Alternative Concrete Masonry Unit

Teo Albers Sam Carnes

Figure 1: Faswall Green Building System [1]

1.1 Research Goals

Objective

• Develop an insulated, dry-stacked modular block made from local materials (e.g. small diameter timber, cinders).

Criteria

 Insulation value of R-10 while meeting the minimum strength of 1900 psi based upon ASTM C90 [3].
Additionally the block will need to meet all modern design demands of building construction.

Figure 2: Fly Ash Bricks [2]

1.2 Background Research

Current Alternatives

- Insulated modular blocks made with wood fiber aggregate are limited.
- Not structural and simply act as formwork intended to support the hydraulic pressure of grout.
- High costs due to unavailability of necessary materials.

Figure 3: Dry Stacked Interlocking System [4]

1.3 Stakeholders

- Client: Dr. Robin Tuchscherer
- Local logging companies
- Local Brick Manufacturers

Figure 4: Logging Operation [4]

Figure 5: Block Lite Manufacturing [6]

2.1 Material Study

2.1.1 Establish Baseline

Baseline

• Collect existing concrete mixes in order to create a baseline for further design mixes that will optimize wood fiber aggregate.

Materials

• Quikrete, Rapid Set, and Sika concrete mixes will be obtained to set the baseline.

Figure 6: Quikrete [8]

Analysis

• A compressive strength test will be conducted on the known concrete mixes following the procedure outlined in ASTM C140.

Carnes 4

2.1 Material Study

2.1.2 Small Diameter Timber Analysis

Method

• Meeting with a timber scientist to determine the process that the small diameter timber must undergo prior to be being used in a concrete mix.

Figure 7: Small Diameter Timber [8]

2.2 Prototyping

2.2.1 Material Collection

Collection

- Ribelin Logging Company located in Flagstaff, Arizona.
- Cinders will be collected on site at Cinder Hills OHV area located in the Coconino National Forest 13 miles northeast of downtown Flagstaff [8].

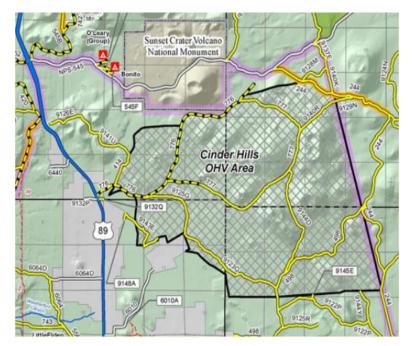


Figure 8: Collection Site [8]

2.2 Prototyping

2.2.2 Design

Production

• A total of 48 prototypes will be constructed out of three different mix ratios.

Dimensions

• Prototypes will be right circular cylinders measuring 8" in height and 4" in diameter [9].

Figure 9: Square Rectangular Concrete Mold [10]

2.3.1 Embodied Energy Study

- An embodied energy study will be completed in order to define the insulative properties of the prototypes.
- The team will meet with Alan Francis a professor at NAU to discuss the appropriate insulative test required.

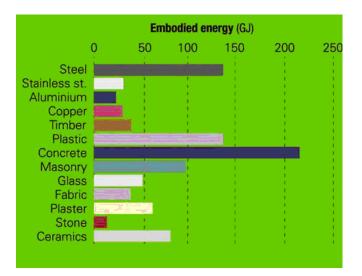


Figure 10: Embodied Energy [11]

2.3.2 Compressive Strength (ASTM C39)

Definition

• Determines the compressive strength of cylindrical concrete specimens.

Method

• The test method consists of applying a compressive axial load to molded cylinders until failure occurs [12].

Analysis

• Compressive strength is then calculated by dividing the maximum load by the cross sectional area of the prototype.

Figure 11: Compressive Strength Test [13]

Carnes 9

2.3.3 Tensile Strength (ASTM C496)

Definition

• Determines the splitting tensile strength of cylindrical concrete specimens.

Method

• Apply a diametral compressive force along the length of a cylindrical concrete specimen until failure occurs [15].

Analysis

 Maximum load sustained by the specimen is divided by appropriate geometrical factors to obtain the splitting tensile strength [15].

Figure 12: Tensile Strength Test [14]

Carnes 10

2.3.4 Freeze Thaw (ASTM 666)

Definition

• Determines the resistance of concrete specimens to rapidly repeated cycles of freezing and thawing.

Method

• The cylinders will be subjected to 5-8 freeze thaw cycles per day with a total of 300 cycles at the conclusion of the freeze-thaw test [16].

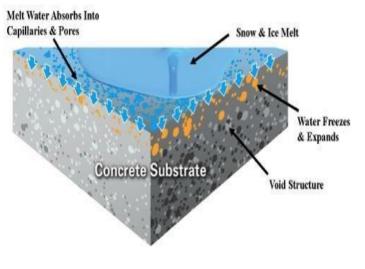


Figure 13: Tensile Strength Test [17]

2.4 Feasibility Study

2.4.1 Block Lite Tour

• Touring a local brick manufacture to further understand the processes that go into mass producing modular blocks.

2.4.2 Current Production Methods

• Examine current modular block production that is using wood fiber as an aggregate.

Figure 14: Block Lite [6]

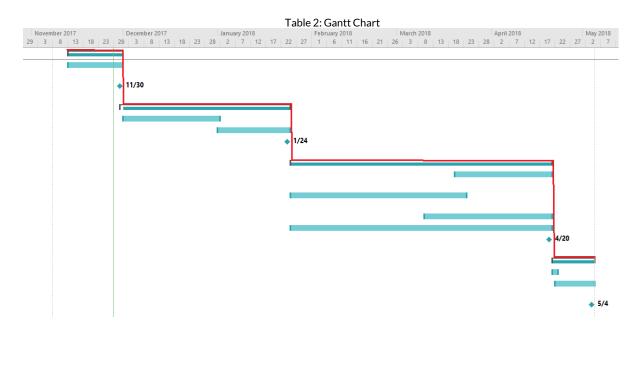


Figure 15: Nitterhouse Masonry [18]

Albers 12

3.1 Research Schedule

Table 1: Project Tasks Mon 11/13/17 Thu 11/30/17 Material Study 14 days Mon 11/13/17 Small Diameter 14 days Thu 11/30/17 Timber Analysis Material Study Thu 11/30/17 Thu 11/30/17 0 days Complete Thu 11/30/17 Wed 1/24/18 Prototyping 40 days Fri 12/1/17 Material Collection 22 days Mon 1/1/18 Mon 1/1/18 Wed 1/24/18 Design 18 days Wed 1/24/18 Wed 1/24/18 Prototyping 0 davs Complete Thu 1/25/18 Fri 4/20/18 Product Testing 62 days Embodied Energy 24 days Tue 3/20/18 Fri 4/20/18 Study Compressive 42 davs Thu 1/25/18 Fri 3/23/18 Strength Tensile Strength Sat 3/10/18 31 days Fri 4/20/18 Thu 1/25/18 Freeze-Thaw 62 days Fri 4/20/18 Product Testing 0 days Fri 4/20/18 Fri 4/20/18 Complete Sat 4/21/18 Fri 5/4/18 Feasibility Study 11 days Sat 4/21/18 Sun 4/22/18 Block Lite Tour 2 days Sun 4/22/18 Current Available 11 days Fri 5/4/18 Options Feasibility Study 0 days Fri 5/4/18 Fri 5/4/18 Complete Total Length of 125 days Mon 11/13/17 Fri 5/4/18 Project

Albers 13

3.2 Staffing

Table 3: Project Staffing						
	Research Manager	Research Engineer	Lab Technician			
	(RM)	(RE)	(LT)			
Task	Time (hrs)					
2.1.1 Small Diameter Timber Analysis	10	25	0			
2.2.1 Material Collection	12	32	0			
2.2.2 Design	60	30	0			
2.3.1 Embodied Energy Study	10	15	35			
2.3.2 Compressive Strength	10	25	50			
2.3.3 Tensile Strength	10	25	40			
2.3.4 Freeze Thaw	10	30	60			
2.4.1 Block Lite Tour	8	8	0			
2.4.2 Current Available Options	10	15	0			
Total Hours:	140	205	185			
		Total:	530			

Albers 14

4.0 Cost of Engineering Services

Table 4: Cost of Engineering Services

Cost of Engineering Services						
		Hours				
	Personnel	(hrs)	Base Pay (\$/hr)*	Cost (\$)		
	RM	140	\$150.00	\$21,000.00		
	RE	205	\$90.00	\$18,450.00		
	LT	185	\$60.00	\$11,100.00		
			Total:	\$50,550.00		
Equipment			Total:	\$600.00		
Travel			Total:	\$25.00		
			Total:	\$51,175.00		
*All base pay rates include overhead and benefits						

5.0 Project Limitations

5.1 Challenges

- Brick manufactures do not typically post their mix ratios for the general public.
- At most they will share their water cement ratio, but other than that obtaining information will need to be obtained via guided tour.
- Limited data on eco dry stacked modular bricks of having sufficient structural properties as well as having a correct R-value of 10

5.2 Exclusions

- Refrain from doing an environmental assessment of the proposed design mix.
- Refrain from doing any research in regards to available materials in any other location other than Flagstaff.

References

[1] Faswall Green Building System, http://faswall.com/faswall-green-building-system/. [Accessed: 29-Nov-2017] [2] Center of Innovative Building Material, http://www.flyashbricks.net.in/clc-blocks.htm. [Accessed: 28-Nov-2017] [3] Concrete Building Systems, http://www.concretecottage.com/concrete-building-systems.htm. [Accessed: 28-Nov-2017] [4] Dry Stacked Interlocking Masonry System, http://www.happho.com/dry-stacked-interlocking-masonry-system/. [Accessed: 27-Nov-2017] [5] Chipperpedia, http://www.petersoncorp.com/wp-content/uploads/Peterson4800F-Chipper-Clean-Chips.jpg, [Accessed: 27-Nov-2017] [6] Block Lite, https://www.block-lite.com/. [Accessed: 28-Nov-2017] [7] Civil and Environmental Engineering, https://nau.edu/cefns/engineering/civil-environmental/faculty.[Accessed: 27-Nov-2017] [8] Cinder Hills Off Highway Vehicle Area, https://www.fs.usda.gov/recarea/coconino/recarea/?recid=70996. [Accessed: 27-Nov-2017] [9] ASTM C470 / C470M-15, Standard Specification for Molds for Forming Concrete Test Cylinders Vertically, ASTM International, West Conshohocken, PA, 2015, www.astm.org [10] Concrete Tests, http://stickstoneswater.blogspot.com/2011/11/tests-on-concrete-compressive-strength.html [Accessed: 27-Nov-2017] [11] Embodied Energy, http://www.yourhome.gov.au/materials/embodied-energy [Accessed: 26-Nov-2017] [12] ASTM C39 / C39M-17b, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2017, www.astm.org [13] Compressive Strength Test of Concrete, http://civilblog.org/2013/05/10/compressive-strength-test-of-concrete-is516-1959/. [Accessed: 28-Nov-2017 [14] Splitting Tensile Strength Test on Concrete Cylinder, https://theconstructor.org/concrete/splitting-tensile-strength-test-on-concrete-cylenders/2116/ [Accessed: 27-Nov-2017] [15] ASTM C496 / C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2017, www.astm.org

References

[16] ASTM C666 / C666M-15, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM International, West Conshohocken, PA, 2015, www.astm.org

[17] Protecting Concrete from Freeze/Thaw Damage, http://www.chemmasters.net/newsletters/2013-11/

[18] Recycled Block (CMU), https://www.nitterhousemasonry.com/products/recycled-cmu-split-face-finish/