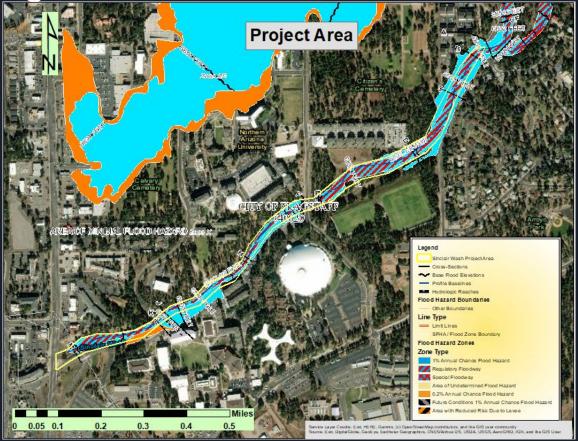
Sinclair Wash Restoration Feasibility Study

CENE 476 Final Proposal Presentation
Dec. 06, 2019
Hyd Engineering Team
Eric Lima, Xiaolei Wang, Bolun Yang, Saud
Bohasan

Photo by: Eric Lima

Client and Purpose


- Client-Mark Lamer
- The purpose of this project is to identify four sites within the Northern Arizona University stretch of Sinclair Wash which may be considered for repair and restoration.
- A plan set will be produced for each site which will allow for the implementation of the chosen designs

Backaround

Figure 1: Project Location Map

Background cont.

4 Yang

Scope of Work <u>Task 1.0 Site Selection Research</u>

- 1.1 Surveying Data
 - Use available data to create topographic map
- 1.2 FEMA Floodway and FIS
 - Utilize data to determine level of flood hazard
- ❖ 1.3 Hydrologic Data
 - Utilize previous and historical data to determine expected flows
- 1.4 Hydraulic Data
 - Determine applicable existing designs
- 1.5 Geomorphic Data
 - Determine erosion and sediment deposition along channel
- ❖ 1.6 Site Selection Criteria
 - Develop criteria for selecting sites to focus study on

Figure 3: Field investigation (WP1) Mljet lakes and Kuti lake

June 2018 [1]

Task 2.0 Effective Hydraulic Model

- 2.1 Input Data Development
 - Input data along the wash to develop an accurate model.
- 2.2 Hydraulic Modeling
 - Utilize existing data to create a HEC-RAS model
- 2.3 Site Selection
 - Determine four sites to focus the study

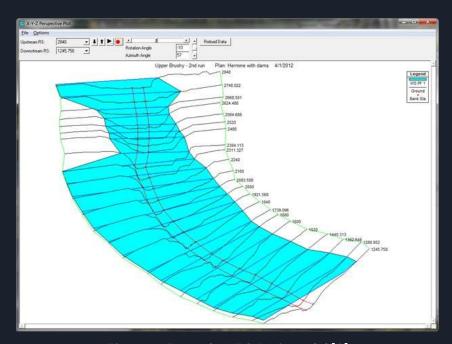


Figure 4: Example HEC-RAS Model [2]

Task 3.0 Corrected Effective Model

- ❖ 3.1 Site 1 Corrected Effective Model
- ❖ 3.2 Site 2 Corrected Effective Model
- ❖ 3.3 Site 3 Corrected Effective Model
- 3.4 Site 4 Corrected Effective Model
- Corrected Effective Model process for each of the four sites
 - Create HEC-RAS model for each site to better reflect current flow conditions
 - Input Data Development
 - Input data in HEC-RAS to update lining and culvert conditions
 - Hydraulic Model
 - Utilize input data to develop Hydraulic Model for each site

Photo by: Eric Lima

Figure 5: Prior improvements to Sinclair Wash

Task 4.0 Proposed Restoration Plan

- ❖ 4.1 Site 1 Restoration Plan
- ♦ 4.2 Site 2 Restoration Plan
- ❖ 4.3 Site 3 Restoration Plan
- 4.4 Site 4 Restoration Plan
 - Three plans will be created for each of the four sites being studied
 - Site Geomorphic Plan
 - Determine optimal shape of channels
 - Site Hydraulic Plan
 - Determine flow rate based on channel conditions for sites
 - Site Vegetation Plan
 - Determine vegetation removal and or replacement for sites

Photo by: Eric Lima

Figure 6: Vegetation growth in Sinclair Wash

Task 5.0 Plan Set

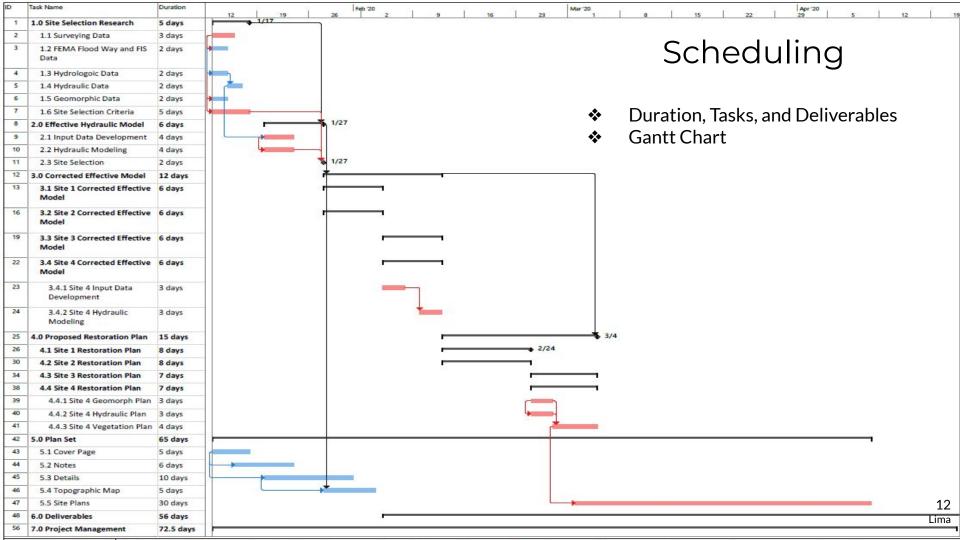
- 5.1 Cover Page
- 5.2 Notes
- 5.3 Details
- 5.4 Topographic Map
- 5.5 Site Plans
 - Plans for each of the four sites
 - Include cost estimate for the needed work on four sites by site basis

Figure 7: Construction Plans [3]

Task 6.0 Project Deliverables

Task 7.0 Management

- ♦ 6.1 Meeting Memo Binder.
- 6.2 30% Report and Presentation
- 6.3 60% Report and Presentation
- 6.4 90% Report
- 6.5 Final Report and Presentation
- ♦ 6.6 Construction Plan Set
- 6.7 Website


- 7.1 Team Meetings
- 7.2 Technical AdviserMeetings
- ❖ 7.3 Client Meetings
- 7.4 Schedule Management
- ❖ 7.5 Resource Management
- ❖ 7.6 Impacts
 - Social, Economic,Environmental

Exclusions

- Structural Engineering
 - ➤ No construction being performed
- **♦** Biological and Ecological Assessment
 - Invasive species survey
- Traffic Assessments
 - No current traffic impacts
- Geotechnical Analysis
 - It is not expected to perform any extensive geotechnical analysis
- Surveying
 - It is not expected to perform any extensive surveying

Figure 8: Footbridge over a river [4]

Project Staffing

Table 1: Summarized Matrix table of Staffing Positions

	Senior Engineer	Engineer II	Engineer I	Engineering Intern	
Task Name	SENG	ENG II	ENG I	INT	Total Hours
1.0 Site Selection Research	6	10	12	12	40
2.0 Effective Hydraulic Model	4	6	9	11	30
3.0 Corrected Effective Model	16	24	30	31	101
4.0 Proposed Restoration Plan	17	48	59	56	180
5.0 Plan Set	5	45	71	65	186
6.0 Deliverables	31	55	56	45	187
7.0 Project Management	49	34	23	23	129
Total hours	128	222	260	243	853

Cost of Engineering Services

Table 2: Cost of Engineering Services

1.0 Personnel	Classification	Hours	Rate, \$/hr	Cost
	SENG	128	213	\$ 27,264.00
	ENG II	222	136	\$ 30,192.00
	ENG I	260	85	\$ 22,100.00
	INT	243	22	\$ 5,346.00
	Total Personnel			\$ 84,902.00
2.0 Travel	N/A			\$ -
3.0 Supplies	Surveying Equipment Rental (Tentative)		\$100/day	\$ 100.00
	Geotechnical Lab Time (Tentative)		\$100/day	\$ 100.00
4.0 Subcontract	N/A			\$ -
5.0 Total				\$ 85,102.00

Questions?

References

[1] Stanko, Ružičić. "Field Investigation (WP1) Mljet Lakes and Kuti Lake June 2018." Rudarsko Geološko Naftni Fakultet.

https://www.rgn.unizg.hr/en/research/projects/research-projects/national-projects-a/nanomin/news/2182-field _investigation-wp1-mljet-and-kuti-3

- [2] "Introduction to HEC-RAS and Floodplain Mapping." Home Department of Civil, Architectural and Environmental Engineering, http://www.ce.utexas.edu/prof/maidment/CE374KSpr12/Ex4/Ex4.htm
- [3] Pearl, Deb, et al. "How to Read Construction Plans A Beginner's Guide." Construct, 23 May 2019, www.construct-ed.com/beginners-guide-how-to-read-construction-plans/
- [4] "Foot Bridge Design from BDS Structural Design Services Ltd." BDS Structural Design Services Ltd, https://bdsstructuraldesignservices.com/sectors/bridges/