

Feasibility of Fungi to Remove Heavy Metals from Mine Wastewater

William Bain, Sara Danielle Gallaher, Nolan Maxwell, Yue Shen and Masad Alyahya 11/13/2020

Project Background

- Objective: Analyze fungi's ability to adsorb lead contamination from a liquid solution
- ✤ Client: Dr. Bridget N. Bero, Ph.D
- Mine Waste Problem: Harm to environment and society due to highly toxic elements in waste
- Typical Mine Contaminants: Lead, Chromium, Cadmium, Arsenic, Zinc and Copper

Figure 1: Gold King Mine Spill, CO

Figure 2: Gold King Mine Spill, CO

Project Purpose

Need for Alternatives

- Traditional remediation methods are..
 - ≻ Costly
 - ➢ Not sustainable
 - ➤ Difficult to implement
- Proposed method may be more cost effective and sustainable

Supporting Research

- ✤ Aspergillus niger
- ✤ Agaricus bisporus

Figure 3: Agaricus bisporus

Adsorption Analysis

- Adsorption Isotherm: the mathematical relationship of an adsorbent and a solution, at a certain concentration, at equilibrium
- Can be linear or nonlinear



Figure 4: Adsorption Isotherm Experiment Process

Methodology and Procedures

Mushroom Preparation

- Chop into ~1"
 pieces
- Dry at 60°C for
 24 hrs in
 batches

Figure 6: Dried Mushrooms

Figure 5: Mushrooms in Drying Oven

Figure 7: Pretreat ment Set-Up

Figure 8: Pretreated Mushrooms

Mushroom PreTreatment

- ♦ 0.5 M NaOH Solution
 - ➣ 10 g Biomass
 - ➣ 500 mL Soln
- Heat but don't burn
- Strain and Rinse
- Dry



Figure 9: XRF Sample Containers

Experimental Matrix - Simplified						
	Fungi Mass Range	T1111	# Mass	# Replicates		
mg/L	mg	(Yes or No)	Variations			
1000	100-1000	Yes, Original	10	3		
1000	100-1000	Yes, Updated	10	3		
1000	100-1000	No	10	3		
400	100-1000	Yes, Updated	7	3		

Table 1: Experimental Matrix

Figure 10: Sample Vials on Shaker Table

Calibration Curve

Lead (Pb) Detection by XRF Device vs Known Concentrations

Dilution	Known Conc Pb (ppm)	XRF Pb (ppm)	SD (%)
None	1000	867	14
1	500	416	10
1	500	426	10
1	500	419	10
2	250	204	7
2	250	212	7
2	250	206	7
3	125	75	4
3	125	74	4
3	125	81	5
4	62.5	26	3
4	62.5	25	3
4	62.5	25	3

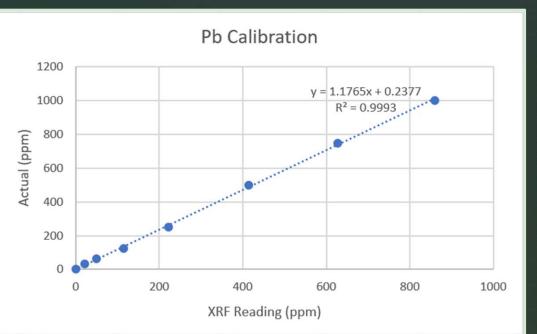
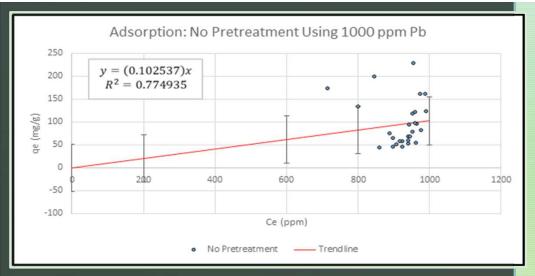
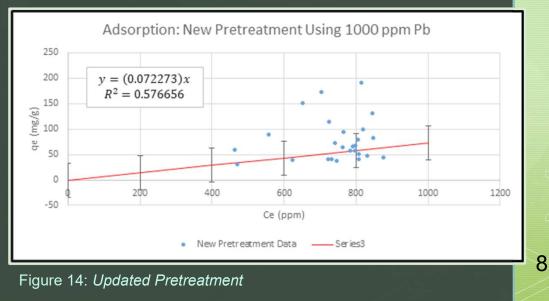


Figure 12: XRF Calibration Curve for Lead


7

Detection Limit Lead (Pb) detection limit for liquid samples in XRF Device


Table 2: Detection Limit Testing Results

Results: Pre-Treatment Use

Pretreatment resulted in better adsorption than no pretreatment

Figure 13: No Pretreatment

Results: Adsorption Isotherm Experiment

Variables: qe (mass Pb per mass fungi)

Ce (conc of Pb in the water)

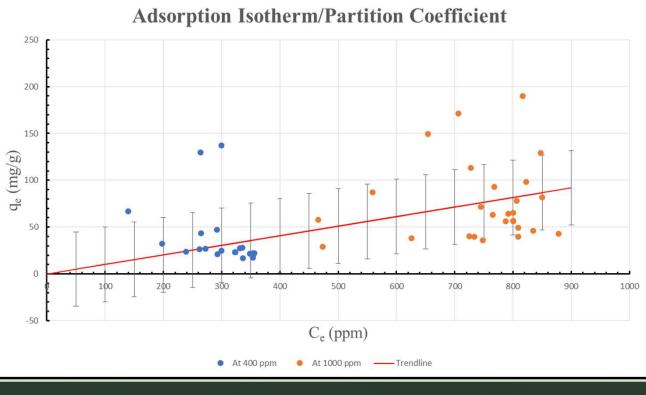


Figure 15: Final Results

Treatment System Scale-Up

Sequencing Batch Reactor

- ≻ Filling
- Reaction
- ➤ Settling
- Decating or Drawing \blacktriangleright
- Idling \blacktriangleright

Continuous Stirred Tank Reactor

- Steady Rate operation
- ➢ Well Mixed Process
- **Continuous Influent Flow** \succ

Fixed-Bed Column *

- Unsteady Rate Operation
- Upper and Lower Support
 Upper and Lower Cotton Wool

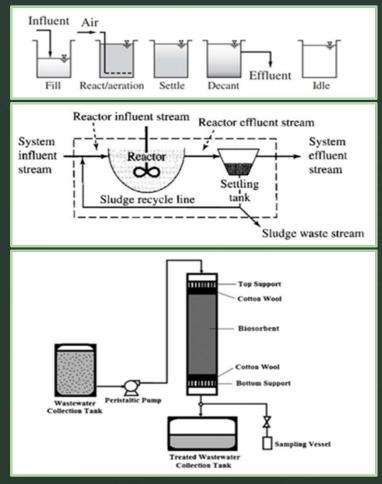


Figure 16: Treatment System Options

Treatment System Selection

11

Table 3: Treatment System Decision Matrix					
Criteria	Weight (%)	Batch Reactor	CSTR	Fixed-Bed Column	
Operation Cost	25	60	40	80	
Simplicity	20	80	60	40	
Biomass Injection	15	70	70	40	
Sludge Control	15	60	80	40	
Applicability	25	80	80	60	
Overall	100	70.5	64.5	55	

Design of a Treatment System Hypothetical Design

	к	Ce	qe	C0	v	m	NaOH	Rinsing DI Water
e 4:	Unitless	(mg/L)	(mg/g)	(mg/L)	(m3/d)	(kg/d)	(L/d)	(L/d)
nent	0.102109	0.6	0.061265	60	3.79	3674.6	13123.5	13123.5
em	0.102109	0.6	0.061265	50	3.79	3055.9	10914.2	10914.2
gn	0.102109	0.6	0.061265	40	3.79	2437.3	8704.8	8704.8
bles	0.102109	0 0	0.061265	30	3.79	1818.7	6495.5	6495.5
100	0.102109	0.6	0.061265	20	3.79	1200.1	4286.1	4286.1
	0.102109	0.6	0.061265	10	3.79	581.5	2076.7	2076.7

Table 4: Treatment System Design Variables

Equations and Calculations

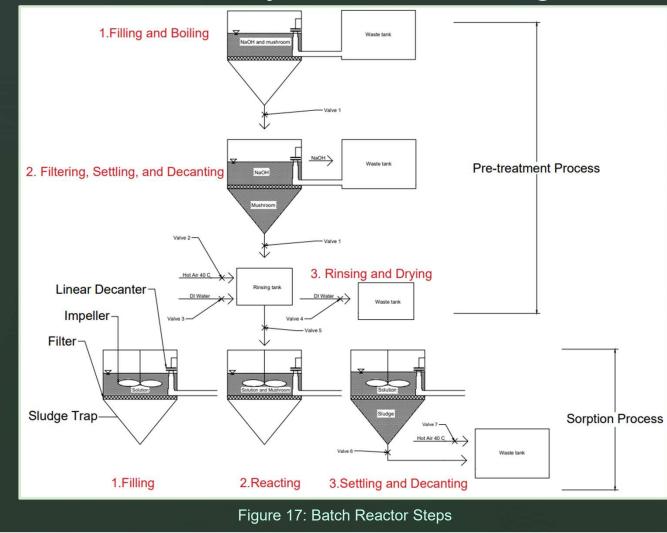
Equation 1: Solute Adsorbed Per Mass of Adsorbent

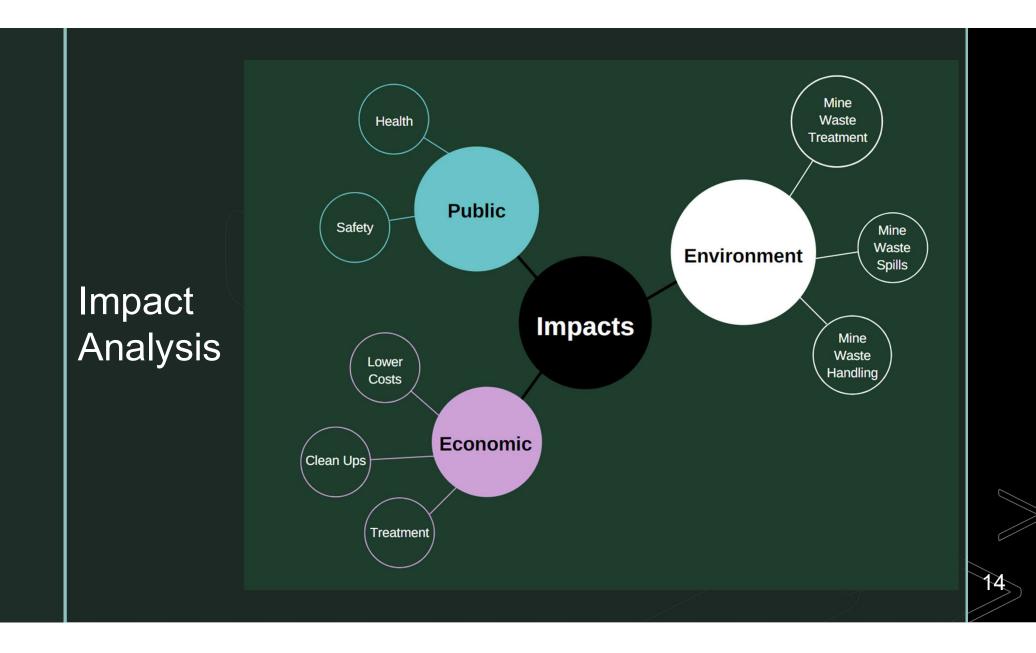
 $q_e = K C_e$

Equation 2: The Required Mass Rate of Adsorbent

$$\dot{m} = \frac{\dot{V}(C_0 - C_e)}{q_e}$$

$$q_e = 0.102109(0.6)\frac{mg}{L} = 0.061265\frac{mg}{kg}$$


$$m = \frac{\left(\frac{3.79 \ m^3}{d}\right)(1000 \ \frac{L}{m^3})\left(60 \ \frac{mg}{L} - 0.6 \ \frac{mg}{L}\right)}{0.061265 \ \frac{mg}{kg}} = 3674.602631 \ \frac{kg}{d}$$


$$NaOH Required = \frac{50 \ mL}{14 \ g} \left(\frac{1000 \ g}{kg}\right) \left(\frac{1L}{1000 \ mL}\right) \left(3674.6 \frac{kg}{d}\right) = 13123.5 \ L/d$$

$$DI Water Required = \frac{50 \ mL}{14 \ g} \left(\frac{1000 \ g}{kg}\right) \left(\frac{1L}{1000 \ mL}\right) \left(3674.6 \ \frac{kg}{d}\right) = 13123.5 \ L/d$$

Note: 50 mL of NaOH is the required to pre-treat 14 g of mushroom and 50 mL of DI water is the required to rinse 14 g of mushroom

Treatment System Block Diagram

Questions?