

SK Geotechnical Company

Landfill Liner

Team Members: Ali Alrashed, Nayf Alotaibi, Joe Atkinson, Xiaoyi Tan Date: 9 December 2016

Acknowledgments

Dr. Wilbert Odem The grading instructor

Mr. Matthew Morales client

Cinder Lake Landfill materials provider

Mr. Gerjen Slim. The technical advisor

Ali Alrashed

Introduction

 Project Purpose: Create a liner for Cinder Lake Landfill, utilizing waste materials entering the waste stream, and meets the 40 CFR criteria

Project Location:

Approximately 12 miles Northeast of Flagstaff on Highway 89

 Landfill liner: Municipal landfill liner. 40 CFR, 258 [2]

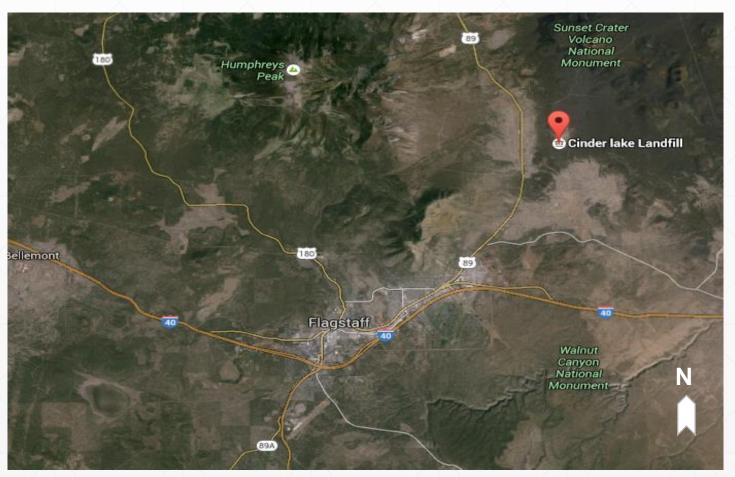


Figure 1: Cinder Lake Landfill Site Location [3]

Introduction

- Criteria:
- 1. Referring to 40 CFR, section 258, the permeability of the liner should be less than or equal 1×10^{-7} cm/s
- 2. Cost effective
- 3. Withstand shear strength

Project Schedule

Table 1: Project Schedule

Task 1: Health and Safety Protocols	Begin data	End data
1.1 Safety protocol for Fly Ash	1/21/16	3/1/16
1.2 Safety protocol for PPS	1/21/16	3/1/16
1.3 Safety protocol for Polymers	1/21/16	3/1/16
1.4 Personal Safety	1/21/16	3/1/16
Task 2: Material Preparation	Begin data	End data
2.1 PPS Preparation	3/2/16	11/7/16
2.2 Fly Ash Preparation	3/2/16	11/7/16
2.3 Bentonite Preparation	3/2/16	11/7/16
2.4 Lime Preparation	3/2/16	11/7/16
Task 3: Material Testing	Begin data	End data
3.1 Sieve Analysis	3/2/16	3/10/16
3.2 Compaction Tests	3/11/16	10/31/16
3.3 Permeability Tests	3/20/16	10/31/16

Project Schedule

Table 1: Project Schedule

Task 4: Data Analysis	Begin data	End data
4.1 Sieve Analysis Results	3/11/16	3/15/16
4.2 Compaction Tests Results	3/16/16	11/30/16
4.3 Permeability Tests Results	3/26/16	11/30/16
Task 5: Project Management	Begin data	End data
5.1 Team Meetings	9/1/16	12/4/16
5.2 TA Meetings	9/1/16	12/4/16
5.3 Website	4/1/16	12/6/16
5.4 50% Report	9/1/16	10/15/16
5.5 Final Report	10/17/16	12/6/16
5.6 Final Presentation	10/17/16	12/6/16

Previously Used Materials

Table 2: Best results obtainedfrom mixing old materials.

Lime: Not cost effective.	Mixture (Percentage by Weight)	Hydraulic Conductivity (cm/s)
Soil: Increases hydraulic conductivity.		
Polymers: Increases hydraulic conductivity.	50% PPS, 50% Fly ash (Class F)	4.59×10^{-5}
• Paper Millings (PPS) #4: Non-uniform compaction results.	47% PPS, 47% Soil, and 4.8% Fly ash (class F), 1.2% Lime.	1.2×10^{-4}
	50% PPS, 49% Fly ash (Class F), and 1% Polymers.	4.59×10^{-5}
	95% PPS, 5% Polymers.	5.71×10^{-6}

Previously Used Materials

- Burnt PPS: Takes long time for preparation, and classified as silty sand.
- Fly Ash (Class F): Classified as poorly graded sand with silt.

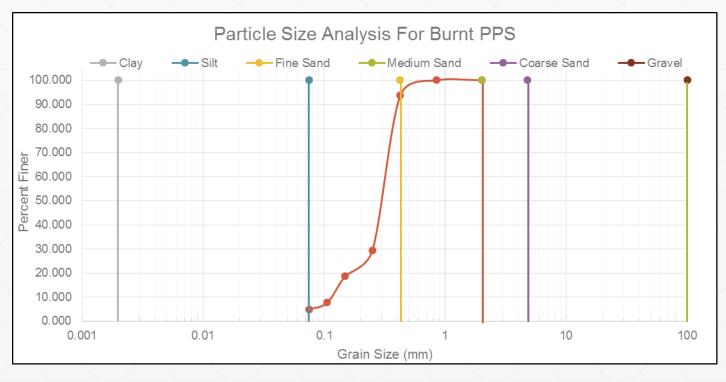
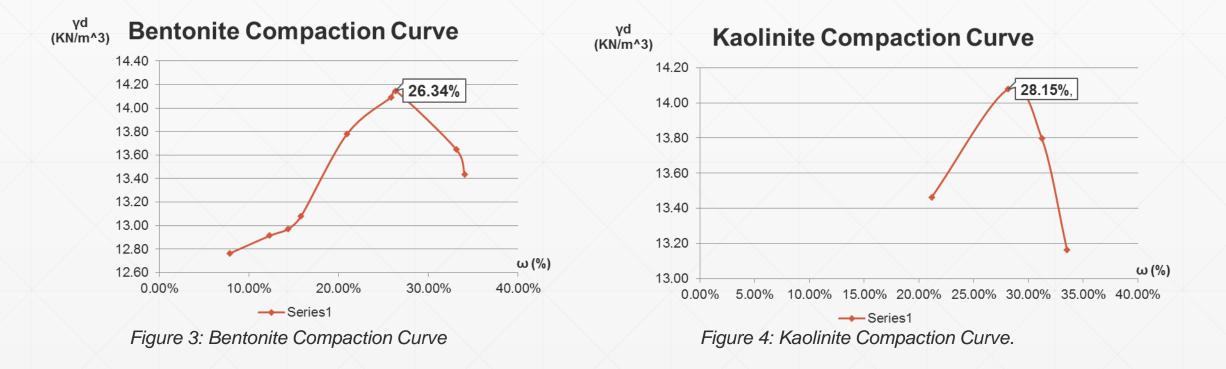



Figure 2: Particle Size Distribution for Burnt PPS

Comparison Between Bentonite and Kaolinite Compaction Results

Kaolinite: Uses more water than Bentonite

Final Selected Materials

Figure 5: PPS # 3/8"

Figure 6: Fly Ash (Class C)

Figure 7: Bentonite

BENTONIT

Task 2: Materials Preparation

- 2.1 PPS Preparation
- 2.2 Bentonite Preparation
- 2.3 Fly Ash (Class C) Preparation
- Preparation is done by drying the PPS in the oven, pass the PPS through 3/8" sieve, and mixing all materials using the prepared mixing plan

Task 3: Materials Testing, and Task 4: Data Analysis

 Compaction Tests: to find the optimum moisture content for the following materials: ASTM, D-698

3.2.1 PPS, # 3/8"

3.2.2 Bentonite

3.2.3 Fly Ash (Class C)

Compaction Tests Results

PPS, # 3/8": 44.96% (results provided by previous team)

Bentonite: 26.34%

Fly Ash (Class C): 20% [1]

Task 3: Materials Testing, and Task 4: Data Analysis

- Permeability Tests
- 3.3.1 Consolidation Tests
- 3.3.2 Permeability Tests
- Purpose

Consolidation Test: To prepare samples for the Permeability Tests

Permeability Test: To measure the hydraulic conductivity of the mixtures

Equation used to calculate permeability:

 $K = \frac{a \cdot * L}{A \cdot * t} \cdot * \ln(\frac{h_1}{h_2})$, where:

K: Hydraulic Conductivity (cm/s)

a: Area of drainage hole (cm^2)

- L: Length of sample (cm)
- A: Area of sample (cm^2)

t: Time (s)

 h_1 : Start height (cm)

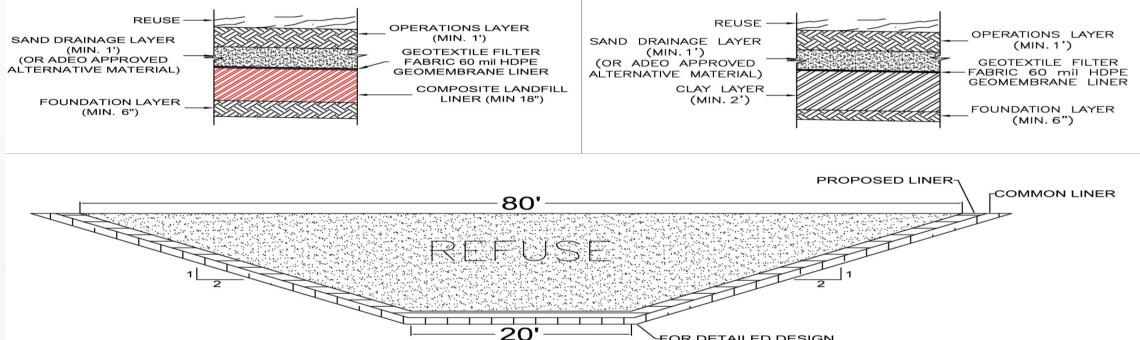
 h_2 : End height (cm)

Permeability Test Process

Ali Alrashed

Permeability Test Results

Table 3: Permeability test results


Mixture (Percentage by Weight)	Hydraulic Conductivity (cm/s)
80% PPS, 20% Bentonite	3.27 x 10 ⁻⁸
90% PPS, 10% Bentonite	5.9 x 10 ⁻⁸
85% PPS, 15% Bentonite	2.59 x 10 ⁻⁸
80% PPS, 15% Bentonite, 5% Fly Ash (Class C)	4.77 x 10 ⁻⁸

- Total sample weight is 4.5 kg
- Desired hydraulic conductivity is less than or equal to 1 x 10⁻⁷ cm/s

Final Test Cell Design

PROPOSED LINER

COMMON LINER

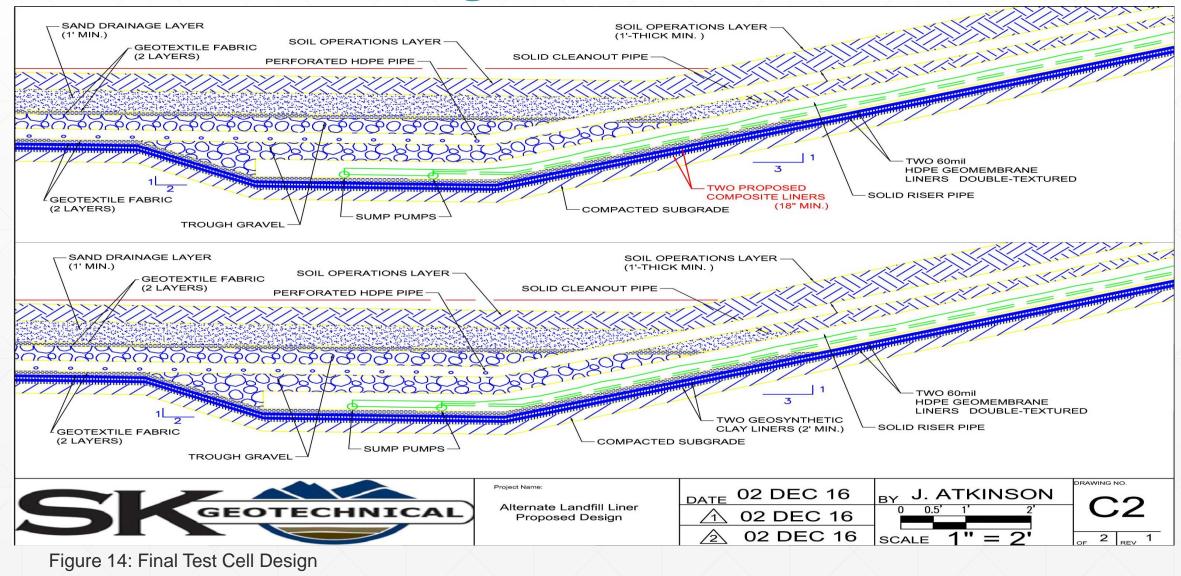

FOR DETAILED DESIGN

Figure 13: Final Test Cell Design

Joe Atkinson

Final Test Cell Design

Joe Atkinson

Total Required Hours

Table 4: Proposed Hours

Task	DENG	RENG	LAB	INT
1.0 Health and Safety Protocols.	-	-	12	-
2.0 Material Preparation.	-	2	40	-
3.0 Material Testing.	-	3	300	-
4.0 Data Analysis.	30	-	60	-
5.0 Project Management	10	60	30	40
Subtotal	40	77	430	40
Total Hours + 80 ho	ours resea	arching =	667 ho	ours

Table 5: Actual Hours

Task	DENG	RENG	LAB	INT
1.0 Health and Safety Protocols.	-	-	12	-
2.0 Material Preparation.	-	2	100	-
3.0 Material Testing.	-	2	400	
4.0 Data Analysis.	15	-	35	-
5.0 Project Management	5	35	-	50
Subtotal	20	39	547	50
Total Hours = 646 + 10 hours researching = 656 hours				

Engineering Services Cost

Table 6: Engineering Services Cost

Position	Classification	Hours	Rate, \$/hr	Cost
Development Engineer	DENG	20	165	\$ 3300.00
Research Engineer	RENG	39	90	\$ 3500.00
Lab Assistant	LAB	547	60	\$ 32,900.00
Engineering Intern	INT	50	30	\$ 1500.00
Total	personnel expenses			\$ 41,200.00
Lab rental		240 days	\$30/day	\$ 7,200.00
Total Staffing Cost		\$ 48,400	0.00	

Project Implementation Cost

Table 7: Material Costs

Required Materials	Material Cost per 2 Tons		Material	Required Quantity	Total Cost
	+ Shipping		80%PPS, 20%Bentonite		\$14,650.00
Bentonite	\$2,240.00				
		90%PPS, 10%Bentonite			\$7,330.00
Fly Ash (Class C)	\$1,320.00		85%PPS, 15%Bentonite	65.4	\$10,990.00
Paper Pulp Sludge	Free		80%PPS, 15% Bentonite, 5% Fly Ash (Class C)	tons	\$13,150.00
(PPS)	PPS)		100% Bentonite		\$72,240.00

Table 8: Total Liner Cost per Test Cell

Impacts

Table 8: Impacts of Project.

Impact Type	Positive	Negative
Environment	 Reduces the amount of clay required to construct the liner Protect groundwater by decreasing the infiltration of leachate 	 Influence the normal life of wildlife More waste entering the landfill
Social	Reusing waste materials will reduce the amount of waste in the landfill	Produce foul odors and noise during construction
Economic	 Will save the landfill money over time. Might decrease the waste disposal cost 	Need huge initial investment from the City of Flagstaff or the Federal Government

References

[1] City of Flagstaff. "Arizona Department of Air Quality," April 13th, 2006. [Online]. Available: https://www.azdeq.gov/environ/air/permits/title_v/36194/deqfinal.pdf. [Accessed: 2 October, 2016]
[2] Cinder Lake Landfill. "Technical Review and Evaluation of Application," [Online]. Available: https://www.azdeq.gov/environ/air/permits/title_v/MSWL/COFFPW/36194/deqsupport.pdf. [Accessed: 2 October, 2016].

[3] Google Maps. "Cinder Lake Landfill", [Online]. Available:

https://www.google.com/maps?biw=808&bih=630&q=cinder+lake+landfill&bav=on.2,or.&bvm=bv.114195 076,d.eWE&sns=1&um=1&ie=UTF-

8&sa=X&sqi=2&ved=0ahUKEwi7rMyJm4DLAhXBLyYKHSIFDPQQ_AUIBigB. [Accessed: 2 October, 2016].


[4] "Closure Criteria," U.S Government Publishing Office, 2016, [Online]. Available:

http://www.ecfr.gov/cgi-bin/text-

idx?SID=b67b217c1e8767c774a3aa0ff9bff80c&mc=true&node=se40.25.258_160&rgn=div8. [Accessed: 20 April 2016].

[5] Modified Proctor Compaction Test, ASTM D1557

[6] Permiability Test, ASTM D5084

