

Remediation of *E. coli* Contaminated Surface Water in Arizona Via Fungi

CENE 486C: Capstone Project Presentation

By: David Hammond, Chase McLeod, & Mishael Umlor

Date: April 24, 2020

1.0 Introduction

- Objective: Quantify the capability of Arizona native fungi to remediate *E. coli* from water using biotrickling filters
- Client & Stakeholder: Dr.
 Wilbert Odem & Hooper
 Undergraduate Research Award (HURA)
- Location: Research performed in Science Lab Facility (SLF), Mycology Lab

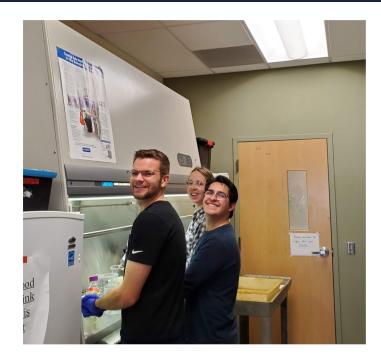


Figure 1: Team Fungi in the SLF's Laminar Flow Hood

1.1 Background

Past studies proved fungal mycelium, including Stropharia rugosoannulata and Pleurotus ostreatus, remediate E. coli from synthetic storm water in the Northwest [1,2]

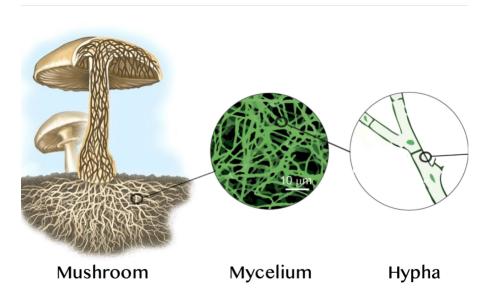


Figure 2: Schematic illustrating mycelium at different scales [3].

1.2 Escherichia (E). coli Overview

- E. coli is a "Rod Bacteria" found in the small intestine of warm blooded animals [4]
- Majority of E. coli are non-pathogenic
- Pathogenic strains may cause nausea, vomiting, diarrhea, and/or death [5]
- *E. coli* is a biological contaminant in surface waters, such as lakes, rivers and streams

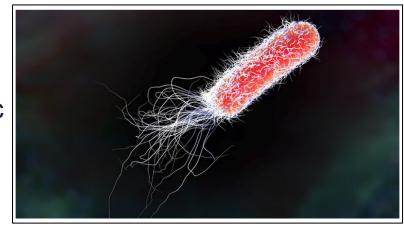


Figure 3: E. coli [4]

1.3 Constraints & Exclusions

Constraints

- Time
 - Fungi growth time
 - HURA cutoff: April 30th, 2020
- Fungi
 - Commercially available native fungi cultures
- Budget
 - Manpower
 - Equipment and laboratory use

Exclusions

- Fieldwork
 - Fungi was not field-tested

Figure 4: Past mycoremediation projects [6]

1.4 Project Scope Overview

- Task 1: Select Fungi
- Task 2: Cultivate Fungi
- Task 3: Design and Construction of Biofilters
- Task 4: Loading and Testing Biofilters
- Task 5: Data Analysis

- Task 6: Evaluate Project
 Impacts
- Task 7: CENE
 Deliverables, HURA
 Deliverables, & Publication
- Task 8: Project Management

Criteria Description

Weight

Fungi Options

Trametes versicolor (TV)

Pleurotus ostreatus (PO)

Hericium erinaceus (HE)

Armillaria mellea (AM)

Inonotus arizonicus (IA)

Stropharia rugosoannulata (SR)

Weighted Decision Matrix

2.0 Selecting Fungi [7, 8, 9, 10]

Arizona

Native

(Abundance)

[1, 2]

0.20

Score

10

8

6

2

8

Reasonable

Growth Time

[3]

0.20

Score

10

6

6

6

8

Human/Envir

onment

Hazard [1]

0.30

Score

10

10

10

1

8

10

Table 1: Fungal Species Decision Matrix

Cost

[4]

0.10

Score

10

10

10

10

10

Supporting

Research

[5, 6]

0.20

Score

10

10

Criteria Total

1.00

Weighted Score

7.6

9.6

6.6

3.1

5.5

7.8

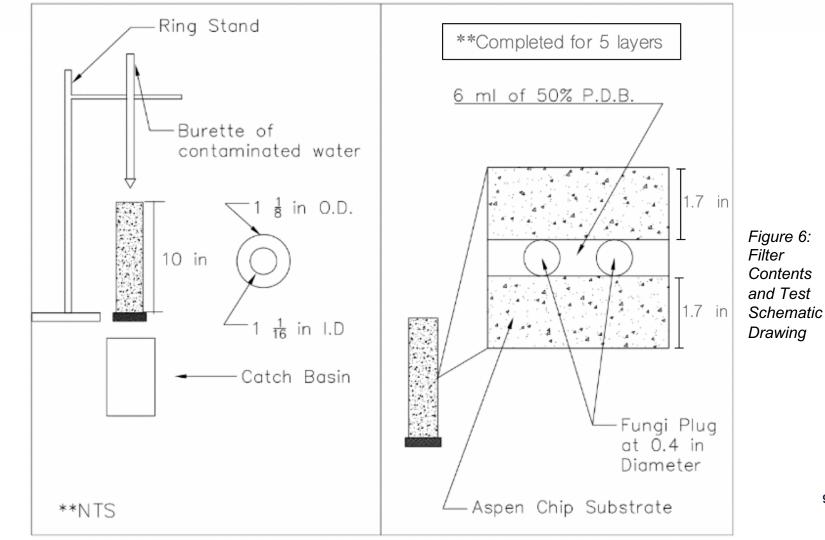

3.0 Bulking Fungi

Table 2: Species Code Names and Culture Replicates

Fungi Type	Code	Replicates (number)
Trametes versicolor	TV	5
Pleurotus ostreatus	РО	5
Stropharia rugosoannulata	SR	5
Trichoderma asperellum	TAs	5

Figure 5: Fungal Species Growing on Potato Dextrose Agar Plates

4.0 Constructing Biofilters

Filter Materials

- 1 1/16" base caps
- 1 1/8" Top caps
- Aspen Wood chips
- Filtered to3/8">Media> 0.08"
- 10" Polycarbonate tubing

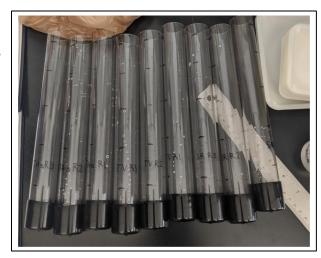


Figure 7: Polycar. Tubes w/ 1 1/16" caps

Figure 8: Aspen Wood Chip Filter Media

4.1 Aspen Media Sterilization Proof

Figure 9. Aspen wood chips non-sterile (left) vs. sterile (right) plated with PDA

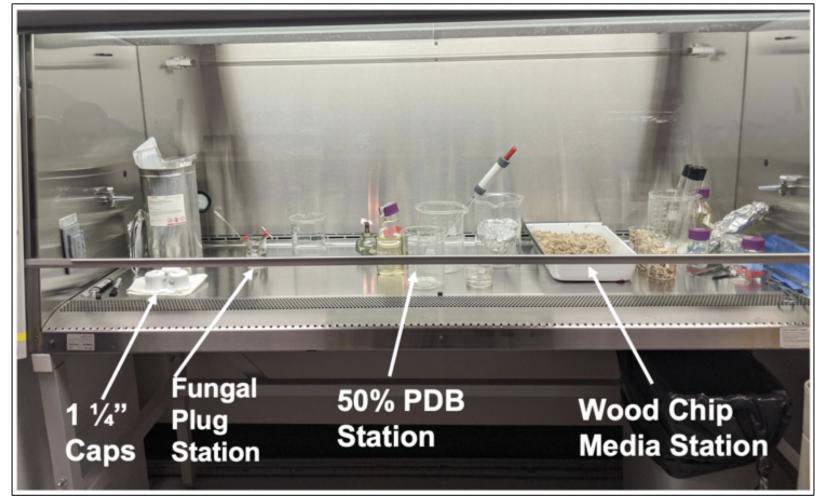
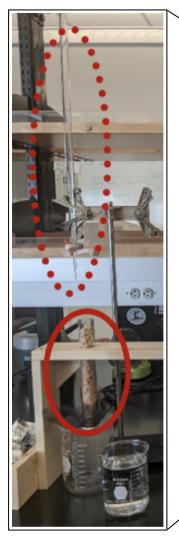


Figure 10: Biofilter Incolulation Set Up



Figure 11: Completed Biofilters

Figure 12: Biofilters after 5 weeks


5.0 Create Contaminated Water Supply

Recipe:

- 1 Loop of E. coli inserted in 1 mL DI water
- 400 microliters transferred to Luriabertani (LB) broth
- LB broth amount:15 mL

Figure 13: E. coli growing in incubator (Left) and Synthetic Wastewater (Right)

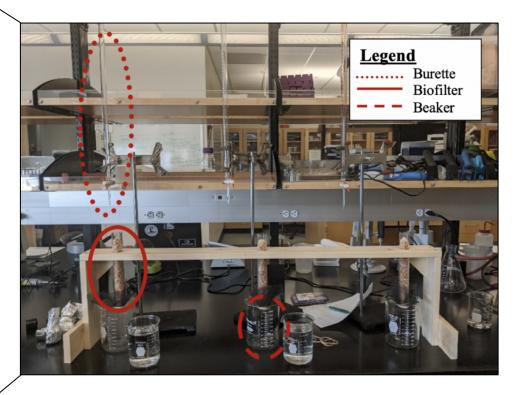


Figure 14: Filter Test Setup, Full view (above), zoomed to one filter (left)

5.1 *E. coli* Concentration Testing: Spectrophotometer Method

- <u>Equipment:</u> Shimadzu UVmini-1240
- Analyte: E. coli + Luria-Bertani (LB) broth
- Wavelength: 600 nm
- Units: cells/mL
- Yields instant results

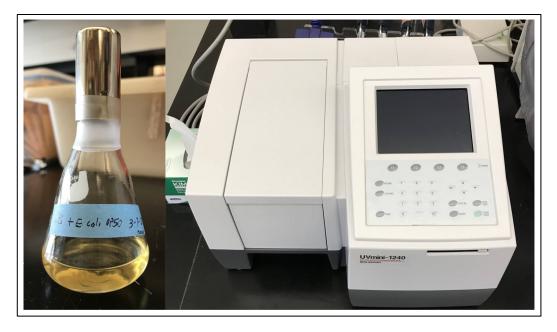


Figure 15. Stock E. coli and Spectrophotometer

5.2 *E. coli* Concentration Testing: Membrane Filtration Method

- Standard Method 9222:
 Membrane Filter
 Technique For Members
 Of The Coliform Group [1]
- EPA Approved Coliscan®
 C MF kits by Mycrology
 Labs [2]

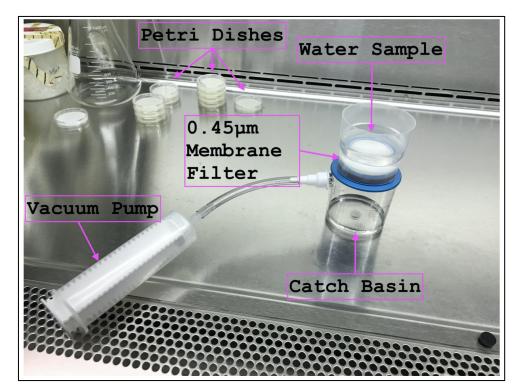
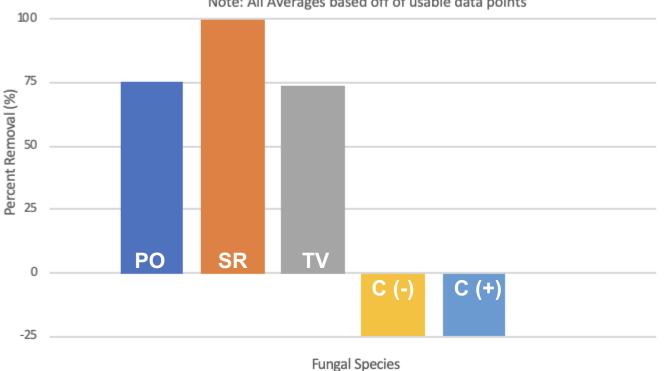



Figure 16. Coliscan Membrane Filter Kit Setup

Percent Removal of Each Fungi

Note: Lower values cut off at - 25% Growth Note: TAs had no Usable Data

Note: All Averages based off of usable data points

■ PO ■ SR ■ TV ■ C(-) ■ C(+) ■ TAs

6.0 Filter Results

Figure 17: Percent Removal of each Fllter Type

6.1 Statistical Analysis

Table 3: Statistical Analysis Results

Species Code	Average Percent Removal	Standard Deviation	P-value	Reject Null Hypothesis? (P<0.05)
PO	75%	2.2	0.0005	Yes
SR	100%	N/a	N/a	No
TV	74%	45.9	0.057	No
TAs	0%	N/a	N/a	No
C(+)	-100%	N/a	N/a	No
C(-)	-1214%	144.7	0.0023	Yes

*Type 1 Error: 0.05

*Null Hyp: 0% Removal

7.0 E. coli Concentration Problems

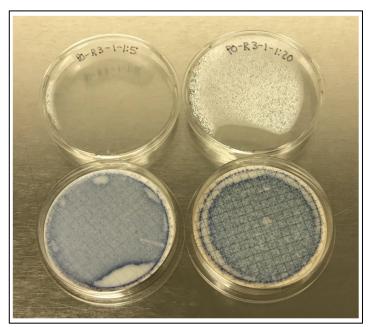


Figure 18: Ethanol Contamination on Pleurotus o. Petri Dishes

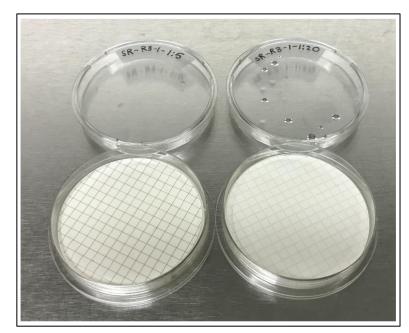
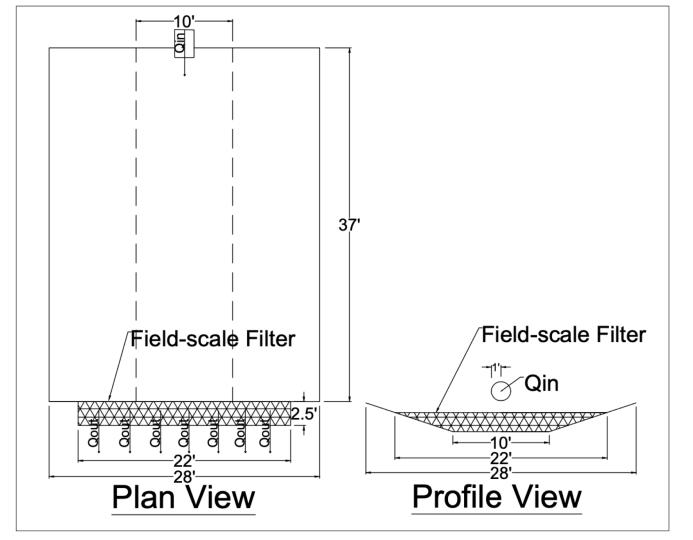



Figure 19: Zero growth of E. coli for Stropharia r. Petri Dishes

8.0 Field Scale Design

Figure 20. Field-scale Implementation Design Drawing

9.0 Project Impacts

- Regulations [12, 13]
- Public Health [14]
- Environment
- Socioeconomic [15]

Figure 21. Pristine Oak Creek [11]

10.0 Recommendations for Future Research

- More Testing needed for each fungi used
 - Standardize E. coli concentration
 - Confirm TV and PO results
 - Retest TAs, SR and C (+)
- Determine removal rate (performance with respect to time)
- Reusability of filters
- Removal mechanism

11.0 References

- [1] A. Taylor, A. Flatt, M. Beutel, M. Wolff, K. Brownsen and P. Stamets, "Removal of Escherichia coli from synthetic stormwater using mycofiltration," Ecological Engineering, vol. 78, pp. 78-86, May 2015.
- [2] S. Thomas, L. Aston, D. Woodruff and V. Cullinan, "Field Demonstrations of Mycoremediation for Removal of Fecal Coliform Bacteria and Nutrients in the Dungeness Watershed Washington," 2009.
- [3]. "Five Facts about E. coli: BioCote Ltd," BioCote, 27-Jul-2016. [Online]. Available: https://www.biocote.com/blog/five-facts-e-coli/. [Accessed: 11-Mar-2020].
- [4] "E. Coli: What to Do If You Think You're Infected", Health Essentials from Cleveland Clinic, 2020. [Online]. Available: https://health.clevelandclinic.org/e-coli-what-to-do-if-you-think-youre-infected/. [Accessed: 11- Mar- 2020].
- [5]NCDHHS, "Diseases & Topics: Escherichia coli (E. coli) Infection," NCDHHS. [Online].
- [6] P. Stamets, "Mycofiltration for Urban Storm Water Treatment Receives EPA Research and Development Funding," Fungi Perfecti, 20 May 2013. [Online]. Available: https://fungi.com/blogs/articles/mycofiltration-for-urban-storm-water-treatment-receives-epa-research-and-development-funding. [Accessed 2019]
- [7] J. A. Glaeser and K. T. Smith, "Decay fungi of riparian trees in the Southwestern U.S.," *Western Arborist (Fall)*, pp. 40-51, 2013.
- [8] Fungi Perfecti, "In Vitro Mushroom Cultures," 2020. [Online]. Available: https://fungi.com/collections/in-vitro-mushroom-cultures. [Accessed January 2020].

11.0 References Contd.

- [9] iNaturalist, "Observations," [Online]. Available: https://www.inaturalist.org/observations?taxon_id=48494. [Accessed September 2019].
- [10] C. Gehring, Interviewee, Fungal Selection Guidance for Remediation of E. coli. [Interview]. 20 September 2019.
- [11] L'auberge.com," [Online]. Available: https://www.lauberge.com/blog/activities-attractions/the-sedona-experience-discover-oak-creek-canyon/a [Accessed March 10, 2020]
- [12] Environmental Protection Agency, "National Pollutant Discharge Elimination System (NPDES)," 3 March 2020. [Online]. Available: https://www.epa.gov/npdes. [Accessed 5 March 2020].
- [13] California Stormwater Quality Association, "Municipal BMP Handbook," CSQA, Menlo Park, 2003.
- [14] NCDHHS, "Diseases & Topics: Escherichia coli (E. coli) Infection," NCDHHS. [Online].
- [15] K. C. Eduardo Cuevas, "The Californian," 2015 June 2019. [Online]. [Accessed 7 March 2020].

Acknowledgements

- CENE 486C Instructors: Dr. Bridget Bero, Dr. Jeff Heiderscheidt, Professor Mark Lamer & Professor Gary Miller
- Client and Technical Advisor: Dr. Wilbert Odem
- Gehring Lab Personnel: Dr. Catherine Gehring, Dr. Ron Deckert, and laboratory members
- HURA

Thank you!