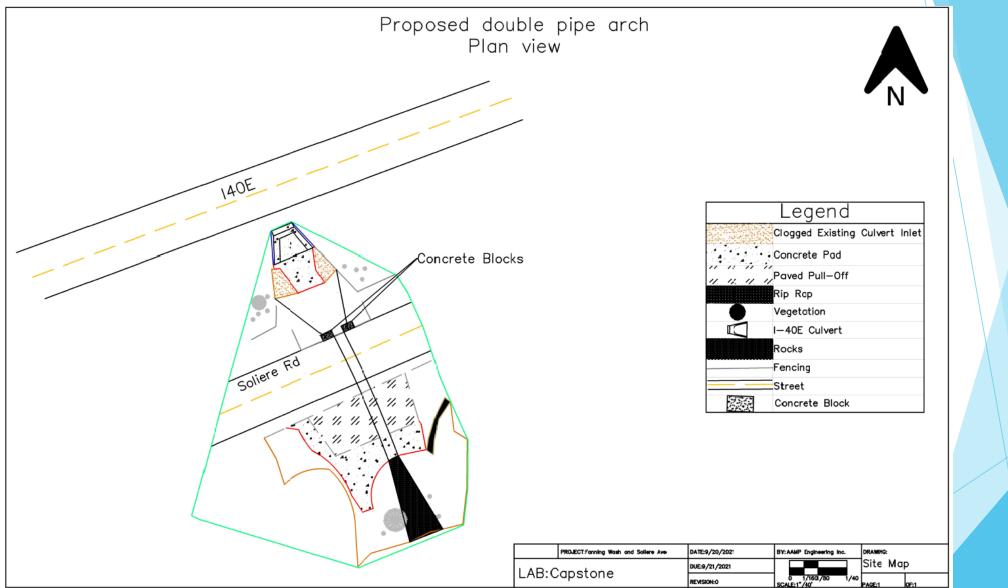


Figure 24: Plan View Concrete Blocks

Impacts (Short & Long-Term)

KEY: (P) = Positive and (N) = Negative

Type of Impact	Long-Term (N)	Long-Term (P)	Short-Term (N)	Short-Term (P)
Economic	Flagstaff Stormwater Annual Cost	Land or Property Value Increase	Construction Time and Roadway Interference	Maintenance & Implementation Costs
Environmental	Long-Term Concrete Use	Erosion Reduction	Construction and Wildlife Conflicts	Reduce loose soil & carcinogens
Social	Crowding & Congested Traffic	Public Faith in Flagstaff Companies Public Emotions for Trash Issue	Construction Noise	Commerical & Shopping Increase Road Safety

Table 10: Impacts (Short-Term & Long-Term)

Construction Cost Estimate

		Construction	Costs			
	Item	Description	Plan QTY	Unit	Unit Price (\$)	Amount (\$)
	1	Removal & Dispose of Asphalt	616	SF	15.00	9,240.00
	2	Removal of Existing Culvert	85	LF	25.00	2,125.00
Excavation	3	Remove & Disposal of Soil	490	CY	125.00	61,250.00
	4	Remove & Disposal of Concrete	154	SF	14.00	2,156.00
		Subgrade Preparation	173.90	SF	6.00	,
		Concrete Channel Walls	659.82	SF	35.00	
	7	Concrete Blocks	13.5	SF	30.00	405.00
	8	Channel Bottom Concrete	396.95	SF	7.50	2,977.13
Installation	9 (a)	Premade Arch CMP 5.9' x 4.5'	85	LF	300.00	25,500.00
	9 (b)	Premade Arch CMP 5.9' x 4.5'	85	LF	300.00	25,500.00
	10	Culvert Concrete Pad	850	SF	8.50	7,225.00
	11	Structural Fill	88.75	CY	120.00	10,650.00
	12	Riprap (Dumped)	75	CY	200.00	15,000.00
Roadway	13	Paving	350	SY	31.00	10,850.00
Structures	14	Safety Rail (3'x6' height)	26	LF	62.00	1,612.00
					Total Cost	198,627.23

 Table 11: Construction Cost Estimation [6] & [7]

References

- [1] "Title 13: Engineering Design Standards and Specifications for New Infrastructure," Flagstaff Municipal Code. [Online]. Available: https://www.codepublishing.com/AZ/Flagstaff/. [Accessed: Sep-2021].
- [2] "City of Flagstaff Stormwater Management Design Manual," Stormwater Management Design Manual. [PDF]. Available: https://www.flagstaff.az.gov/DocumentCenter/View/58133/SWMgmtDesignManual-3-09?bidId=. [Accessed: Sep-2021].
- [3] "Hy8:inlet configurations," HY8:Inlet Configurations XMS Wiki. [Online]. Available: <u>https://www.xmswiki.com/wiki/HY8:Inlet_Configurations</u>. [Accessed: 18-Oct-2021].
- [4] "Economics and finance: New England Environmental Finance Center (NEEFC): University of Southern Maine," Site. [Online]. Available: <u>https://digitalcommons.usm.maine.edu/economicsfinance/</u>. [Accessed: 09-Nov-2021].
- [5] Flagstaff.az.gov. 2021. Rural Floodplains | City of Flagstaff Official Website. [online] Available at: <https://www.flagstaff.az.gov/3726/Rural-Floodplains> [Accessed 30 November 2021].
- [6] "Construction Cost Estimation Tool," Gordian. [Online]. Available: <u>https://www.rsmeansonline.com/ManageEstimate</u>. [Accessed: 02-Dec-2021].
- ▶ [7] Northern Arizona University, "COF Example Construction Cost ." NAU, Flagstaff, 01-Oct-2021.
- [8] "What is a decision matrix?," Decision Matrix . [Online]. Available: <u>https://asq.org/quality-resources/decision-matrix</u>. [Accessed: Nov-2021].