

Verde Valley Water Treatment

April 28, 2017 CRKL Engineering CENE 486 Capstone Team Robert Hoppe, Lizzie Tague, Kyle Weiss & Camille White

Project Background

Dr. Paul Gremillion [1]

Dr. Terry Baxter [2]

Contaminants Arsenic (As): 1-2 mg/L Nitrate (NO₃⁻): 25-40 mg/L

Sources of Contamination Both sources occur naturally As - agriculture & industrial activities NO₃⁻ - fertilizers, animal & plant waste

Health Effects

As - heightened cancer risk, pregnancy complications

 NO_3^{-} - vascular collapse, Blue Baby Syndrome

Environmental Protection Agency Drinking Water Standards [3] As : 0.01 mg/L NO_3^- : 10 mg/L

Literature Reviews

Figure 1: Activated Alumina 3/16" [4]

Conventional

Nitrate - Ion exchange with Chloride Arsenic - Oxidation

Sustainable

Nitrate - Bio Film Reactor Arsenic - Phytoremediation using Hyacinth roots

Innovative

- Nitrate Activated Alumina based ion exchange
- Arsenic ElectroChemical Arsenic Remediation

Sustainable

Nitrate - Permeable reactive barriers Arsenic - Ceramic membrane filters with metal oxides

Decision Matrix

Table 1. Decision matrix

8 - 8 3 - 1					Nitrate				Arsenic		Dual Tr	reatment
		Criteria	Weights (%)	Ion Exchange: Chloride	Bio Film Reactor	Permeable Reactive Barrier	Oxidation	Electro Chemical	Phytoremediation Hyacinth Roots	Ceramic membrane filters	lon Exchange: Titanium Oxide	Ion Exchange: Activated Alumina
	1	Low-Cost	30	9	3	(1	9	3	9	9	9	9
	2	Low-Energy	30	3	9	3	1	1	9	9	9	9
s	3	Feasibility	20	9	1	1	3	1	3	1	9	9
ter	4	System Life-Time	15	3	3	9	9	9	3	3	3	9
Ĕ	5	Minimal by-product	5	1	9	3	1	3	1	1	3	3
Parameter	6											
à	7											
			Raw score	5.9	4.7	2.9	5	2.9	6.5	6.1	7.8	8.7
			Ranking	3	4	5	5	6	3	4	2	1

Design Construction

Figure 2: Kyle and Robert at The Farm [5]

Figure 3: Lizzie and Camille at The Farm [5]

Design Construction

Figure 4: Design before stain [5]

Figure 5: Design after stain [5]

Figure 6: Valve apparatus [5] Weiss, 6

Water Contamination

Table 2: Water solutions created

Figure 7: Water contamination chemicals [5]

Solution	Amount (L)	Arsenic Pentoxide (mg)	Sodium Hydroxide (mg)	Sodium Nitrate (mg)
Combined	8.50	19.56	51.00	407.83
Arsenic	2.50	5.75	15.00	-
Nitrate	1.50	-	-	71.97

Water Testing

- 1. Stagnant batch tests using graduated cylinder
- 2. Trials
 - a. 10 with mixed stock
 - b. 5 with arsenic stock
 - c. 4 with nitrate stock
- Collected samples at 1, 5, 20, & 60 minutes
- 4. HACH test strips for arsenic tests
- Used new activated alumina every 5 trials for solutions containing arsenic
- 6. Used new activated alumina each trial for nitrate solution
- 7. In-lab nitrate testing

Figure 8: Original testing design [5]

Figure 9: Batch testing design [5]

Water Testing

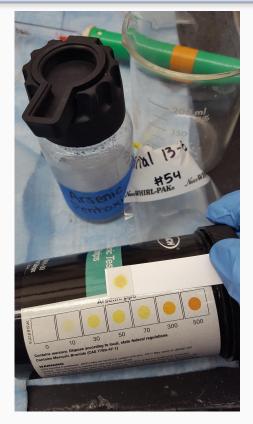


Figure 10: HACH Arsenic low range test kit [5]

Figure 11: HACH Nitrate method #8171 [5]

Figure 12: Samples for Dr. Ketterer at MSUD Lab [5]

Tague, 9

Arsenic Solution Results


Initial Arsenic Concentration: 1.7 mg/L

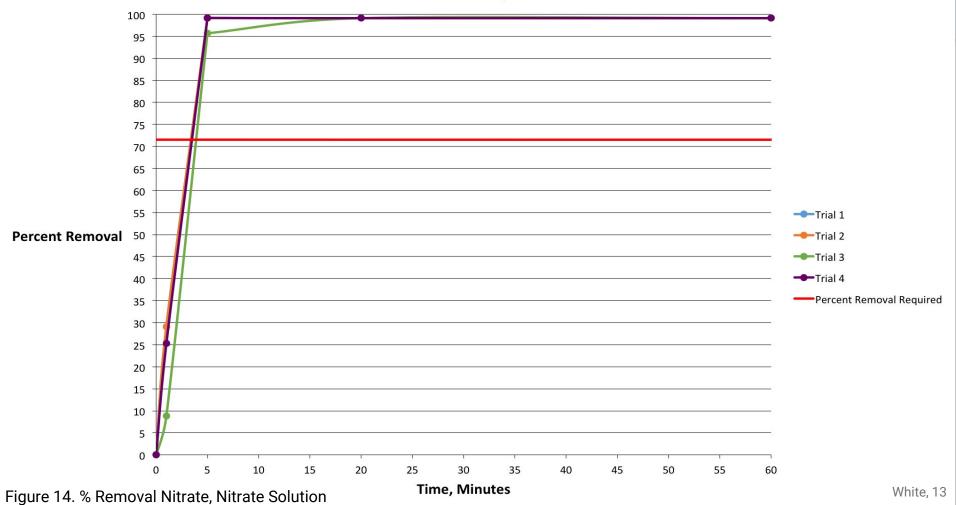
Arsenic Treatment Goal: 0.01 mg/L

Table 3. Arsenic solution results

Arsenic Solution								
1 minute 5 minutes 20 minutes 60 minu								
Trial	Arsenic (mg/L)	Arsenic (mg/L)	Arsenic (mg/L)	Arsenic (mg/L)				
1	0.768	0.24	0.061	0.026				
2	0.741	0.278	0.09	0.048				
3	0.89	0.388	0.15	0.073				
4	0.992	0.461	0.166	0.096				
5	1.127	0.461	0.181	0.107				
Averages	0.904	0.366	0.130	0.070				
Standard Dev.	0.143	0.092	0.046	0.030				

Arsenic Percent Removal, Arsenic Solution

Nitrate Solution Results

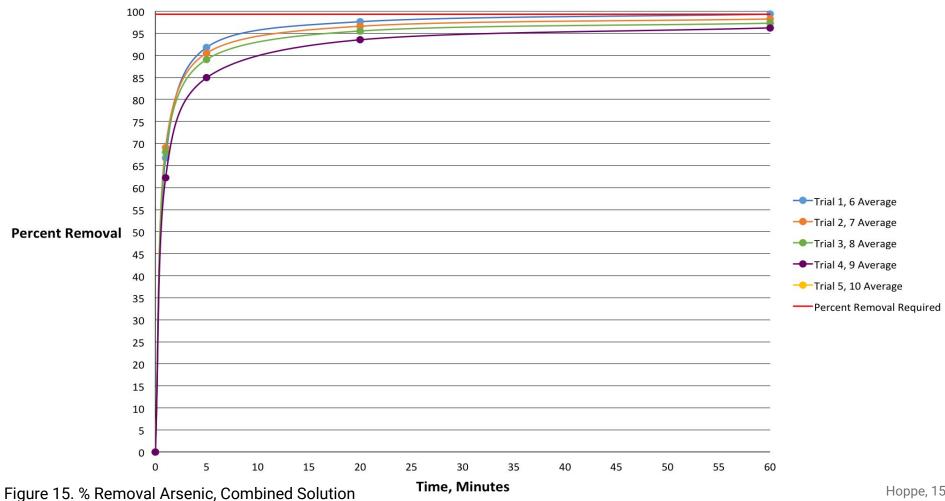

Initial Nitrate Concentration: 35 mg/L

Nitrate Treatment Goal: 10 mg/L

Table 4. Nitrate solution results

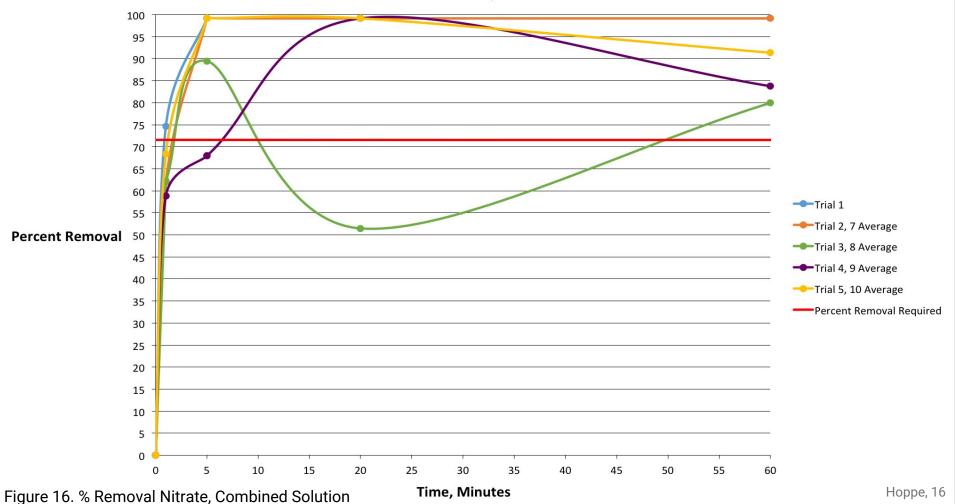
Nitrate Solution							
	1 minute	5 minutes 20 minutes		60 minutes			
Trial	Nitrate (mg/L)	Nitrate (mg/L)	Nitrate (mg/L)	Nitrate (mg/L)			
1	24.750	0.3	0.3	0.3			
2	24.752	0.3	0.3	0.3			
3	31.824	1.5	0.3	0.3			
4	26.078	0.3	0.3	0.3			
Averages	26.851	0.6	0.3	0.3			
Standard Dev.	2.922	0.5	0	0			

Nitrate Percent Removal, Nitrate Solution


Combined Solution Results

Initial Arsenic Concentration: 1.5 mg/L Initial Nitrate Concentration: 35 mg/L Arsenic Treatment Goal: 0.01 mg/L Nitrate Treatment Goal: 10 mg/L

Table 5. Combined solution results


	Arsenic and Nitrate Solution									
	1 mi	nute	5 minutes		20 minutes		60 minutes			
Trial	Arsenic (mg/L)	Nitrate (mg/L)	Arsenic (mg/L)	Nitrate (mg/L)	Arsenic (mg/L)	Nitrate (mg/L)	Arsenic (mg/L)	Nitrate (mg/L)		
1	0.584	8.84	0.124	0.30	0.038	0.30	0.011	0.30		
2	0.625	15.47	0.153	0.30	0.057	0.30	0.024	0.30		
3	0.472	0.30	0.158	7.07	0.071	33.60	0.043	0.30		
4	0.693	4.86	0.296	0.30	0.116	0.30	0.063	0.30		
5	0.846	10.17	0.307	0.30	0.132	0.30	0.082	0.30		
6	0.584	19.01	0.164	15.03	0.045	35.80	0.012	<u>,</u>		
7	0.462	11.05	0.18	0.30	0.062	0.30	0.037	0.30		
8	0.649	26.08	0.226	0.30	0.086	0.30	0.052	13.70		
9	0.634	23.87	0.234	22.10	0.111	0.30	0.069	11.50		
10	0.339	11.93	0.105	0.30	0.056	0.30	0.047	5.75		
Averages	0.589	13.16	0.195	4.63	0.077	7.18	0.044	3.64		
Standard Dev.	0.133	7.67	0.065	7.42	0.031	13.77	0.023	5.10		

Arsenic Percent Removal, Combined Solution

Hoppe, 15

Nitrate Percent Removal, Combined Solution

Recommendations

- Activated Alumina for Nitrate removal
- Multi-unit treatment system
- Further analysis
 - Activated Alumina isotherm

Figure 17: CRKL Engineering Team [5]

Project Management

Table 6. Status schedule

Task Name	Predicted End	Actual End
4.0 Design Preparations		
4.1 Acquire Lab Space	1/13/17	2/7/17
4.2 Lab Certifications	1/13/17	1/21/17
4.3 Acquire Lab Materials	2/2/17	2/13/17
4.4 Water Contamination	2/9/17	2/28/17
5.0 Design Development		
5.1 Design Construction	2/23/17	3/5/17
5.2 Water Testing	2/28/17	3/21/17
5.2.1 Send Samples for Testing	3/3/17	3/10/17
5.3 Analyze Test Results	3/30/17	4/23/17
5.4 Final Presentation	4/27/17	4/27/17
5.5 Final Design Report & Website	5/5/17	5/5/17
6.0 Project Management		
6.1 Team Meetings	ongoing	ongoing
6.2 Client Meetings	ongoing	ongoing
6.3 Technical Advisor Meetings	ongoing	ongoing

Tague, 18

Personnel Hours

Table 7. Personnel positions

Senior EngineerSENGEngineerENGLab TechnicianLABEngineering InternINTAdministrative
AssistantAA

Table 8. Total hours

Total Expected	Total Achieved
708	530

Table 9. Hours by position

Task	SENG	ENG	LAB	INT	AA
Research	20	15	18	20	10
Lab Preparation	8	9	10	3	20
Water Contamination	10	9	7	10	4
Model Construction	10	26	0	8	7
Modeling	20	32	110	40	20
Results Analysis	40	26	0	0	18
Total	108	117	145	81	79
Projected	112	152	144	140	160

Project Cost

Table 10. Total project costs based on actual hours

Cost	Classification	Hours	Rate \$/hr	Cost	Projected Cost
Personnel	SENG	108	\$132	\$14,256	\$14,780
	ENG	117	<mark>\$6</mark> 9	\$8,073	\$10,490
	LAB	145	\$52	\$7,540	\$7,490
	INT	81	\$19	\$1,539	\$2,660
	АА	79	\$41	\$3,239	\$6,560
	Total personnel			\$32,647	\$41,980
Lab Work	Materials		\$967	\$967	\$2,500
	Lab Rental	40 days	\$100/day	\$4,000	\$4,000
	Total Lab Work			\$4,967	\$6,500
Subcontract	Analytical			\$500	\$2,500
TOTAL				\$38,114	\$50,980

Weiss, 20

Cost of Implementation

Community Population	10,000 people		
Average Water Consumption	60 gpd per person		
Total Water Consumption	600,000 gpd		

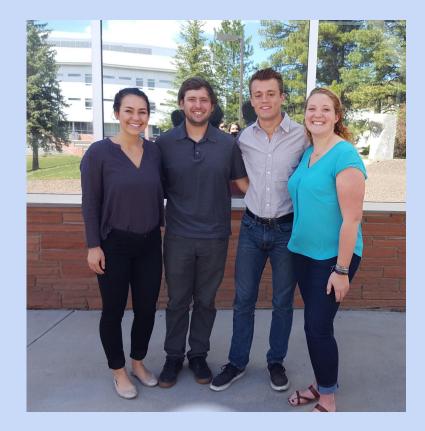
Table 12: Total system cost

	Nitrate	Arsenic	Annual Totals
Activated Alumina Required (lbs)	11,455	455	11,910
Cost	\$16,955.00	\$675.00	\$35,260

Acknowledgements

Special thanks...

Dr. Bridget Bero Dr. Wilbert Odem Dr. Terry Baxter Gerjen Slim


References

- [1] https://www.linkedin.com/in/paul-gremillion-7b4b84108
- [2] https://nau.edu/cefns/engineering/civil-environmental/directory/baxter-terry/
- [3] Environmental Protection Agency. Drinking Water Arsenic Rule History. [Online]. Available:
- https://www.epa.gov/dwreginfo/drinking-water-arsenic-rule-history
- [4] https://www.deltaadsorbents.com/activated-alumina-f-200-316
- [5] Photography: CRKL Engineering Members. (2017).
- [6] American Public Health Association. (1992). Standard Methods for the Examination of Water and Wastewater.
- [7] HACH. (2014). Nitrate, MR, Cadmium Reduction Method. [Online]. Available:
- https://canvas.jmu.edu/courses/1484140/files/73787038
- [8] HACH. Arsenic Low Range Test Kit. [Online]. Available:
- https://www.hach.com/arsenic-low-range-test-kit/product-details?id=7640217303
- [9] "Residential Water Use," AZ Water. [Online]. Available:
- http://www.azwater.gov/AzDWR/StatewidePlanning/Conservation2/Residential/Residential_Home2.htm
- [10] "Enhancing adsorption of nitrate using metal impregnated alumina", *Sciencedirect.com*, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2213343715002109. [Accessed: 25- Apr- 2017].
- [11]"Evaluating Arsenic Removal Adsorbents", arsenic removal adsorbents, 2017. [Online]. Available:

https://www.unh.edu/erg/sites/www.unh.edu.erg/files/media/WTTAC/arsenic_removal_adsorbents.pdf. [Accessed: 25-Apr- 2017].

[12] Environmental Protection Agency, "Technologies and Costs for Removal of Arsenic from Drinking Water", The EPA, Washington DC, 2000.

NORTHERN ARIZONA

CRKL Engineering Team

Supplementals - Water Contamination

[Mixed solution] (As and NOS-) mixed solution 10 trials >> 4 sample times of 150 mL using NaNO3 : MW = 85g/mol 800 ml per trial (200 ml extra) NO35 : MW = 629/mol Solution must be 8 L; moke 8.5 L in cose. 62 g/mol NO3 85 g/mol NaNO3 = 0.7294 SM 18th Edition 1992 page 3-30 Stock As (V) Solution: • Dissolve 1.5349 arsenic pentoxide, As205, in distilled water containing 4g NaOH. Dilute to 12; 1.00 ml = 1.00 mg As(V) Target concentration: 35 mg/L NO3 NaNO3 = 35 mg/L NO3 0.7294 = 47.98 mg/L NO3 1.534g of As. 05 in 1 L = 1 g1L As(V) to create solution with 1.5 mg1L As(V): Using NaNO3 to make a 35 mg/L NO3 solution: 1.534 mg of As205 in 12 = 1 mg/L AS(V) then: 2.301 mg of A3205 in 1 L = 1.5 mg/L As(V) 47.98 mg needed per L of solution for 8.5 L → (2.301 mg)(8.5) for 8.5 L of solution = 407.83 mg NaNOS = 19.5585 mg A3,05 for every 1,534 mg Asz Os > need 4 mg of NaOH (19.5585 mg As205) (4 mg 1.534 mg As205) (4 mg NaOH) = 51 mg NaOH

Supplementals - Water Contamination

Supplementals: Pounds needed for treatment

Activated Alumina	
Required	
Nitrate:	Arsonic;
X/M = Kr(r Vn = q	9 11
C:=35mg/L	Ci=1.5my/L
$C_{f} = .1 mg/L$	Cf = .01 my/L
¥=12 contaminated HaO	H=12 contaminated HaO
M=?	M=?
X = (35mg/L 1mg/L)(11)=34.9	Mg X = (1.5 mg/L0 lorg/L)(1L) = 1.49 mg
K= 0426(mg/g)(2/mg)	K= 10325 (mg/g) (1/mg)
*=-446	K= 41 (unitless) - 1, 214 algo
1466	4
q = 042(12/3) (1/2/3) . 1/20/2)	9=10325(9/g)(1/mg)(01/9/L)
= . 01525.5. mg/g	=.016364 mg/g =
0	00
X/M=q	X/M=q
M = X/q = 34.9 mg/0628 5-3/g	M= x/g=(1.49 mg/g) (.016364 mg/g)
M= 2.287799	M=.091053g
- uno proig	Jioung

Supplementals: Cost of Implementation

- Average Arizona resident uses 100 gallons of water per day (gpd) [9]
 - Reduced average to 60 gpd
- Community of 10,000 people requires 600,000 gpd
- Assuming there is a pre-existing drinking water treatment plant
- Arsenic removal: 455.93 lbs of activated alumina at \$674.77
- Nitrate removal: 11,455.52 lbs of activated alumina at \$16,954.17
- Annual cost of \$35,257.88
 - Purchase twice the required amount so the system can be run and material can be regenerated simultaneously