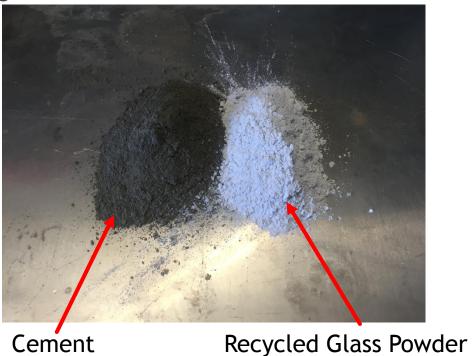
Conventional Concrete with Recycled Glass

FAB Concrete Mix & Design


Feiyue Wang; Senior Advisor, CENE StudentAhmad Ibrahim; Senior Advisor, CENE Student

Tyler W. Brumit; Senior Advisor, CENE Student

Project Goal

This project is to develop and test a unique concrete mix design utilizing recycled glass and document the results.

The concrete will consist of conventional materials and also include recycled glass.

Project Overview

- Research conventional concrete and review recycled glass additive
- Investigate and develop adequate concrete mix designs
- Check American Society for Testing and Materials (ASTM) standards

3

- Acquire necessary materials
- Create experimental matrix
- Revise experimental matrix
- Mixing and storing
- Testing and analysis

Recycled Glass Experimental Matrix

		Materia	ls Required per	Pour		
Mix Design	Cement (lb)	Recycled Glass Powder (lb)	Sand (lb)	Recycled Glass Coarse (lb)	Water (lb)	W/C ratio
1	19.87	0%	5.56	0%	6.95	0.35
2	17.88	10%	5.56	0%	6.95	0.35
3	15.89	20%	5.56	0%	6.95	0.35
4	13.91	30%	5.56	0%	6.95	0.35
5	19.87	0%	5.01	10%	6.95	0.35
6	19.87	0%	4.45	20%	6.95	0.35
7	19.87	0%	3.89	30%	6.95	0.35
8	20.86	10%	5.84	10%	6.95	0.35
9	20.86	10%	5.19	20%	6.95	0.35
10	20.86	10%	4.54	30%	6.95	0.35
11	18.54	20%	5.84	10%	6.95	0.35
12	18.54	20%	5.19	20%	6.95	0.35
13	18.54	20%	4.54	30%	6.95	0.35
		X				
14	16.22	30%	5.84	10%	6.95	0.35
15	16.22	30%	5.19	20%	6.95	0.35
16	16.22	30%	4.54	30%	6.95	0.35

Table 1 Experimental Matrix (Original)

Recycled Glass Experimental Matrix

	Materials Required per Pour					
Mix Design	Cement (lb)	Recycled Glass powder	Sand (lb)	Recycled Glass Coarse	Water (lb)	W/C Ratio
1	19.87	0%	5.56	0%	6.95	0.35
2	17.88	10%	5.56	0%	6.95	0.35
3	15.89	20%	5.56	0%	6.95	0.35
4	13.91	30%	5.56	0%	6.95	0.35
5	19.87	0%	5.01	10%	6.95	0.35
6	19.87	0%	4.45	20%	6.95	0.35
7	19.87	0%	3.89	30%	6.95	0.35

Table 2 Experimental Matrix (Final)

Admixtures

- Delvo Liquid Chemical Stabilizer
 - Increases strength, compressive and flexural
 - Improves workability, increases set time
- P900 Polymer Plasticizer
 - A mid-range water reducer, increases the strength of the concrete
 - Improves workability, increases set time
- Micro Air Liquid Chemical Surfactant
 - An air-entraining admixture, creates tiny air bubbles in concrete
 - Used to increase resistance of freeze-thaw cycle damage

Fig 3 Admixtures: Delvo (Top Left), P900 (Right) Micro Air (Bottom Left)

6

Slump Test

- The slump test shows how much the concrete settles or slumps when compacted in a metal inverted cone.
- Cone Measurements
 - 4" Top diameter
 - 8" Bottom diameter
 - 12" Height of cone
- ASTM C 143 Method followed

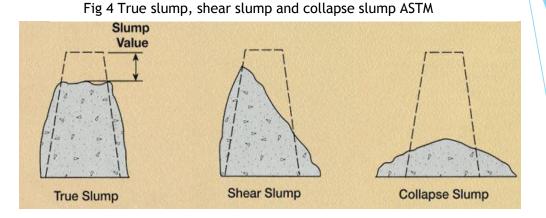


Fig 5 Post Slump Test

Slump Test Results

Slump		mp			E vree v		
Degree of workability	mm	in	Compacting Factor	Use of concrete considering slump	Exper		
Vary law	0-25	0-1	0.78	Licad in road making	Cor		
Very low	0-25	0-1	0.78	Used in road making	10% glass		
Low	Low25-501-20.85Used for foundations with light reinforcement		v 25-50 1-2 0.85		0.85	3	20% glass
			Termorcement	30% glass			
					Manually compacted flat slabs using crushed aggregates. Normal reinforced	10% glas	
Medium 50-100	concrete ma	concrete manually compacted and heavily reinforced sections.	20% glas				
					30% glas		
High	100-175	4-7	0.95	For sections with congested reinforcement.	Table 4 Slump Re		

Slump (in) eriment ontrol 9 ss powder 7 ss powder 4.25 ss powder 2.5 ass coarse 9 ass coarse 9 ass coarse 9 Results

Table 3 Slump Test Application <u>Civil Engg. Dictionary</u>

The Process: Material Preparation

Fig 6 Clean Equipment/Materials

Fig 7 Sieve Aggregate

Fig 8 Weigh and Measure Concrete Constituents

9

The Process: Mix and Pour

All mixing and storage methods are all based on standards from ASTM C192

Fig 9 1.25 cu ft Mixer

Fig 10 Poured Concrete

10

Mold, Store and Cure

Fig 11 Concrete placed in mold

Fig 12 Hardening before removing mold

Fig 13 Samples curing in water

11

Compression Test

Fig 14 Compression Test Tinius Olsen

Fig 15 Concrete after Compression Test

The Calculation Formula

The compression testing machine shows force in pounds, to change the force from pounds (lbs) to pounds per sq in. (psi) Equation 1 is used.

compression strength $=\frac{F}{A}$

Equation 1 Compression (psi)

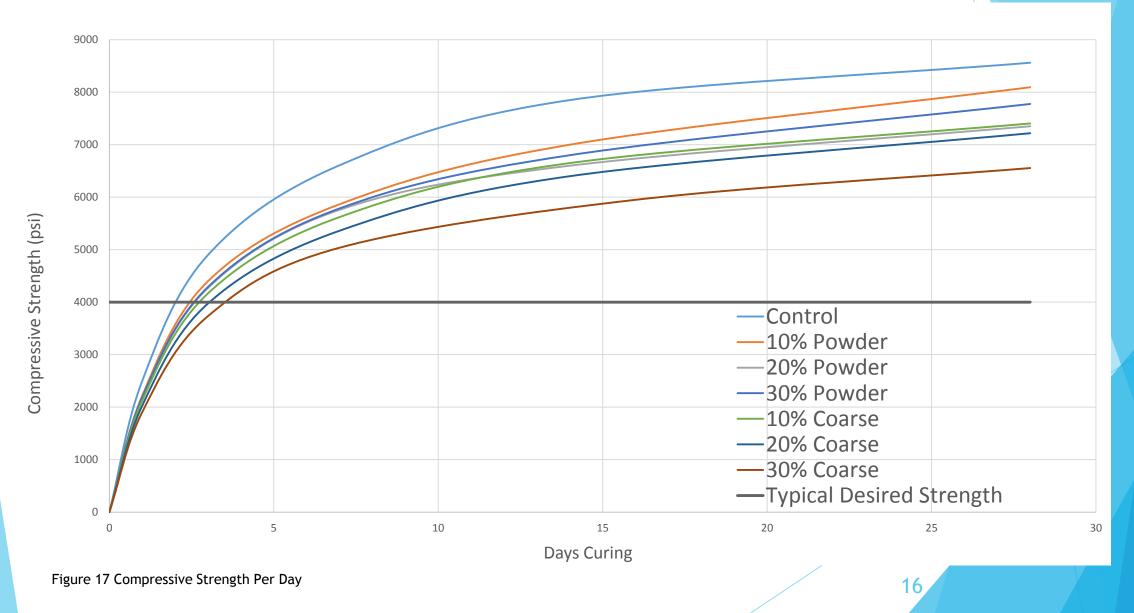
F: Recorded force from compression testing machine

A: Cross-sectional area of specimen

Compression Test Results

Experiment Number	Experiment Detail	7 Day Average (psi)	28 Day Average (psi)	Standard Deviation (28 Day)
1	Control (0% glass)	6608	8557	503
2	10% glass powder	5865	8090	530
3	20% glass powder	5759	7348	1115
4	30% glass powder	5786	7772	603
5	10% glass coarse	5621	7401	239
6	20% glass coarse	5361	7215	166
7	30% glass coarse	5037	6552	256

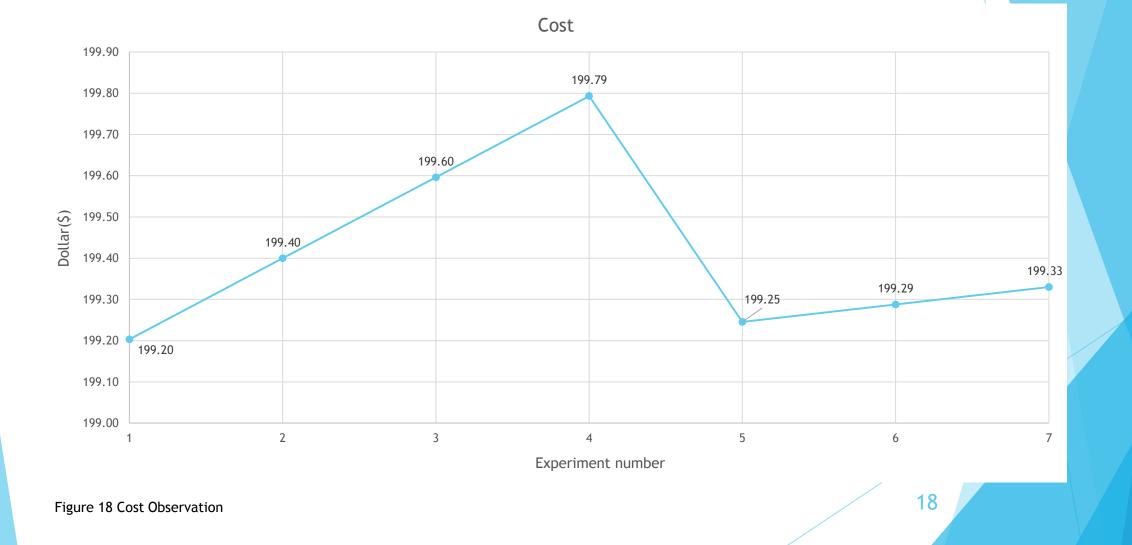
Table 5 Compression Test Results *averages based off of three concrete cylinders per experiment


Compressive Strength Comparison

Strength(psi) 0009 0000 7 days result 28 days result **Experiment Number**

Strength of Each Design

Figure 16 Compressive Strength Comparison


Compressive Strength per Curing Day

Materials Cost Detail

	Total Cost of Materials	
Sieve Machine/ Sieves	Buy	\$700
Mixer	Buy	\$170
Compressive Strength Machine	60\$ /hr. (Rent)	\$480
Molds	2.25\$ /each mold	\$94.5
Cement	0.096\$ /lb.	\$12.21
Aggregate	0.058\$ /lb.	\$11.43
Sand	0.1\$ /lb.	\$3.56
Recycled Glass Powder	0.195\$ /lb.	\$2.32
Recycled Glass Coarse	0.176\$ /lb.	\$0.59
Total		\$1474.61
Table 6 Materials Cost		17

Materials Cost Observation

Hours Log

	Total Time Spent Worki	ing						
	Tel		Hours					
Major Task	Task	SENG	ENG	LAB	INT	AA		
	1.1 Pavement	3	3	3	3	3		
1.0 Research	1.2 Concrete Design	3	6	6	3	3		
1.0 Research	1.3 Recycle glass additive	3	3	6	3	3		
	1.4 Standards and Codes	3	3	0	6	6		
	2.1 Typical Concrete Materials	3	0	0	6	0		
2.0 Acquire Materials	2.2 Recycled Glass Powder	0	0	0	0	0		
-	2.3 Concrete Support Materials	0	0	0	0	0		
	3.1 Experimental Design	0	0	11	0	0		
2.0 Design and Experimentation	3.2 Prepare for mixing	0	0	20	0	0		
3.0 Design and Experimentation	3.3 Concrete sample pouring	0	0	21	0	0		
	3.4 Testing and Analysis	0	0	12	11	0		
	4.1 Project Schedule	3	8	0	0	0		
	4.2 50% Design	8	10	3	3	9		
4.0 Project Management	4.3 Final Design Report	15	20	5	15	20		
	4.4 Final Presentation	6	6	5	6	5		
	4.5 Website	4	8	0	6	14		
	Hours per Worker	51	67	92	62	63		
	Total Hours			335				

Total Cost

Total Cost of Project					
Type of Worker	SENG	ENG	LAB	INT	AA
Hours per Worker	39	55	88	49	48
Rate\$/hour	148	75	57	27	50
Cost for position	5772	4125	5016	1323	2400
Total Labor Cost	\$18,635				
Total Equipment Cost	\$1,475				
Total Project Price	\$20,110				

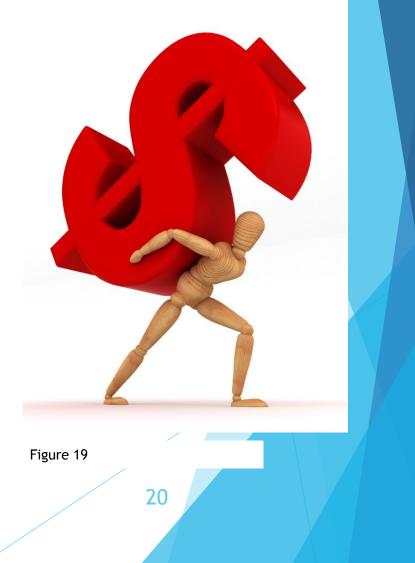


Table 8 Total Project Cost

Recommendations

- Create samples to be broken periodically through the 28 day curing process
- Collect data on how recycled glass concrete reacts in a long term analyses
- Continue research and produce the designs which have not been done yet
- Develop relationship to the amount of powder and coarse glass to strength

Figure 20 Concrete Cylinder

Conclusion

- Glass aggregate is an effective alternative to traditional mixing materials
- Recycled glass concrete can have a compression strength over 4000 psi, a traditional number used in calculations
- Recycled glass powder concrete cost slightly higher than conventional concrete
- Research needs to continue to develop concrete that can be used in structural applications

Questions?

ASTM Standards

ASTM STAN	NDARDS
C 31-00	Standard Practice for Making and Curing Concrete Test Specimens in the Field
C 33-01	Standard Specification for Concrete Aggregates
C 39-01	Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
C 125-00	Standard Terminology Relating to Concrete and Concrete Aggregates
C 136-01	Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
C 143-00	Standard Test Method for Slump of Hydraulic Cement Concrete
C 150-00	Standard Specification for Portland Cement
C 172-99	Standard Practice for Sampling Freshly Mixed Concrete
C 192-00	Standards for Mixing and Storing

Table 9 Considered ASTM Standards