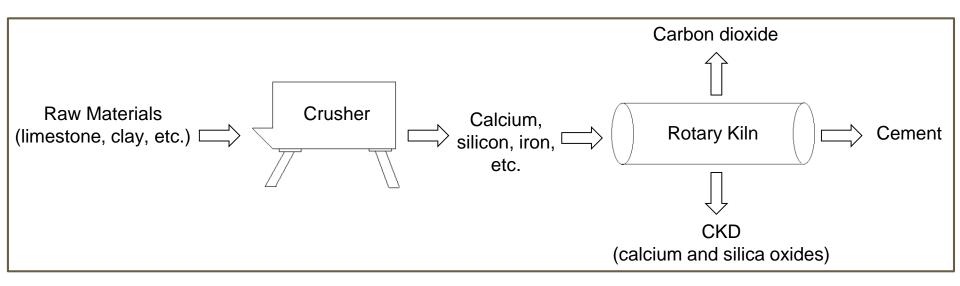


College of Engineering, Forestry, and Natural Sciences


Carbonated Cement Kiln Dust (CCKD) as a partial cement substitute

CENE 486C Senior Design Course Spring 2017 Ali Altameemi, Aide Robles, Felicia Curry, Mohamed Jatit [1]

Cement Production

$$CKD + CO_2 = CCKD$$
(calcium and silica carbonates)

Figure 1: Cement Production

Curry 2

Purpose

- Investigate the plausibility of Carbonated Cement Kiln Dust (CCKD) as a partial cement substitute and its effect on the strength and durability of concrete to sequester carbon dioxide.
- Develop, execute and analyze an experiment to test the use of Cement Kiln Dust (CKD) and CCKD as partial cement substitutes in different concrete mixes.

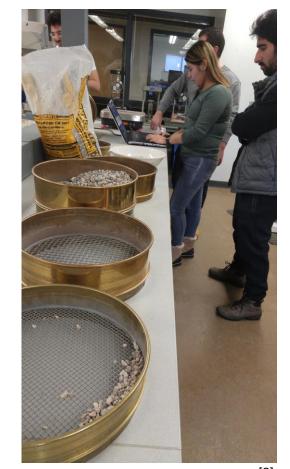
Stakeholders

• Alarick Reiboldt (Client & Technical Advisor)

• The Cement Industry

• Global Environment

Experimental Plan for Testing


 Table 1: Experimental Design Plan

	% of Cement Reduction	Water to Cement Ratio	# of Samples
Control (4000 psi)	None	0.44	3
CKD Substitution	5	0.46	3
	10	0.49	3
	15	0.52	3
CCKD Substitution	5	0.46	3
	10	0.49	3
	15	0.52	3
Cement reduction	5	0.46	3
	10	0.49	3
	15	0.52	3

Altameemi 5

Concrete Mix Design

- Sieve analysis per ASTM C136
 - Largest diameter aggregate (0.5 in)
 - Weight of water
- Water to cement ratio (0.44)
- Proportion calculations using 1:2:3 ratio
 (Cement:Sand:Gravel) per ASTM C150

Concrete Mixing and Sample Prep

- Concrete mixer used for mixing strength test samples.
- 4" by 8" cylinder samples.
- Slump test conducted on all batches (0-1 inch)

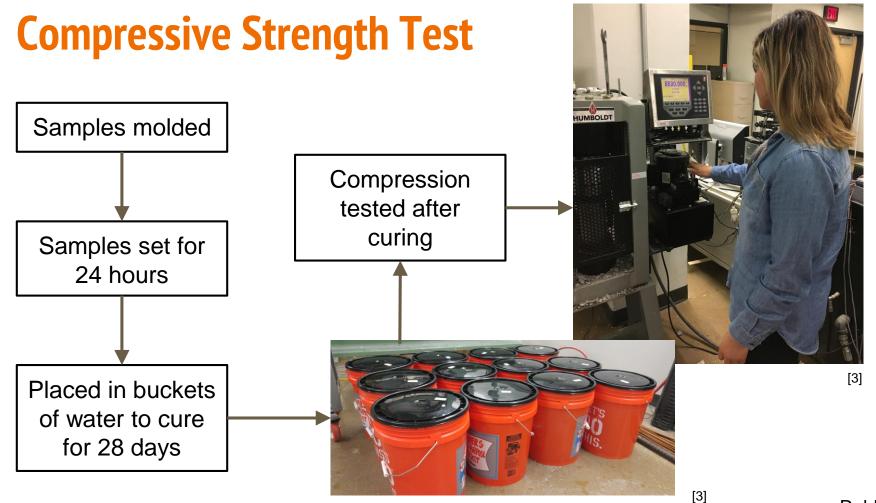
[3]

[3]

Altameemi 7

Concrete Mixing and Sample Prep

- Durability samples mixed by hand.
- 2" x 2" x 2" cubes.


[3]

Altameemi 8

Strength and Durability Testing

- Compressive strength test per ASTM C39-16
- Freeze-Thaw test per ASTM C666/C666M-15
 - Limited space at NAU
 - \circ Contacted other sources
- Water Absorption test per ASTM 1585-13
 - Insufficient oven capacity
- Alkali-Silica Reactivity (ASR) test per ASTM 1567-13

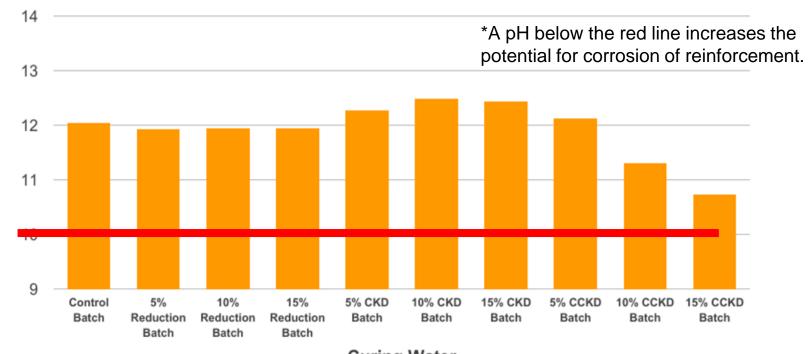
Robles 10

Strength Test Results

Table 2: Strength Test Results

Mix	Avg. Strength (psi)	Mix	Avg. Strength (psi)	Mix	Avg. Strength (psi)
Control	4122	5% CCKD	3444	5% CKD	1575
5% Red.	4965	10% CCKD	3953	10% CKD	176
10% Red.	3501	15% CCKD	3587	15% CKD	0
15% Red.	3868				

Compressive Strength Test Samples (CKD and Control)



[3]

Strength Test Results (pH)

Curing Water

Figure 2: pH Of Curing Water For Different Mixes

Нd

Robles 13

Strength Test Results

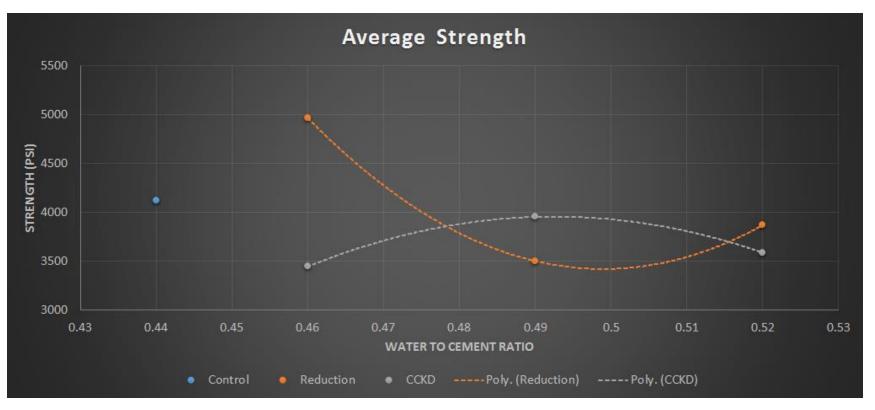
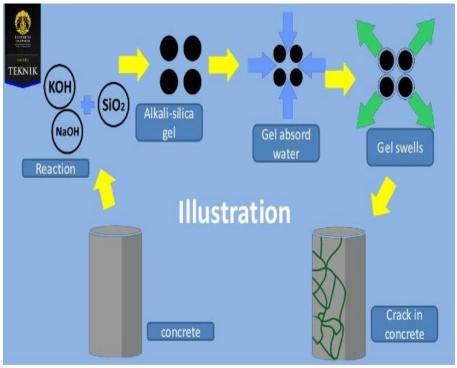
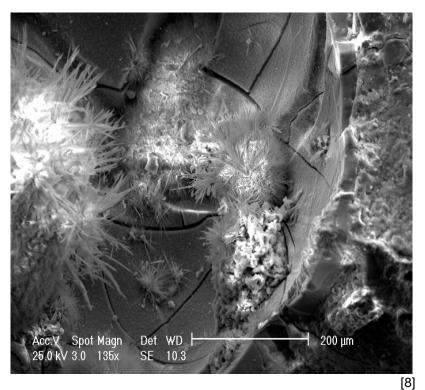




Figure 3: Average Strength

Alkali-Silica Reactivity Test

Alkali-Silica Reactivity Test

- Molded
- Zero measurement
- Submerged in water for 24 hours
- Submerged in Sodium Hydroxide solution for 24 hours
- Subsequent measurements taken

[3]

Alkali-Silica Reactivity Test Results by Volume



Figure 4: ASR Test Results by Volume

Alkali-Silica Reactivity Test Results by Volume

Figure 5: ASR Test Results by Volume

Alkali-Silica Reactivity Test Results by Volume

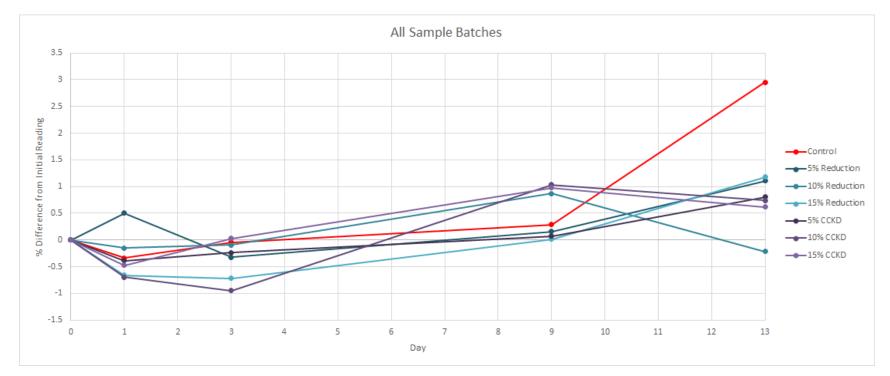


Figure 6: ASR Test Results by Volume

Schedule

 Table 3: Schedule

1.0 Design of Concrete Mixes	Scheduled End Date	Actual End Date
1.1 Concrete Mixing	02/24/17	03/25/17
1.2 Sample Preparation	02/24/17	03/25/17
2.0 Testing		
2.1 Strength Testing	03/24/17	03/24/17
2.2 Durability Testing	03/24/17	04/14/17
3.0 Data Analysis	03/31/17	04/23/17

Schedule

4.0 Project Management	Scheduled End Date	Actual/Projected End Date:
4.1 Communication	05/02/17	05/02/17
4.2 Deliverables	05/02/17	05/02/17
4.2.1 50% Design Report	03/02/17	03/02/17
4.2.2 Reflection Document	04/06/17	04/06/17
4.2.3 Final Report	05/02/17	05/02/17
4.2.4 Final Presentation	04/26/17	04/26/17
4.2.5 Website	05/02/17	05/02/17

Cost of Engineering Services

Table 4: Cost of Engineering Services

Classification	Rate, \$/hr	Projected Hours	Projected Cost	Actual Hours	Actual Cost
SR ENG	\$207.00	68	\$14,076	65.5	\$13,559
2 ENG	\$120.00	402	\$48,240	309.5	\$37,140
LAB TE	\$78.00	95	\$7,410	60.5	\$4,719
INT	\$35.00	95	\$3,325	80.5	\$2,818
Total personnel		660	\$73,051	516	\$58,235
Laboratory	\$100.00	61	\$6,100	97.5	\$9,750
TOTAL			\$79,151		\$67,985

Conclusion & Recommendation

• Conclusion

The use of CCKD does not significantly decrease the strength or durability of concrete and has the potential to increase strength for a specific range of water to cement ratios.

• Recommendation

Conduct strength testing with a higher number of replicates.

Perform an ASR test for 60 days and analyze using SEM.

Conduct more research as to why the CKD samples experienced such a large strength decrease.

Acknowledgements

- Professor Alarick Reiboldt: Technical Advisor
- Gerjen Slim: Lab Manager
- Dr. Robin Tuchscherer: Assistant Professor
- Dr. CHUN-HSING (Jun) HO: Assistant Professor

References

[1] "Malaysian Cement Production Increases." ITE Build & Interiors. Web. 28 Nov 2016.

[2] "Carbon Dioxide Chemistry – Round Table Discussion." EuCheMS: Chemistry Congress. Web. 29 Nov 2016.[3] Team Pictures.

[4] A. B. of Regents, "Reiboldt-Alarick - civil and environmental engineering - northern Arizona university," 2016. Web. 29 Nov 2016.

[5] Wester, H. "Planet Earth." Web. 29 Nov 2016.

[6] "CM-0100 Series Compression Machine for Cube Testing." Test Mark Industries. Web. 4 Dec 2016.

[7] Lesmana, "Alkali silica reactivity", *Slideshare.net*, 2017.Web. 23 Apr 2017.

[9] "Environmental," Geary County Health Department. Web. 23 Apr 2017.

[10] "Ventura College," Economics / Ventura College. Web. 23 Apr 2017.

[11] "Society," Thought Tandoor. Web. 23 Apr 2017.

[12] "Handshake on The Noun Project," The Noun Project. Web. 23 Apr 2017.

