

# PA/SI RED CLOUD MINE

*Prepared for* Eric Zielske, PE, Environmental Engineer, Bureau of Land Management

> By Dani Halloran Kelsey Hammond Haley Michael Taylor Oster Robert Reny

May10th, 2016

# TABLE OF CONTENTS

| 1.0 PROJECT DESCRIPTION                                                           |                |
|-----------------------------------------------------------------------------------|----------------|
| 1.1 SITE LOCATION                                                                 | 7              |
| 1.2 Project Purpose                                                               |                |
| 2.0 SAMPLING                                                                      |                |
| 3.0 ANALYSES                                                                      |                |
| 3.1 Methods                                                                       |                |
| 3.2 SAMPLE PREPARATION                                                            |                |
| 3.3 TESTING                                                                       |                |
| 3.4 XRF RESULTS                                                                   |                |
| 3.5 XRF/AA CORRELATION                                                            |                |
| 4.0 RISK ASSESSMENT                                                               |                |
| 4.1 HUMAN HEALTH                                                                  |                |
| 4.1.1 Contaminants of Concern (COC's)                                             |                |
| 4.1.2 Toxicity Assessment and Exposure Scenarios                                  |                |
| 4.1.3 Blood Lead Level Models                                                     |                |
| 4.2 Ecological Risk Assessment                                                    |                |
| 4.2.1 Species of Concern                                                          |                |
| 4.2.2 Toxicity Assessment                                                         |                |
| 4.2.3 Qualitative Assessment                                                      |                |
| 5.0 CONCLUSION AND RECOMMENDATIONS                                                | 31             |
|                                                                                   |                |
| 6.0 REFERENCES                                                                    |                |
| APPENDIX A: WORK PLAN/ SAMPLING AND ANALYSIS PLAN (SAP)/ HE<br>SAFTEY PLAN (HASP) | ALTH AND<br>33 |
| WORK PLAN                                                                         |                |
| 1.0 INTRODUCTION                                                                  |                |
| 2.0 PROJECT MANAGEMENT                                                            |                |
| 2.1 PROJECT MANAGEMENT APPROACH                                                   |                |
| 2.2 PROJECT PROCEDURES                                                            |                |
| 2.3 QUALITY MANAGEMENT                                                            |                |
| 2.4 SUB-CONTRACT MANAGEMENT                                                       |                |
| 3.0 SITE BACKGROUND INFORMATION                                                   |                |
| 3.1 SITE LOCATION                                                                 |                |
| 3.2 SITE DESCRIPTION                                                              |                |
| 3.3 PREVIOUS OPERATIONS AND INVESTIGATION                                         |                |
| 4.0 INVESTIGATIVE APPROACH                                                        |                |
| 4.1 SITE INVESTIGATION OBJECTIVES                                                 |                |
| 4.2 SITE INVESTIGATION GENERAL APPROACH                                           |                |
| 5.0 FIELD INVESTIGATION MATHODS AND PROCEDURES                                    |                |
| 6.0 INVESTIGATIVE-DERIVED WASTE MANAGEMENT                                        |                |
| 7.0 SAMPLE COLLECTION PROCEDURES AND ANAYSIS                                      |                |
| 7.1 SAMPLE CONTAINERS AND STORAGE                                                 |                |
| 7.2 SAMPLE DOCUMENTATION AND SHIPMENT                                             |                |
| 7.3 FIELD QUALITY ASSURANCE AND QUALITY CONTROL                                   |                |

| 8.0 DEVIATIONS FROM THE WORK PLAN                                                                                            |                                              |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 9.0 PA/SI REPORTING                                                                                                          |                                              |
| 10.0 REFERENCES                                                                                                              |                                              |
| SAMPLING AND ANALYSIS PLAN                                                                                                   |                                              |
| 1.0 INTRODUCTION                                                                                                             |                                              |
| 2.0 SAMPLING RATIONAL                                                                                                        |                                              |
| 3.0 REQUEST FOR ANALYSIS                                                                                                     | 45<br>46<br>46<br>46<br>46<br>46<br>46<br>47 |
| <ul> <li>4.0 FIELD METHODS AND PROCEDURES</li></ul>                                                                          | 47<br>47<br>47<br>47<br>48<br>48<br>48<br>48 |
| <ul> <li>4.4 FLORA AND FAUNA DATA COLLECTION</li> <li>4.5 DECONTAMINATION</li></ul>                                          |                                              |
| 6.0 SAMPLE CONTAINERS, PRESERVATION, AND SHIPMENT<br>6.1 Packaging and Shipping                                              | <b> 50</b>                                   |
| <ul> <li>7.0 SAMPLE DOCUMENTATION AND SHIPMENT</li> <li>7.1 FIELD NOTES</li></ul>                                            | <b></b>                                      |
| <ul> <li>8.0 QUALITY CONTROL.</li> <li>8.1 FIELD QUALITY CONTROL.</li> <li>8.2 LABORATORY ANALYSIS QUALITY CONTROL</li></ul> | <b>54</b><br>                                |
| HEALTH AND SAFETY PLAN                                                                                                       |                                              |
| 1.0 INTRODUCTION                                                                                                             |                                              |
| 2.0 DIRECTIONS TO HOSPITAL FROM RED CLOUD MINE                                                                               |                                              |
| 3.0 SITE SUPERVISOR                                                                                                          |                                              |
| 4.0 HAZARD ANALYSIS                                                                                                          |                                              |
| 5.0 TRAINING PROGRAM                                                                                                         |                                              |

| 6.0 CONTAMINATION CONTROL                                             |  |
|-----------------------------------------------------------------------|--|
| 7.0 EMERGENCY RESPONSE PLAN                                           |  |
| 8.0 REFERENCES                                                        |  |
| APPENDIX B: RAW XRF DATA                                              |  |
| APPENDIX C: FIELD NOTES AND PHOTO LOG                                 |  |
| APPENDIX D: LEAD MODEL DATA                                           |  |
| APPENDIX E: LEAD CONCENTRATION FREQUENCY CHART                        |  |
| APPENDIX F: LEAD 50 <sup>TH</sup> AND 95 <sup>TH</sup> CONCENTRATIONS |  |

# LIST OF FIGURES

| FIGURE 1.1: LOCATION OF RED CLOUD MINE                                                   | 7    |
|------------------------------------------------------------------------------------------|------|
| FIGURE 1.2: RED CLOUD MINE IS ASSOCIATION TO QUARTZITE AND YUMA ARIZONA (USGS)           |      |
| FIGURE 1.3: MAP OF BLACK ROCK WASH                                                       | 9    |
| FIGURE 2.1: GIS MAP DISPLAYING SAMPLE COLLECTION LOCATIONS, DATA LABELS AND LOCATION O   | θF   |
| OVERBURDEN AND ACTUAL TAILINGS PILE                                                      | 11   |
| FIGURE 2.2: GIS REPRESENTATION OF THE GRID WHERE BLACK ROCK WASH SAMPLES WERE COLLEC     | TED  |
| INCLUDING SAMPLE NUMBERS                                                                 |      |
| FIGURE 2.3: GIS REPRESENTATION OF THE COLLECTED HOT SPOTS NORTH OF BLACK ROCK WASH       | 13   |
| FIGURE 2.4: GIS IMAGE DISPLAYING A CLOSE UP OF THE ACTUAL TAILINGS PILE AND THE OVERBURD | EN   |
| PILE. DIRECTLY NORTH OF THE OVERBURDEN PILE IS RED CLOUD MINE.                           | 14   |
| FIGURE 3.1 SIEVE STACK IN SHAKER.                                                        | 15   |
| FIGURE 3.2 DECONTAMINATION OF SIEVES.                                                    | 15   |
| FIGURE 3.3: ATOMIC ABSORPTION ACID DIGESTION.                                            | 15   |
| FIGURE 3.4: 3x3 GRID ON SAMPLE BAGS FOR XRF.                                             | 16   |
| FIGURE 3.5: USING THE XRF.                                                               | 16   |
| FIGURE 3.6: GRADIENT COLOR SCALE REPRESENTATION OF LEAD CONCENTRATIONS LEVELS IN BLAC    | Ж    |
| ROCK WASH                                                                                | 19   |
| FIGURE 3.7: GRADIENT COLOR SCALE REPRESENTATION OF CONCENTRATIONS OF LEAD IN THE HOTSP   | ют   |
| SAMPLES                                                                                  |      |
| FIGURE 3.8: CORRELATION BETWEEN THE XRF RESULTS AND THE AA RESULTS                       |      |
| FIGURE 4.1: EXPOSURE PATHWAYS                                                            | 27   |
| FIGURE A1.3.1: LOCATION OF RED CLOUD MINE IN LA PAZ COUNTY, AZ. (USGS)                   |      |
| FIGURE A1.3.2: RED CLOUD MINE IS ASSOCIATION TO QUARTZITE AND YUMA ARIZONA (USGS)        |      |
| FIGURE A1.3.3: MAP OF BLACK ROCK WASH FEEDING INTO THE COLORADO RIVER AND RED CLOUD      | MIN. |
|                                                                                          |      |
| FIGURE A2.2.1 MAP OF GRID SAMPLING LOCATIONS                                             | 45   |
| FIGURE A2.7.1 SAMPLE LABEL SOUTHWEST SITES CONSULTING                                    | 53   |
| FIGURE A2.7.2: CHAIN OF CUSTODY RECORD                                                   | 54   |
| FIGURE A3.2.1: DIRECTIONS FROM RED CLOUD MINE TO YUMA REGIONAL MEDICAL CENTER            | 58   |
| FIGURE C1.1: FIELD NOTES.                                                                |      |
| FIGURE C1.2: PHOTO LOG.                                                                  |      |
| FIGURE D1.1: CHILD LEAD MODEL.                                                           | 127  |
| FIGURE ET 1. LEAD CONCENTRATIONS FREQUENCY LEAD MODEL                                    | 128  |
| FIGUKE F1.1: LEAD 30 <sup>TH</sup> AND 95 <sup>TH</sup> CUNENTKATIONS                    | 129  |

# LIST OF TABLES

| TABLE 3.4.1: LEAD CONCENTRATIONS IN GRID                                       | 17  |
|--------------------------------------------------------------------------------|-----|
| TABLE 3.4.2: LEAD CONCENTRATIONS IN DOWN WASH                                  |     |
| TABLE 3.4.3 LEAD CONCENTRATIONS IN BACKGROUND                                  |     |
| TABLE 3.4.4: LEAD CONCENTRATIONS IN HOTSPOTS                                   |     |
| TABLE 3.4.5: OTHER TRACE ELEMENTS FOUND IN SOIL SAMPLES FROM XRF               | 21  |
| TABLE 3.5.1: XRF RESULTS AND AA RESULTS                                        | 22  |
| TABLE 4.1.2.1: SCENARIO EXPOSURE FREQUENCIES                                   | 23  |
| TABLE 4.2. 2.2: LEAD CONCENTRATIONS FOR THE RISK SCENARIOS.                    | 24  |
| TABLE 4.1.3.1: ADULT LEAD MODEL DATA.                                          | 25  |
| TABLE 4.1.3.2: IEUBK MODEL RESULTS                                             |     |
| TABLE 4.2.3.1: EFFECT OF LEAD AND BASIS FOR MEASUREMENT.                       | 27  |
| TABLE 4.2.3.2: HAZARD RISK LEVELS, AREA USE, AND FOOD INGESTION.               |     |
| TABLE 4.2.3.3: RISK LEVEL DESERT COTTONTAIL                                    |     |
| TABLE 4.2.3.4: RISK LEVEL LIZARD.                                              |     |
| TABLE 4.2.3.5: RISK LEVEL DESERT BIGHORN SHEEP                                 |     |
| TABLE 4.2.3.6: RISK LEVEL COYOTE.                                              | 30  |
| TABLE A1.3.1: CONCENTRATION A LEVEL OF CONTAMINANTS FROM SAMPLES TAKEN IN 2003 |     |
| TABLE A1.3.2: ARIZONA SOIL REMEDIATION STANDARD                                | 39  |
| TABLE A2.4.1:FIELD AND SAMPLING EQUIPMENT                                      | 47  |
| TABLE A3.1.1: SITE WORKERS NAMES AND INFORMATION                               | 57  |
| TABLE A3.1.2: NEAREST HOSPIAL TO JOB SITE                                      | 57  |
| TABLE A4.1.1: JOB HAZARD ANALYSIS WORKSHEET                                    | 59  |
| TABLE A4.1.2: ADDITONAL HAZARD ANALYSIS                                        | 60  |
| TABLE B1.1: RAW XRF DATA                                                       | 65  |
| TABLE B1.2: XRF VS AA DATA                                                     |     |
| TABLE D1.1: GRID AND DOWNWASH MODEL DATA                                       | 121 |
| TABLE D1.2: HOTSPOT MODEL DATA                                                 | 123 |
| TABLE D1.3: ALL MODEL DATA                                                     | 125 |

# ACRONYMS AND ABBREVIATIONS

AA - Atomic adsorption ADEQ- Arizona Department of Environmental Quality ALM- Adult Lead Methodology BLM - Bureau of Land Management CERCLA- Comprehensive Environmental Response, Compensation, and Liability Act COC - Contaminants of Concern EPA - Environmental Protection Agency HASP- Health and Safety Plan HAZWOPER - Hazardous Waste Operations and Emergency Response ICPAES - Inductively Coupled Plasma Atomic Emission Spectroscopy **IDW-** Investigative-Derived Waste IEUBK - Integrated Exposure Uptake Biokinetic model **IRIS - Integrated Risk Information System** NCP- National Contingency Plan **PA-** Preliminary Assessment SAP- Sampling and Analysis Plan SHEDS - Stochastic Human Exposure and Dose Simulation SI- Site inspection XRF - X-Ray Fluorescence

# ACKNOWLEDGMENTS

The Bureau of Land Management assisted Southwest Sites Consulting with introductory information, XRF training, and project guidance supporting the Preliminary Assessment and Site Inspection of the land surrounding Red Cloud Mine. We would like to thank our advisors Eric Zielske (BLM) and Dr. Bridget Bero of Northern Arizona University, for their insight and expertise that greatly assisted the progression of this document. We would also like to show our gratitude to Professor Jeff Heiderscheidt who aided in sample digestion and preparation of samples, and Jeff Propster who completed Atomic Absorption analyses of soil samples for our results.

# **1.0 Project Description**

The Bureau of Land Management (BLM) tasked Southwest Sites Consulting to conduct a Preliminary Assessment/ Site Inspection (PA/SI) of Black Rock Wash located just south of Red Cloud Mine in Arizona's La Paz County. The Red Cloud Mine has been in operation since 1878 and has been used to mine silver, lead, and wulfenite, a gem made of lead and molybdenum. During the many years of mining, ore tailings were consolidated in a tailings pond located south of the mine site [2]. The main contaminant of concern (COC) located in the tailings pond is lead, which will be expanded upon in this report, with regard to its level, extent of migration, and associated risk to human health, flora, and fauna.

# **1.1 Site Location**

The Red Cloud Mine is located in La Paz County, which is north of Yuma County in Southern Arizona, as seen in Figure 1.1 below. Currently, the mine consists of 20.66 acres of land encompassing the mine itself, and several hundred tons of mine tailings. These tailings, and their respective contaminants and hazardous materials, have been washed down Black Rock Wash, which is on land managed by the BLM. The mine itself, however, is located on private land and is currently being mined by the current owner for the gem wulfenite.



Figure 1.1: Location of Red Cloud Mine in La Paz County, AZ. (USGS)

The site is approximately 50 miles southwest of Quartzite and 23 miles north of Yuma. The site can be accessed by Red Cloud Road, a rough but maintained dirt road, off of Highway 95 in Yuma. The Colorado River is 5 miles west of the site and the Yuma Proving Ground military reserve is 2 miles east. Images showing the location of the mine in relation to nearby cities can be seen in Figure 1.2 and Figure 1.3 [1]



Figure 1.2: Red Cloud Mine is association to Quartzite and Yuma Arizona (USGS)



Figure 1.3: Map of Black Rock Wash feeding into the Colorado River and Red Cloud Mine (National Geographic)

# **1.2 Project Purpose**

The public uses this BLM land, where Black Rock Wash is located, and tailings continue to disperse and migrate in the area. These tailings and possible contaminants pose a threat to the safety and health of humans, the environment, and other flora and fauna. Based on the sampling results obtained, Southwest Sites has evaluated potential contaminant exposure to recreational users (hikers, campers, off-highway vehicle users). The BLM will use this information and take any necessary steps towards containing further contamination.

# 2.0 Sampling

The Sampling and Analysis Plan (SAP), Health and Safety Plan (HASP) and Work Plan were completed in December 2015 (see Appendix A). The SAP details the sampling techniques used in the field and analysis techniques used in the lab to collect and analyze the soil samples. The HASP details the health and safety precautions taken in the field and in the lab. This document was written and followed in order to ensure all field and lab workers did not expose themselves to anything harmful and to implement response protocol if injury occurred. The Work Plan is a comprehensive document that outlines the SAP and the entire scope of the project. The site visit occurred January 28-29, 2016 (see Appendix A for field notes and photo gallery).

Sample collection procedures for the Red Cloud Mine Site Inspection followed the SAP entirely (see Appendix A for SAP). Figure 2.1 below shows dots that correspond to the locations where samples were collected during the site visit. Eighty grab samples were collected in Black Rock Wash on the nodes of the grid seen in Figure 2.2 below. Eleven grab samples were taken from hot spots in varying locations in Black Rock wash and in tributary washes near the tailings pile (see Figure 2.3). As per the Sampling Plan, hot spot collection locations were determined on site by Dr. Bridget Bero. These locations were chosen based on an assessment of the tailings pile and choosing locations in or around the wash where soil similar to the tailings was present or had potential to be present. In addition, three background grab samples were collected down the wash approximately a quarter mile from the bottom of the grid, which can also be seen in Figure 2.1 on the next page. Every sample was collected using a clean trowel and a fresh pair of gloves in order to prevent cross contamination.

Decontamination procedures of equipment and personnel followed the Sampling Plan and the Health and Safety Plan (see appendix A) and all students involved maintained proper PPE throughout the entire site visit and sample collection.

Special precaution was taken to ensure that samples were collected only on BLM land and that the team did not collect samples on private land. Upon the site visit it became apparent that the pile that was originally thought to be the tailings pile was actual a pile of overburden. The actual tailings pile is northeast of the overburden and its extent was difficult to determine. It appeared that, if a tailings pile existed in the area, they have largely been dispersed due to rain and wind events. It is estimated from the previous site investigation that approximately 1.3 acres at 680 feet deep of tailings were present at the site in 2009. No obvious evidence of these tailings were seen during the visit. As can be seen in Figure 2.1 on the next page, and more close up in Figure 2.4. This did not change the grid sample collection at all because the grid was placed in a way that the actual tailings pile was directly north of the grid.



Figure 2.1: GIS map displaying sample collection locations, data labels and location of overburden and actual tailings pile. RED=hotspots GREEN=grid YELLOW=background and downwash.



Figure 2.2: GIS representation of the grid where Black Rock Wash samples were collected including sample numbers.



Figure 2.3: GIS representation of the collected hot spots north of Black Rock Wash.



Figure 2.4: GIS image displaying a close up of the actual tailings pile and the overburden pile. Directly north of the overburden pile is Red Cloud Mine.

# 3.0 Analyses

# 3.1 Methods

Analysis of the soil samples included: X-ray Fluorescence (XRF) and Atomic Absorption (AA). All necessary sample preparation for X-ray Fluorescence (XRF) and Atomic Absorption (AA) analysis were completed prior to testing.

# **3.2 Sample Preparation**

Directly after in-situ sampling, preparation for XRF analysis was conducted in accordance with the SAP (EPA method 6200) [3]. Soil samples were removed from their gallon bags and poured into a sieve tower. These towers consisted of six sieves including: #4, #14, #20, #35, and #60 (see figure 3.1). The towers were placed in the sieve shaker for 10 minutes. After shaking, all of the soil that was passed through a no. 60 sieve was placed in a new gallon bag and was relabeled. This process assured better homogenization of the samples. All towers were then scrubbed with wire brushes, washed with soap and water, rinsed, and dried before each soil sample (see figure 3.2). The decontamination process (EPA Method 3050b) was performed to decrease the probability of cross contamination of samples [4].



Figure 3.1 Sieve stack in shaker.



Figure 3.2 Decontamination of sieves.

After XRF analysis, 20 samples were selected for AA analysis and were prepped using EPA's method 3050b for acid digestion as a reference [4]. Only reagent grade chemicals were used to conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society [4]. Crucibles of all soil samples were weighed and put it in the drying oven to determine the moisture content of all samples prepped for digestion. Then, 1.5 grams of soil were measured from each of the 20 selected samples and placed into flasks. Ten mL of 14.4 M nitric acid was then added to each flask, mixed, and covered for vapor recovery. Hot plates were set to 155 degrees Celsius, with the liquids heating to 90 degrees Celsius. Samples were kept at 90 degrees Celsius for ten minutes (without boiling), and then allowed to cool. Five mL of nitric acid was then added, the cover was replaced, and refluxed for 60 minutes. The samples were then allowed to cool. Two mL of DI water and 3 mL of hydrogen peroxide were added to each sample and reheated. In 1 mL increments, hydrogen peroxide was added to the samples until 10mL total had been added or until bubbling ceased. The samples were then reheated for an hour and allowed to cool (see figure 3.3). The samples were centrifuged and then filtered through coffee filter paper into a 100 mL volumetric flask and filled to the 100 mL line with DI water. The flasks were then sent to the NAU Chemistry lab for AA analysis by Jeff Propster.



Figure 3.3: Atomic Absorption Acid Digestion.

# 3.3 Testing

In order to perform a risk assessment for the site at Red Cloud Mine, accurate soil testing must be performed. This testing included X-ray fluorescence (XRF) and flame atomic absorption (FAA) spectrometry. XRF involves the use of a handheld XRF device which shoots x-rays at a sample which then produces secondary x-rays indicative of the concentrations of unique metals in the sample. Each bag after prepped per section was then divided into 9 quadrants creating a 3x3 grid (see figure 3.4). An XRF reading was taken at the center of each quadrant, with the XRF measuring low, medium, and high concentrations at 30 seconds each for a total of 90 seconds (see figure 3.5). Before each reading the bag was wiped clean and the quadrant and bag number was labeled and input into the XRF. After each reading, a marker was used to cross out the square, and after a bag was finished it was placed in a separate bag from the bags still needing analysis. Although XRF is relatively accurate, it cannot give exact values due to small envelopes of error in the machine. This is due to the fact that analyte's secondary x-rays may interfere with each other and the soil matrix may also add interferences. In order to get more accurate data, digested soil samples were sent to the NAU Environmental Chemistry Lab under Jeffrey Propster. AA analysis was performed on 20% of the samples, which resulted in 20 samples being tested. As outlined in the preparation section, the final digestate is in a pure liquid form nullifying any possible matrix interferences. A characteristic wavelength for lead when requested was then shot at each sample. All data gathered by the lab was then sent back to the team to be used as calibration for all the other samples and to ensure the accuracy of XRF data. XRF data can be found in Appendix B.



Figure 3.4: 3x3 Grid on sample bags for XRF.



Figure 3.5: Using the XRF.

# **3.4 XRF Results**

The results from the XRF included 9 concentrations of lead per sample. Of these 9 concentrations, the minimum and maximum reading were deleted, and the remaining 7 concentrations were averaged to find an average lead concentration for the sample as a whole. The following tables display the average concentrations of each sample, organized by sample location – grid (GR), downwash (DW), background (BK), and hotspot (HS). Tables 3.4.1-3.4.4 show the soils concentration data from the XRF. Figures 3.6 and 3.7 display a gradient color scale to represent the concentration profile of the site. Form Table 3.4.1, it was found that 9% of the samples were between 400 and 800 ppm lead and 39% of the grid samples were above 800 ppm lead. These values are color coded in the following table to be easily identified.

| Sample | Avg. Conc.<br>(ppm) | Sample | Avg. Conc.<br>(ppm) | Sample       | Avg. Conc.<br>(ppm) |
|--------|---------------------|--------|---------------------|--------------|---------------------|
| GR1    | 232.77              | GR28   | 2856.36             | GR55         | 1785.36             |
| GR2    | 1325.22             | GR29   | 307.48              | <b>GR5</b> 6 | 1597.08             |
| GR3    | 792.08              | GR30   | 407.17              | GR57         | 1750.16             |
| GR4    | 2009.13             | GR31   | 125.93              | GR58         | 145.47              |
| GR5    | 96.01               | GR32   | 567.28              | GR59         | 119.19              |
| GR6    | 556.6               | GR33   | 848.87              | GR60         | 15.17               |
| GR7    | 2407.42             | GR34   | 424.16              | GR61         | 1359.77             |
| GR8    | 1935.99             | GR35   | 158.85              | GR62         | 2388.82             |
| GR9    | 2084.28             | GR36   | 106.11              | GR63         | 726.41              |
| GR10   | 280.68              | GR37   | 1566.04             | GR64         | 237.08              |
| GR11   | 389.39              | GR38   | 1183.58             | GR65         | 139.07              |
| GR12   | 1883.43             | GR39   | 1273.08             | GR66         | 22.22               |
| GR13   | 273.15              | GR40   | 115.69              | GR67         | 1494.3              |
| GR14   | 365.98              | GR41   | 1142.02             | GR68         | 186.34              |
| GR15   | 288.84              | GR42   | 1635.16             | GR69         | 389.03              |
| GR16   | 217.25              | GR43   | 1236.47             | GR70         | 89.56               |
| GR17   | 1425.83             | GR44   | 2929.9              | GR71         | 48.23               |
| GR18   | 1044.66             | GR45   | 88.84               | GR72         | 236.96              |
| GR19   | 1171.09             | GR46   | 69.65               | GR73         | 748.52              |
| GR20   | 200.28              | GR47   | 283.91              | GR74         | 203.85              |
| GR21   | 135.14              | GR48   | 121.61              | GR75         | 99.18               |
| GR22   | 1119.74             | GR49   | 183.91              | GR76         | 35.15               |
| GR23   | 1392.35             | GR50   | 1929.43             | GR77         | 399.25              |
| GR24   | 98.75               | GR51   | 1755.99             | GR78         | 2246.09             |
| GR25   | 282.74              | GR52   | 286.63              | GR79         | 1002.29             |
| GR26   | 116.91              | GR53   | 99.43               | GR80         | 143.39              |
| GR27   | 138.46              | GR54   | 93.17               |              |                     |

Table 3.4.1: Lead Concentrations in Grid from XRF data (RED = >800 ppm, GREEN = 400-800<br/>ppm lead, ORANGE = <400 ppm lead).</th>

Table 3.4.2: Lead Concentrations in Down Wash from XRF data(RED = >800 ppm, GREEN = 400-800 ppm lead, ORANGE = <400 ppm lead).

| Sample | Avg. Conc. |
|--------|------------|
|        | (ppm)      |
| DW81   | 1535.38    |
| DW82   | 364.46     |

Table 3.4.3 Lead Concentrations in Background from XRF data (RED = >800 ppm, GREEN = 400-800 ppm lead, ORANGE = <400 ppm lead).

| Sample | Avg. Conc.<br>(ppm) |
|--------|---------------------|
| BK1    | 88.27               |
| BK2    | 102.92              |
| BK3    | 29.15               |

Table 3.4.4: Lead Concentrations in Hotspots from XRF data (RED = >800 ppm, GREEN = 400-800 ppm lead, ORANGE = <400 ppm lead).

| Sample | Avg. Conc. |
|--------|------------|
|        | (ppm)      |
| HS1    | 2111.47    |
| HS2    | 1424.83    |
| HS3    | 651.99     |
| HS4    | 1212.79    |
| HS5    | 247.85     |
| HS6    | 575.31     |
| HS7    | 2996.69    |
| HS8    | 309.30     |
| HS9    | 5789.14    |
| HS10   | 11360.38   |
| HS11   | 14517.84   |



Figure 3.6: Gradient color scale representation of lead concentrations levels in Black Rock Wash.



Figure 3.7: Gradient color scale representation of concentrations of lead in the hotspot samples.

Lead was determined to be the contaminant of concern because it was the only metal that the chemistry lab was able to test for through AA analysis in order to confirm the XRF findings. Other metals besides lead that were found in the samples are outlined in Table 3.4.5. The table lists every element present in every sample, the Arizona Soil Remediation Standard [5] for the stated metal and the highest concentration reported on the sample from XRF. The elements highlighted in red, Arsenic and Thallium, are the only metals that were above the AZ standards besides lead. The reason that these metals were not checked by AA to confirm concentration levels is because the Chemistry lab did not have the necessary standards and lamps to test for these elements. We therefore were unable to confirm these concentration levels. Southwest Sites recommends that the BLM further assess these metals in future site investigations, as they are highly toxic to humans.

| Element    | AZ Soil Remediation<br>Standard, Non-residential,<br>ppm | Highest Concentration found<br>in Red Cloud soil from XRF,<br>ppm | Above/Below<br>standard |
|------------|----------------------------------------------------------|-------------------------------------------------------------------|-------------------------|
| Antimony   | 410                                                      | 163                                                               | BELOW                   |
| Arsenic    | 10                                                       | 587                                                               | ABOVE                   |
| Bismuth    | NS                                                       | 36                                                                | NA                      |
| Cadmium    | 510                                                      | 481                                                               | BELOW                   |
| Caesium    | NS                                                       | 175                                                               | NA                      |
| Calcium    | NS                                                       | 311,943                                                           | NA                      |
| Chromium   | 1,000,000                                                | 422                                                               | BELOW                   |
| Cobalt     | 13,000                                                   | 7,938                                                             | BELOW                   |
| Copper     | 41,000                                                   | 181                                                               | BELOW                   |
| Gold       | NS                                                       | 11                                                                | NA                      |
| Iron       | NS                                                       | 116,659                                                           | NA                      |
| Manganese  | 32,000                                                   | 3,286                                                             | BELOW                   |
| Mercury    | 310                                                      | 74                                                                | BELOW                   |
| Molybdenum | 5,100                                                    | 151                                                               | BELOW                   |
| Nickle     | 20,000                                                   | 10,822                                                            | BELOW                   |
| Niobium    | NS                                                       | 91                                                                | NA                      |
| Palladium  | NS                                                       | 20                                                                | NA                      |
| Potassium  | NS                                                       | 39,503                                                            | NA                      |
| Rubdium    | NS                                                       | 916                                                               | NA                      |
| Scandium   | NS                                                       | 407                                                               | NA                      |
| Selenium   | 5,100                                                    | 233                                                               | BELOW                   |
| Silver     | 5,100                                                    | 337                                                               | BELOW                   |
| Strontium  | 610,000                                                  | 476                                                               | BELOW                   |
| Sulfur     | NS                                                       | 7,261                                                             | NA                      |
| Tellenium  | NS                                                       | 256                                                               | NA                      |
| Thallium   | 67                                                       | 9,890                                                             | ABOVE                   |
| Thorium    | NS                                                       | 82                                                                | NA                      |
| Tin        | 610,000                                                  | 328                                                               | BELOW                   |
| Tungsten   | NS                                                       | 412                                                               | NA                      |
| Uranium    | 200                                                      | 12                                                                | BELOW                   |
| Vanadium   | 1,000                                                    | 166                                                               | BELOW                   |
| Zinc       | 310,000                                                  | 64,211                                                            | BELOW                   |
| Zirconium  | NS                                                       | 720                                                               | NA                      |

Table 3.4.5: Other trace elements found in soil samples from XRF. (NS = No Standard,NA = Not Applicable)

#### **3.5 XRF/AA Correlation**

| Sample ID | AA data  | XRF      |
|-----------|----------|----------|
| BK2       | 84.96221 | 102.92   |
| BK3       | 16.76913 | 29.15    |
| DW81      | 1705.76  | 1535.38  |
| GR6       | 517.928  | 556.6    |
| GR8       | 2170.25  | 1935.99  |
| GR10      | 326.9103 | 280.68   |
| GR12      | 2361.483 | 1883.43  |
| GR30      | 397.0971 | 407.17   |
| GR32      | 702.9891 | 567.28   |
| GR34      | 583.4995 | 424.16   |
| GR55      | 2097.329 | 1785.36  |
| GR62      | 1560.728 | 2388.82  |
| GR67      | 2199.247 | 1494.3   |
| GR73      | 945.5227 | 748.52   |
| GR70      | 84.14031 | 89.56    |
| GR77      | 529.516  | 399.25   |
| HS2       | 2941.355 | 1424.83  |
| HS5       | 1279.64  | 247.85   |
| HS7       | 3536.676 | 2996.69  |
| HS11      | 13353.81 | 14517.84 |

Table 3.5.1: XRF results and AA results.



Figure 3.8: Correlation between the XRF results and the AA results.

The results of the AA analysis can best be seen in Table 3.5.1 and Figure 3.8 which are tabular and graphical representations of the AA data vs. the XRF data. The trend line associated with the graph and the  $R^2$  Value confirm that the XRF and AA data are closely related which confirms that the XRF readings are verified and can be used as fair and representative data.

#### 4.0 Risk Assessment

#### 4.1 Human Health

#### 4.1.1 Contaminants of Concern (COC's)

The contaminant of concern at Red Cloud Mine and in Black Rock Wash has been identified to be lead. The human risk assessment was performed using lead due to the fact that the XRF data was inconclusive on the concentrations of other highly toxic elements found in the samples, such as arsenic and thallium. The chemistry lab was unable to provide arsenic and thallium data to clarify the XRF data.

#### 4.1.2 Toxicity Assessment and Exposure Scenarios

Due to the unique nature of lead, reference doses and hazard indexes are not utilized for human health risk assessments. This is due to the fact that detrimental effects can be seen at very low blood lead levels and so no dose is completely safe [6]. Instead, models are used to approximate the blood lead levels in adults and children, which are then compared to allowable limits. According to the EPA, there are no safe blood lead levels for children, but a reference limit of 5 mg lead/dl blood is used [6]. Soil lead concentrations found from the data analysis were then put into the Adult Blood Lead Model and the IEUBK model for children to approximate expected blood lead levels due to various exposure scenarios. These exposure scenarios where selected based off of what the team observed while sampling and the distance the site is to the city of Yuma. These exposure scenarios are summarized below in Table 4.1, all other inputs can be found in Appendix D. The Exposure Frequency is how many days per year a person in that scenario would be around the site, with an average of 8 hours/day of exposure.

| Scenario                       | Exposure Frequency |
|--------------------------------|--------------------|
| Full Time Miner                | 330 days           |
| Part Time Miner                | 150 days           |
| Heavy Use Adult Recreational   | 20 days            |
| Average Use Adult Recreational | 6 days             |
| Heavy Use Child Recreational   | 20 days            |
| Average Use Child Recreational | 6 days             |

#### Table 4.1.2.1.: Scenario Exposure Frequencies

The other important input for the risk scenarios is the soil lead concentrations on site. These concentrations where taken as the geometric mean and the geometric

95% levels for all the samples, the grid and downwash samples, and the hot spot samples respectively. Geometric means are a more accurate representation of logarithmic data. The team's soil data can be seen to be logarithmic in nature as shown by the graphs in Appendix E. The 95<sup>th</sup> percentile concentrations were found using the geometric means, the geometric standard deviations, and z scoring where z is equal to 1.645. Sample calculations can be found in Appendix F. The geometric mean and 95<sup>th</sup> percentiles can be seen below in Table 4.2.

| Samples                 | Geometric 50 <sup>th</sup> percentile | Geometric 95 <sup>th</sup> percentile |
|-------------------------|---------------------------------------|---------------------------------------|
| All Samples             | 452.4 ppm                             | 1680.8 ppm                            |
| Grid + Downwash Samples | 401.3 ppm                             | 1680.2 ppm                            |
| Hot Spot Samples        | 1679.6 ppm                            | 2838.5 ppm                            |

Table 4.1.2.2.: Lead Concentrations for the Risk Scenarios.

These concentrations where then ran for every scenario. Each scenario was evaluated at the 50<sup>th</sup> and 95<sup>th</sup> percentiles for the three sets of samples chosen.

#### 4.1.3 Blood Lead Level Models

The adult lead model is derived from two sets of data, the Third National Health and Nutrition Examination Survey (NHANES III) and the National Health and Nutrition Examination Survey from 1999-2004 (NHANES 1999-2004) [7]. These surveys consist of thousands of adult blood lead data and their soil lead concentrations and are used to estimate adult blood lead data from other soil lead concentrations. The only inputs for the adult lead model are the soil concentrations and the exposure frequencies. For adults, their expected blood lead levels and the probability that their child would have blood lead levels above the standard of 5ug/dl [6] for fetuses can be seen in Appendix D with the model. The reference blood lead level for adults is 10ug/dl [6]. The most pertinent adult data can be seen below in Table 4.3. The miners live very close to the hot spots so those concentrations were ran in the model, and recreational users are most likely to encounter blood lead levels around the downwash and grid sample concentrations.

| Scenario                                                            | NHANI                                            | ES 1999-2004                                             | NHANES III                                       |                                                          |  |
|---------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--|
|                                                                     | Expected<br>Adult Blood<br>Lead Level<br>(ug/dl) | Probability That<br>Fetal Blood Pb ><br>Reference Limits | Expected<br>Adult Blood<br>Lead Level<br>(ug/dl) | Probability That<br>Fetal Blood Pb ><br>Reference Limits |  |
| Full Time Miner<br>Grid+Downwash 50 <sup>th</sup><br>percentile     | 1.9                                              | 0.1%                                                     | 2.4                                              | 1.9%                                                     |  |
| Full Time Miner<br>Grid+Downwash 95 <sup>th</sup><br>percentile     | 2.3                                              | 0.4%                                                     | 2.8                                              | 3.1%                                                     |  |
| Full Time Miner Hot<br>Spot 50th percentile                         | 4.6                                              | 6.9%                                                     | 5.1                                              | 15%                                                      |  |
| Full Time Miner Hot<br>Spot 95th percentile                         | 7.2                                              | 22.7%                                                    | 7.7                                              | 30.8%                                                    |  |
| Heavy Use Adult<br>Recreational<br>Grid+Downwash 50th<br>percentile | 1.1                                              | 0%                                                       | 1.6                                              | 0.4%                                                     |  |
| Heavy Use Adult<br>Recreational<br>Grid+Downwash 95th<br>percentile | 1.1                                              | 0%                                                       | 1.6                                              | 0.4%                                                     |  |
| Heavy Use Adult<br>Recreational Hot Spot<br>95th percentile         | 1.4                                              | 0%                                                       | 1.9%                                             | 0.9%                                                     |  |

Table 4.1.3.1.: Adult Lead Model Data.

The data for each scenario from the IEUBK model for children can be seen in Appendix D with the model, and the most pertinent data from this model can be seen below in Table 4.4. The reference blood Pb level is 5 ug/dl for children. In order to utilize the IEUBK model the soil concentrations were put into the model, and the consumption rate of soil by children was corrected for the fact that the model assumes a year-long exposure scenario. This was done by dividing the soil consumption rates by fifty-two to make the intake reflect a week of consumption during the whole year for the low use scenario or divided by fifty-two and multiplied by three to represent a three week consumption duration during the year.

| Scenario                                                          | Expected Blood Lead Level (ug/dl) |          |          |          |          |          |          |
|-------------------------------------------------------------------|-----------------------------------|----------|----------|----------|----------|----------|----------|
| Age Range                                                         | 0.5-1 year                        | 1-2 year | 2-3 year | 3-4 year | 4-5 year | 5-6 year | 6-7 year |
| Heavy Use<br>Child<br>Recreational<br>Grid and<br>Downwash<br>95% | 1.2                               | 1.3      | 2        | 1.2      | 1        | .9       | .9       |
| Heavy Use<br>Child<br>Recreational<br>Grid and<br>Downwash<br>50% | 1.1                               | 1.2      | 1.1      | 1        | 0.9      | 0.9      | 0.8      |
| Heavy Use<br>Child<br>Recreational<br>Hot Spot 95%                | 2.6                               | 3        | 2.8      | 2.6      | 2.2      | 1.8      | 1.3      |
| Heavy Use<br>Child<br>Recreational<br>Hot Spot 50%                | 1.9                               | 2.1      | 2        | 1.9      | 1.6      | 1.4      | 1.3      |

# Table 4.1.3.2: IEUBK model Results.

#### 4.2 Ecological Risk Assessment

#### 4.2.1 Species of Concern

The migration of mine tailings surrounding the Red Cloud Mine pose potential risks to ecological factors, such as flora and fauna, which exist in these areas. During the sampling investigation, field notes were recorded to document the presence of flora and fauna in Black Rock Wash as well as the surrounding landscape. The principal plant species of concern in this investigation include: the saghorn cactus, various desert grasses, and shrubs. Recorded fauna included: the desert cottontail, lizards, coyote, and desert big horn sheep.

#### 4.2.2 Toxicity Assessment

Figure 4.1 demonstrates the migration of the tailings and the potential exposure paths to the observed flora and fauna. The main exposure of concern is the ingestion

of contaminated soil by fauna due to its high potential concentrations of lead.



Figure 4.1: Exposure Pathways.

# 4.2.3 Qualitative Assessment

Table 4.5 shows potential effects of lead on the various flora and fauna as well the basis for measurement which summarizes the importance of this species with respect to its ecosystem and risk level [8]. Most of these species plays a larger role in the food chain as a critical ecosystem function, and for these reasons they should be assessed.

| Species        | Routes                   | Effect                                                                         | Basis for Measurement                                 |
|----------------|--------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|
| Saghorn Cactus | Absorption-<br>roots     | Decreased growth,<br>reduction of photosynthesis,<br>reduced biomass, decrease | Food Chain - Ecosystem<br>function                    |
| Desert Grasses | Absorption-<br>roots     | in protein, reduced plant<br>height, lack of enzyme                            | Food Chain - Ecosystem<br>function, potential grazing |
| Shrubs         | Absorption-<br>roots     | activity, decreased water<br>absorption                                        | Food Chain - Ecosystem<br>function                    |
| Desert         | Ingestion,               | Tumors, damage to nerve                                                        | Food Chain - Ecosystem                                |
| Cottontail     | inhalation               | cells                                                                          | function                                              |
| Lizards        | Ingestion,<br>inhalation | Changes in Body Weight                                                         | Susceptible to heavy metals                           |
| Covota         | Ingestion,               | Tumors, affects gene                                                           | Food Chain - Ecosystem                                |
| Coyote         | inhalation               | expression                                                                     | function                                              |
| Desert Big     | Ingestion,               | Tumors, affects gene                                                           | Praviously Endangered Species                         |
| Horn Sheep     | inhalation               | expression                                                                     | Fieviously Endangeled Species                         |

Table 4.2.3.1: Effect of lead and basis for measurement.

Table 4.6 explains the hazard risk levels associated with these species, the frequency of area use near to the Red Cloud Mine, and food ingestion by these species [8].

| Species           | Hazard Risk Level    | Area Use   | Food Ingestion          |
|-------------------|----------------------|------------|-------------------------|
|                   |                      |            | Photosynthesis, minimal |
| Saghorn Cactus    | 500-1000 ppm         | constant   | water                   |
|                   |                      |            | Photosynthesis, minimal |
| Desert Grasses    | 500-1000 ppm         | constant   | water                   |
|                   |                      |            | Photosynthesis, minimal |
| Shrubs            | 500-1000 ppm         | constant   | water                   |
|                   | more than 40 µg/dl - |            | Constant consumption of |
| Desert Cottontail | observable           | occasional | brush and grass         |
|                   | symptoms, 2-8 mg     |            | Constant consumption-   |
| Lizards           | of lead per kilogram | majority   | insects and few plants  |
|                   | of body weight per   |            | Constant consumption-   |
|                   | day, over an         |            | mostly animals and also |
| Coyote            | extended period of   | occasional | plants                  |
|                   | time, will cause     |            | Constant consumption-   |
| Desert Big Horn   | death in most        |            | mainly grasses, need    |
| Sheep             | animals              | occasional | minimal water           |

Table 4.2.3.2: Hazard risk levels, area use, and food ingestion.

Similarly, to the human health risk assessment and data analysis, the geometric mean of the grid data and down wash data was used for ecological risk assessment. The geometric mean of lead concentration in the soil used in these calculations is approximately 401.3 ppm. This number is representative of this general area and can reflect exposure scenarios with soils in the wash. According to the research hazard risk level for plants, at this contamination level, the Saghorn cactus, desert grasses, and shrubs will experience minimal risk. However, if these plants are located near hot spots, in which contamination levels average 1679.65 ppm these plants species will experience severe risk to their ecological health.

Ecological risk was evaluated based on multiple sources, assumed averages for body weights, soil ingestion, food ingestion rate, etc. These risk evaluations are estimates and will vary greatly depending on varying body weights and ingestion rates. Tables 4.7 - 4.10 demonstrate the calculations for overall risk to these species based on average body weight, the food ingestion rate, and the soil fraction of this ingestion.

|           |                                                     | Receptor : Desert Cottontail |                                       |  |
|-----------|-----------------------------------------------------|------------------------------|---------------------------------------|--|
| Parameter | Definition                                          | Value                        | Reference                             |  |
|           |                                                     |                              | Arithmetic mean of means, adult, both |  |
| BW        | V                                                   | 1220                         | sexes [9]                             |  |
|           | (g.g <sub>bw</sub> <sup>-1</sup> .d <sup>-1</sup> ) |                              |                                       |  |
| NIR       | Normalized food ingestion rate                      | 0.2                          | [10]                                  |  |
| Pf        | Plant fraction of diet                              | 0.94                         | Exclusively herbivorous [9]           |  |
| Af        | Animal fraction of diet                             | 0                            | Assumed 0                             |  |
|           |                                                     |                              | Assumed comparable to black-tailed    |  |
| Sf        | Soil fraction of diet                               | 0.063                        | jack rabbit [11]                      |  |
|           | (g.g <sub>bw</sub> <sup>-1</sup> .d <sup>-1</sup> ) |                              |                                       |  |
| NIRw      | Normalized water ingestion rate                     | 0.097                        | [9]                                   |  |
| HR        | Home range (ha)                                     | 3.1                          | [9]                                   |  |
| TUF       | Temporal use factor                                 | 1                            | Assumed to be year-round              |  |
|           |                                                     |                              | mg of lead/ kilogram of body weight   |  |
|           | Risk Level                                          | 5.05                         | /day                                  |  |

Table 4.2.3.3: Risk level Desert Cottontail.

# Table 4.2.3.4: Risk level Lizard.

|           |                                                     | Receptor : Lizard |                                             |
|-----------|-----------------------------------------------------|-------------------|---------------------------------------------|
| Parameter | Definition                                          | Value             | Reference                                   |
| BW        | Body weight (g)                                     | 5                 | [9]                                         |
|           | (g.g <sub>bw</sub> <sup>-1</sup> .d <sup>-1</sup> ) |                   |                                             |
| NIR       | Normalized food ingestion rate                      | 0.05              | [10]                                        |
| Pf        | Plant fraction of diet                              | .094              | [9]                                         |
| Af        | Insect fraction of diet                             | .9                | Majority                                    |
| Sf        | Soil fraction of diet                               | 0.0063            | [11]                                        |
|           | (g.g <sub>bw</sub> <sup>-1</sup> .d <sup>-1</sup> ) |                   |                                             |
| NIRw      | Normalized water ingestion rate                     | .02               | [9]                                         |
| HR        | Home range (ha)                                     | 7.28              | [9]                                         |
| TUF       | Temporal use factor                                 | 1                 | Assumed to be year-round                    |
|           | Risk Level                                          | .129              | mg of lead/ kilogram of body<br>weight /day |

|           |                                 | <b>Receptor : Desert Bighorn Sheep</b> |                                 |  |
|-----------|---------------------------------|----------------------------------------|---------------------------------|--|
| Parameter | Definition                      | Value                                  | Reference                       |  |
| BW        | Body weight (g)                 | 130000                                 | [12]                            |  |
|           | Normalized food ingestion rate  |                                        |                                 |  |
| NIR       | (kg/d)                          | 1.5                                    | [12]                            |  |
| Pf        | Plant fraction of diet          | .8                                     | Assumed                         |  |
| Af        | Animal fraction of diet         | 0                                      | Assumed 0                       |  |
|           |                                 |                                        | Assumed comparable to cattle or |  |
| Sf        | Soil fraction of diet           | .2                                     | sheep grazing                   |  |
| NIRw      | Normalized water ingestion rate | unknown                                | None                            |  |
| HR        | Home range (ha)                 | 5180                                   | [12]                            |  |
| TUF       | Temporal use factor             | 1                                      | Assumed to be year-round        |  |
|           |                                 |                                        | mg of lead/ kilogram of body    |  |
|           | Risk Level                      | .926                                   | weight /day                     |  |

| <i>Table 4.2.3.5:</i> | Risk Level | Desert <b>B</b> | Bighorn | Sheep. |
|-----------------------|------------|-----------------|---------|--------|
|                       |            |                 |         | ~      |

#### Table 4.2.3.6: Risk level Coyote.

|           |                                 | <b>Receptor : Desert coyote</b> |                              |  |
|-----------|---------------------------------|---------------------------------|------------------------------|--|
| Parameter | Definition                      | Value                           | Reference                    |  |
| BW        | Body weight (g)                 | 13608                           | [13]                         |  |
|           | Normalized food ingestion rate  |                                 |                              |  |
| NIR       | (kg/d)                          | 1.909                           | [9]                          |  |
| Pf        | Plant fraction of diet          | .2                              | Assumed                      |  |
| Af        | Animal fraction of diet         | .7                              | Assumed Majority             |  |
| Sf        | Soil fraction of diet           | .1                              | Assumed                      |  |
|           | Normalized water ingestion rate |                                 |                              |  |
| NIRw      | (L/d)                           | 1.004                           | [8]                          |  |
| HR        | Home range (ha)                 | 2071                            | [13]                         |  |
| TUF       | Temporal use factor             | 1                               | Assumed to be year-round     |  |
|           |                                 |                                 | mg of lead/ kilogram of body |  |
|           | Risk Level                      | 5.63                            | weight /day                  |  |

Based on these calculations, the desert cottontail and coyote are experiencing the largest ecological risk. Their risk level is well within the 2-8 mg of lead per kilogram of body weight per day that can cause death in animals. The basis of this risk however, is prolonged exposure over an extended period of time. The cottontail rabbit will be most at risk because it has a smaller home range and will be exposed over a longer period of time. Although the coyote will also be exposed, its range is must greater and may be exposed less frequently to higher contaminated soil levels. All of these calculations were based on the average soil contamination lead level of 401 ppm that was recorded for Black Rock Wash.

#### **5.0 Conclusion and Recommendations**

Levels of lead in the soil down gradient of the mine are elevated above Non-Residential soil remediation standards as determined accurately by XRF. This contamination is possibly being caused by water migration of the tailings pile down the wash and by wind dispersion of the tailings in the surrounding areas. The background sample concentrations of lead indicate that dispersal throughout the valley may be occurring. Red Cloud Road, because it crosses the wash, may have received tailings and further dispersion of contaminated tailings due to vehicles driving along the road and crossing the wash.

Although blood lead levels for children never exceeded the reference levels, the EPA states that there are no safe blood lead limits for children. Therefore, the area should be designated with signs or another method to show that elevated lead exposure could occur by regular recreational activity in the area. As seen in the hot spot scenarios, long term exposure to the hot spots could result in very serious blood lead levels and likely cause children and fetal blood lead levels to go above reference limits. Due to this, immediate actions to be taken by the BLM should include possibly capping or removing what is left of the tailings pile, as well as signage indicating that the area is contaminated and recreational use poses a risk to humans. Further sampling in the valley, especially on the road near the hotspots, is recommended in order to fully characterize the area and the potential risk to users.

#### **6.0 References**

- [1] BKERSHAW, "Bureau of Land Management Protection and Response Information System Live Site Summary Report," Bureau of Land Management, Yuma, Arizona, 2003
- [2] "Arizona's Classic Red Cloud Mine," Treasure Mountain Mining. November 30, 2011. From: http://www.treasuremountainmining.com/index.php?route=pavblog/blog&id=20
- [3] Environmental Protection Agency, "Method 6200," in Test Methods for Evaluating Solid Waste, Physical/Chemical Method, Alexandria, VA: NTIS, 2007, pp. 6200-1-6200-32
- [4] Environmental Protection Agency. Method 3050b Acid Digestion of Sediments, Sludge's, and Soils. [Online]. Retrieved November 13, 2015 from: http://www3.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/3050b.pdf
- [5] D. o. E. Quality, "Department of Environmental Quality Remedial Action," 31 March 2009. [Online]. [Accessed 6 May 2016].
- [6]"Toxicological Profile for Lead", Center for Disease Control, 2016. [Online]. Available: http://www.atsdr.cdc.gov/toxprofiles/tp13-c8.pdf. [Accessed: 14- Apr- 2016].
- [7]"NHANES NHANES III Data Files", Cdc.gov, 2016. [Online]. Available: http://www.cdc.gov/nchs/nhanes/nh3data.htm. [Accessed: 14- Apr- 2016].
- [8] Lead Action News. (2014) *Effects of lead on the environment*. [Online]. Retrieved April 13, 2016 from: https://www.lead.org.au/lanv1n2/lanv1n2-8.html
- [9] United States Environmental Protection Agency. (1993). Wildlife exposure factors handbook. 1: 390-400.
- [10] Dalke, P.D.; Sime, P. R. (1941) Food habits of the eastern and new England cottontails. J. Wilderness Management. 5: 216-228.
- [11] Arthur W. J. III; Gates, R. J. (1988) *Trace element intake via soil ingestion in pronghorns and in black-tailed jackrabbits. J. Range Managa.* 41: 162-166.
- [12] Wikipedia. (2016) Desert bighorn sheep. [Online]. Retrieved April 13, 2016 from:. https://en.wikipedia.org/wiki/Desert\_bighorn\_sheep.
- [13] Urban Coyote Research. (2016) *Coyotes*. [Online]. Retrieved April 13, 2016 from: http://urbancoyoteresearch.com/coyote-home-ranges.

# APPENDIX A: WORK PLAN/ SAMPLING AND ANALYSIS PLAN (SAP)/ HEALTH AND SAFTEY PLAN (HASP)

WORK PLAN

# **1.0 INTRODUCTION**

Southwest Sites Consulting has prepared this Work Plan for site characterization activities to take place at the Red Cloud Mine. This Work Plan has been prepared in accordance with the criteria established under the National Contingency Plan (NCP). The purpose of this document is to provide the U.S. Bureau of Land Management, Arizona State Office information on the procedures the team will use to successfully meet the BLM's needs.

### 2.0 PROJECT MANAGEMENT

#### 2.1 Project Management Approach

Dani Halloran will serve as the client contact for all communications. Dr. Bridget Bero will serve as the NAU supervisor. Eric Zielske will be the BLM supervisor for site work.

#### **2.2 Project Procedures**

Project procedures will be performed according to the Sampling and Analysis Plan (SAP) and Health and Safety Plan (HASP), found in Appendix A and B respectively.

#### 2.3 Quality Management

Quality management for all site work will be performed according to the SAP in Appendix A Sections 4.0 and 8.0.

#### 2.4 Sub-contract Management

Northern Arizona University's chemistry laboratory services will be subcontracted for wet chemistry analyses.

#### **3.0 SITE BACKGROUND INFORMATION**

The Red Cloud mine originally opened in 1878, and was mainly used to mine silver ore until it's closing in the 1890s. After the 1890s the mine's ownership became complex, seeing many different owners until the start of World War I when a high demand for lead arose. This need ultimately prompted the United States government to subsidize mine activities during the war due to the mines high lead content (BKERSHAW, 2003). Since the 1950's, the site has been closed and reopened as a specimen mine for wulfenite crystals, a lead molybdate. During this time, the tailings have also been reworked for lead, zinc and silver. Wayne Thompson owned the mine in 1995 but today a man from Kansas owns the mine and is keeping it open for mineral collectors.

For the purpose of this project it is important to note that the Red Cloud Mine is on private mineral patented land. However, mine tailings have migrated onto BLM-administered public land. The migrated ore tailings were consolidated in a tailings pond located south of the mine site [2]. The main contaminants of concern (COC) located in the tailings pond are lead, zinc, molybdenum, and iron.

#### 3.1 Site Location

The Red Cloud Mine is located in La Paz County, which is North of Yuma County in Southern Arizona, as seen in Figure 3.1 below. Currently, the mine consists of 20.66 acres of land encompassing the mine itself, and several hundred tons of mine tailings. These tailings, and their respective contaminants and hazardous materials, have been washed down Black Rock Wash, which is on land managed by the Bureau of Land Management (BLM). The mine itself however is located on private land and is currently not being mined by the current owner, but instead kept open for mineral collectors.



Figure A1.3.1: Location of Red Cloud Mine in La Paz County, AZ. (USGS)

The site is approximately 50 miles south of Quartzite and 23 miles north of Yuma. The site can be accessed by Red Cloud Road, a rough but maintained dirt road, off of Highway 95 in Yuma. The Colorado River is 5 miles south of the site and the Yuma Proving Ground military reserve is 2 miles west. Images showing the location of the mine in relation to nearby cities can be seen in Figure 3.2 and Figure 3.3 [1]


Figure A1.3.2: Red Cloud Mine is association to Quartzite and Yuma Arizona (USGS)



Figure A1.3.3: Map of Black Rock Wash feeding into the Colorado River and Red Cloud Mine (National Geographic)

#### **3.2 Site Description**

The public uses this BLM land, where Black Rock Wash is located, and tailings continue to disperse and migrate in the area. These tailings and possible contaminants pose a threat to the safety and health of humans, the environment, and other flora and fauna. In order to characterize the extent of the risk associated with the contaminants at Red Cloud Mine, it is necessary to perform a preliminary assessment (PA) and site inspection (SI). Based on the sampling results, the team will evaluate potential contaminant exposure to recreational users (hikers, campers, off-highway vehicles). If the risk is deemed unacceptable, the team will evaluate options to reduce the risk, such as consolidating and capping the tailings in an on-site repository.

#### **3.3 Previous Operations and Investigation**

Several investigations by the BLM have been conducted at Red Cloud Mine and have provided background information on the tailings, with respect to location, size, characteristics, and the compaction of the mine tailings. Additionally, investigative information was provided by the BLM for the minerals and estimates of heavy metal concentrations on site. The only metals tested for were lead and zinc. These concentrations can be seen in Table 3.1.

| Contaminant | Concentration in<br>tailings pile<br>(mg/kg) | Concentration in<br>BlackRockWash (mg/kg) | Background<br>Concentrations<br>(mg/kg) |
|-------------|----------------------------------------------|-------------------------------------------|-----------------------------------------|
| Lead        | 8,090 - 12,397                               | 4,428                                     | 99                                      |
| Zinc        | 37,197 - 62,259                              | 24,794                                    | 215                                     |

Table A1.3.1: Concentration a level of contaminants from samples taken in 2003.

Previous work at the site in 2003 indicates that the tailings piles contain high concentrations of heavy metals including lead, iron, and zinc. The tailings themselves are highly compacted and are a fine to medium grained bright red material. The tailings pond has been documented to be a rough trapezoidal shape spanning a 1.3-acre area. The tailings piles get deeper as they get closer to the wash, where they appeared, at the time of the investigation, to be 10-12 feet deep. The Black Rock Wash follows the tailing pile on the north-northeastern side of the wash for 376 feet. The previous investigations also showed there was significant water migration from the tailings pile into the wash [1]

| Contaminant | Residential Risk<br>(Non-carcinogen) (mg/kg) | Non-residential Risk Non-<br>carcinogen (mg/kg) |
|-------------|----------------------------------------------|-------------------------------------------------|
| Lead        | 400                                          | 800                                             |
| Zinc        | 23,000                                       | 310,000                                         |
| Silver      | 390                                          | 5100                                            |
| Molybdenum  | 390                                          | 5100                                            |

#### Table A1.3.2: Arizona Soil Remediation Standard

A reconnaissance geochemical survey was completed at the Red Cloud Mine in order to determine the mineral potential of the area. Soil was collected in washes around the mine, and the samples were tested for heavy metal concentrations, which were determined to be the following: silver (up to 70 mg/kg), lead (up to 5,000 mg/kg), zinc (up to 7,000 mg/kg), and molybdenum (up to 200 mg/kg). Table 3.2 details the concentration standards which must be met for each contaminant set forth by the Arizona Department of Environmental Quality (ADEQ) for a BLM site to be deemed safe for human use. The BLM has been delegated under the Comprehensive Environmental Response, Compensation, and Liability act (CERCLA) to respond to hazardous substances on public land. Therefor ADEQ is not responsible for the tailings on public land. The BLM uses the non-residential risk to determine screening levels for the investigation of contaminant, based on site exposure assumptions parallel with the public land use.

As seen from comparing the sampling results with Table 3.2, the lead concentrations are exceeded.

## 4.0 INVESTIGATIVE APPROACH

In order to properly perform an inspection of the Red Cloud Mine, an investigation to determine the extent and the toxicity of the mine tailings will be conducted in Black Rock Wash. A map showing the planned sampling grid is found in the SAP, Figure 2.1 (Appendix A).

## 4.1 Site Investigation Objectives

The objective of sampling will be to determine possible migration of the tailings into Black Rock Wash. The sampling will take place on January 30<sup>th</sup> to February 1<sup>st</sup>, 2016. The samples will then be taken from the field to Northern Arizona University where analyses will be completed to determine the toxicity of the contaminants present in the soil samples.

## 4.2 Site Investigation General Approach

A grid approach will be used to ensure spatial variation of the data. Samples from obvious hot spots will also be obtained. All samples will be surface samples. No cores will be obtained. A more detailed sampling explanation is given in the SAP located in Appendix A.

## 5.0 FIELD INVESTIGATION MATHODS AND PROCEDURES

Field investigation methods and procedures will be performed in accordance with the SAP in Appendix A, Section 4.0.

#### 6.0 INVESTIGATIVE-DERIVED WASTE MANAGEMENT

Investigative-derived wastes (IDW) are wastes that are produced during a site investigation and cannot be easily disposed of without creating a health hazard to the environment or people. All IDW produced will be disposed of in accordance to the SAP, Appendix A. Section 5.0.

#### 7.0 SAMPLE COLLECTION PROCEDURES AND ANAYSIS

Procedures for sample collection and analysis will be performed according to the procedures detailed in the SAP in Appendix A. Analyses will consist of x-ray fluorescence (XRF) sample testing, followed by Atomic Absorption (AA) testing of subsets. These tests will be performed in order to obtain correlation curves to evaluate XRF accuracy.

#### 7.1 Sample Containers and Storage

Samples will be put in labeled containers for storage from the Red Cloud Mine site to Northern Arizona University for analysis. The procedures for sample containers and storage will be followed in accordance with Section 6.0 in the SAP in Appendix A.

#### 7.2 Sample Documentation and Shipment

Samples will be documented by field notes, logbooks, and photographs. Additionally, all samples will be explicitly labeled and chain of custody will be documented. All sample documentation and shipment procedures will be followed in accordance with Section 7.0 in the SAP in Appendix A.

#### 7.3 Field Quality Assurance and Quality Control

Quality Assurance and Quality Control will be maintained in the field by subdividing the work into sampling, recording data, identifying sample locations, and decontaminating. Background sampling will take place and compared to known background concentrations to ensure the sampling technique did not introduce COC's. Additional quality assurance and control procedures will be followed in accordance with Section 8.0 of the SAP in Appendix A.

#### 8.0 DEVIATIONS FROM THE WORK PLAN

It is likely that deviations from the work plan will occur in the field as unexpected situations or constraints may occur. Any and all deviations, discussed with the client, will be documented in the field noted in accordance with the SAP, Appendix A. Section 7.1.1

#### 9.0 PA/SI REPORTING

A detailed report of the Preliminary Assessment and Site Inspection will be provided as outlined in Section 7.0 of the SAP (see Appendix A). The PA/SI report will also include the results of the lab analysis which will provide the concentration levels of lead in each sample. With this information, a risk assessment will be performed.

#### **10.0 REFERENCES**

- [1] BKERSHAW, "Bureau of Land Management Protection and Response Information System Live Site Summary Report," Bureau of Land Management, Yuma, Arizona, 2003
- [2] "Arizona's Classic Red Cloud Mine," Treasure Mountain Mining. November 30, 2011. From: http://www.treasuremountainmining.com/index.php?route=pavblog/blog&id=20
- [3] Environmental Protection Agency. (1994) Investigation Derived-Waste Guidance. Twinsburg, Ohio. [Online]. Retrieved from http://www.epa.ohio.gov/portals/30/rules/RR-011.pdf

# SAMPLING AND ANALYSIS PLAN

#### **1.0 INTRODUCTION**

This Sampling and Analysis Plan (SAP) is for site sampling and characterization activities to be performed for the Red Cloud Mine tailings project. This SAP will identify the work needed to perform a site investigation; this includes identifying the extent of contamination, as well collecting additional data and making observations that will determine whether removal action is necessary.

#### 2.0 SAMPLING RATIONAL

Due to the unknown nature of the exact areas of contamination a combination of grid and hot spot sampling methods will be used. Only soil sampling will be performed for this project. Prior sampling work has been done in the Red Cloud Mine area but the samples fail to reference where they were taken. Utilizing a grid will allow effective characterization of the wash and immediate surrounding areas. Background samples will be taken from undisturbed areas where minimal contamination should be present in order to obtain data on background contaminant levels. Hot spot samples will also be included to assure data is collected where obvious tailings exist. Approximately 80 grid samples, 30 hot spot, and 10 background samples will be collected.

#### 2.1 Selection of Sampling Locations

No samples can be taken at Red Cloud Mine due to the fact that it is located on private land. The BLM owns the land around Red Cloud Mine, including Black Rock Wash which runs adjacent to the tailings pond where the mine tailings where consolidated in the past. The wash is the primary zone of concern for this project as it is on public land and sampling by the BLM in 2003 showed high concentrations of lead and zinc in and around the wash [1]. In order to comprehensively characterize the contamination in the wash a sampling grid will be overlaid on the wash. Samples will be taken at each corner of the squares within and around the grid. The grid will be located as close to the tailing pond as possible and will cover the wash and the immediate soils around the wash. The background samples and hot spot samples will be selected visually. Figure 2.1 below shows the grid sampling locations on a map of Black Rock Wash. The first point will be found using the long./lat. coordinates of the top right corner sampling location to the west and south as needed to find the other sampling locations.



Figure A2.2.1 Map of Grid Sampling Locations

## 2.2 Selection of Samples for Laboratory Analysis

Thirty percent of the samples will be sent to the NAU Chemistry Lab for atomic absorption spectrometry analyses. These samples will be selected based on the range of contaminant levels observed via XRF analysis.

## 2.3 Selection of Target Metals

The target metals are lead, zinc, molybdenum and iron. High levels of lead and zinc were measured in and around the wash by the BLM in 2003 [1]. Molybdenum and iron are also expected to have high concentration levels as Red Cloud was mined for molybdenum compounds and iron in the past.

## **3.0 REQUEST FOR ANALYSIS**

The following section will discuss the analytical support for the project. The analyses requested,

analyses of concern, turnaround time, and available resources will all be outlined.

#### **3.1 Analysis Narrative**

Analysis will include X-ray fluorescence (XRF) and atomic absorption (AA). All necessary sample preparation will be done prior to testing. This includes drying and sieving of the samples, labeling, and acid digestion. XRF analysis will take place in the NAU Environmental Engineering Lab. Thirty percent of these will undergo acid digestion and sent to the NAU chemistry lab for AA analysis.

#### 3.1.1 Drying and Sieving

Drying and Sieving for XRF analysis will be done in accordance to EPA method 6200. Soil samples will be removed from their gallon bags and placed on a large tray. The soil will be crushed by mortar and pestle and placed in ceramic pots for 2-4 hours of heating at 150 degrees C. These portions of soil will then be poured onto the #60 sieve. The sieve will be placed in the sieve shaker for 10 minutes [3]. All soil that passes to the bottom container will then be collected and placed in a new gallon bag until the whole soil sample has been processed. This process will assure better homogenization of the sample. Guidance in Section 6.0 of EPA Method 3050b will be followed for cleaning procedures to prevent cross-contamination. [4]

#### 3.1.2 X-ray Fluorescence (XRF)

XRF sampling will be performed according to BLM protocol. The bag will be sub-divided into 9 quadrants by marker with each quadrant undergoing XRF testing. The high and low readings will be excluded and the remaining readings will be averaged to obtain an average for each specific sample. EPA Method 6200 Section 9.0 provides all quality control procedures required during XRF operation [3].

#### 3.1.3 Atomic Absorption (AA) Preparation

Each soil sample sent to the NAU Chemistry Lab for AA analysis must first undergo acid digestion by EPA method 3050b. Only reagent grade chemicals shall be used which conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society [4]. One gram of dry soil will be collected from the chosen sample. Five mL of hydrochloric acid and 10 mL of deionized water are pre-added to the sample. The sample is then be heated to 95 C in reflux for five minutes. Reflux refers to heating the solution with an attached condenser to prevent reagents from escaping. The digestate will then be filtered through Whatman No. 41 filter paper or equivalent and collected in a 100 mL volumetric flask. The flask will be filled with deionized water and sent to the NAU Chemistry Lab for testing [4]. 3.1.4 Atomic Absorption

Atomic Absorption will be sub-contracted to the NAU chemistry lab.

#### **3.2 Analytical Laboratory**

The NAU Chemistry Lab is located in building 17–Science Lab Facility, on the NAU campus. A trained lab technician provides all analytic services for the AA analysis. The NAU chemistry lab QA/QC protocols for AA will be compared to EPA method 7000 section 9.0 (Quality Control) to ensure confidence in their laboratory results [5]. All measurements will be recorded by the team in a log.

#### 4.0 FIELD METHODS AND PROCEDURES

#### 4.1 Field Equipment

#### 4.1.1 List of Field Equipment

Table 4.1 presents all of the equipment to be used in the field for documentation, sampling, transport, and decontamination.

| Equipment            | Description              | Quantity          | Purpose         |
|----------------------|--------------------------|-------------------|-----------------|
| Digital Camera       | document sampling        | 1                 | Documentation   |
| Camera Extra Battery | document sampling        | 1                 | Documentation   |
| Field Notebook       | sampling notes           | 1                 | Documentation   |
| Disposable Gloves    | to take samples          | 4 boxes (100/box) | Sampling        |
| Trowels              | to take samples          | 8                 | Sampling        |
| Gallon Ziploc Bags   | to contain samples       | 150               | Sampling        |
| Shovels              | to take samples          | 2                 | Sampling        |
| Tape roller          | locating samples         | 2                 | Sampling        |
| Dust masks           | to take samples          | 8                 | Sampling        |
| GPS                  | ID location              | 1                 | Sampling        |
| Flags                | ID location              | 30                | Sampling        |
| Boxes                | store samples            | 4                 | Transport       |
| Heavy Duty Tape      | seal samples             | 4 rolls           | Transport       |
| Bubble Wrap          | protect samples          | 1 roll            | Transport       |
| Sharpies             | permanent, black         | 4                 | Transport       |
| Backpacks            | 50L or more              | 5                 | Transport       |
| Distilled Water      | for cleaning             | 30 gallons        | Decontamination |
| Plastic Bags         | for disposable equipment | 20                | Decontamination |
| Water containers     | hold water               | 30 gallons        | Decontamination |
| Cleaning Brushes     | for cleaning             | 4                 | Decontamination |
| Paper Towels         | for cleaning             | 3                 | Decontamination |
| Biodegradable soap   | for cleaning             | 3                 | Decontamination |
| 5-gallon Buckets     | for cleaning             | 3                 | Decontamination |

#### Table A2.4.1: Field and Sampling Equipment

## 4.1.2 QA/QC of Field Equipment

Before on site sampling, the team will be familiar with all the operations and trouble-shooting procedures of the GPS equipment. The GPS will be calibrated and prepared and tested for functionality. All electronics including the digital camera and GPS will be charged prior to the site visit. Additional batteries will also be included for back up.

#### 4.2 Soil Sample Collection and Preparation

Approximately 9" x 9" areas of surface soil will be collected as grab samples (independent, discrete samples) from the ground surface. Surface soil samples will be collected using a stainless steel hand trowel. Samples will be collected in gallon Ziploc<sup>™</sup> bags and will be filled to approximately 75% full. See Section 6.0 for shipping procedures and Section 7.0 for labeling samples.

#### 4.3 Soil Sample Location Identification and Measurement

At each sampling location, all samples will be labeled according to procedures (Section 7.2). Additionally, locations will be documented through field notes, GPS locations, and photography of each sample site (Section 7.1).

Soil sampling location will be determined before sampling based on a grid mapping, provided in the work plan. Soil sample locations will be recorded in the field logbook as sampling is completed. A sketch of the sample location will be entered into the logbook and any physical reference points will be labeled. If possible, distances to the reference points will be given.

Additional soil sampling locations will be determined in the field based on accessibility, visible signs of potential contamination (e.g., visible tailings), and topographical features which may indicate the location of hazardous substance disposal or "hotspots." Soil sample locations will be recorded in the field logbook as sampling is completed. A sketch of the sample location will be entered into the logbook and any physical reference points will be labeled. If possible, distances to the reference points will be given.

#### 4.4 Flora and Fauna Data Collection

In sampling locations, data will be collected on any present plant or animal species. All details of visible flora or fauna will be recorded in the logbook with reference to its location and description of the plant or animal.

#### 4.5 Decontamination

Decontamination procedures of sampling equipment must be conducted consistently to assure the quality of samples collected. All equipment that comes into contact with potentially contaminated soil will be decontaminated. Disposable equipment intended for one-time use will not be decontaminated, but will be packaged for appropriate disposal. Decontamination will occur after each use of a piece of equipment. All sampling devices

used, including trowels, will also be cleaned and decontaminated. The following, to be carried out in sequence, is a recommended procedure for the decontamination of sampling equipment

- Non-phosphate detergent and tap water wash, with brushes as needed
- Tap-water rinse
- Deionized/distilled water rinse

Equipment will be decontaminated in a predestinated area, and clean bulky equipment will be stored in 5- gallon buckets for transport to other sampling locations. Cleaned small equipment will be stored in plastic bags.

## 5.0 DISPOSAL OF RESIDUAL MATERIAL

In the process of collecting environmental samples, the sampling team will generate different types of potentially contaminated investigation-derived wastes (IDW) that include the following:

- Used personal protective equipment (PPE)
- Disposable sampling equipment
- Decontamination fluids

The EPA's National Contingency Plan (NCP) requires that management of IDW generated during sampling comply with all applicable or relevant and appropriate requirements (ARARs) to the extent practicable. The sampling plan will follow the Office of Emergency and Remedial Response (OERR) Directive 9345.3-02 (May 1991), which provides the guidance for the management of IDW. In addition, other legal and practical considerations that may affect the handling of IDW will be considered.

Listed below are the procedures that should be followed for handling the IDW. The procedures have enough flexibility to allow the sampling team to use its professional judgment as to the proper method for the disposal of each IDW sample generated at the location.

- Used PPE and disposable equipment will be double bagged and placed in a municipal refuse dumpster. These wastes are not considered hazardous and can be sent to a municipal landfill.
- Decontamination fluids that will be generated in the sampling event will consist of distilled water, residual contaminants, and water with biodegradable detergent. The volume and concentration of the decontamination fluid will be sufficiently low to allow

disposal at the site or sampling area. The water, and the water with biodegradable detergent, will be poured onto the ground or into a storm drain. All cleaning will take place over plastic sheeting.

## 6.0 SAMPLE CONTAINERS, PRESERVATION, AND SHIPMENT

The types and number of sampling containers can be seen in Table 4-1. This section will discuss the sample containers, preservation, and storage of all soil samples obtained in the field. Soil samples will not be chilled and no preservatives will be used.

## 6.1 Packaging and Shipping

All Ziploc<sup>TM</sup> bags containing sample will be placed in strong outside plastic boxes for shipment. Five large plastic boxes will be brought to hold all the samples. The following outlines the packaging procedures that will be followed for all samples.

- 1. The bottom of the plastic boxes will be lined with bubble wrap to prevent breakage during shipment.
- 2. Heavy-duty gallon Ziploc<sup>TM</sup> bags will be secured with clear tape to ensure a tight seal.
- 3. Samples will be labeled with Sharpie<sup>TM</sup> directly onto the bag. Clear tape will be applied on top of the label to ensure the label will not rub off of the bag.
- 4. Empty space in the plastic boxes will be filled with bubble wrap to prevent movement and breakage during shipment.
- 5. Each plastic box will be securely taped shut with heavy-duty tape.

## 7.0 SAMPLE DOCUMENTATION AND SHIPMENT

#### 7.1 Field Notes

Record keeping will be performed in the field through a combination of logbooks, preprinted forms, photographs, sample labels, and chain-of-custody documentation.

#### 7.1.1 Field Logbooks

Field logbooks will be used to document where, when, how, and from whom any vital project information was obtained. Logbook entries should be complete and accurate enough to permit reconstruction of field activities. A separate logbook for each sampling event or project will be maintained. Logbooks should have consecutively numbered pages. All entries should be legible, written in black ink, and signed by the individual making the entries. Factual and objective language will be utilized.

At a minimum, the following information will be recorded during the collection of each sample:

- Sample location and description
- Site or sampling area sketch showing sample location and measured distances
- Sampler's name(s)
- Date and time of sample collection
- Type of sample (soil, sediment or water)
- Field instrument readings and calibration
- Field observations and details related to analysis or integrity of samples (e.g., weather conditions, noticeable odors, colors, etc.)
- Lot numbers of the sample containers, sample identification numbers and any explanatory codes, and chain-of-custody form numbers

In addition to the sampling information, the following specific information will also be recorded in the field logbook for each day of sampling.

- Team members and their responsibilities
- Time of arrival/entry on site and time of site departure
- Other personnel on site
- Summary of any meetings or discussions with tribal, contractor, or federal agency personnel
- Deviations from sampling plans and site safety plans
- Changes in personnel and responsibilities with reasons for the changes
- Levels of safety protection
- Field observations of all plant life in area
- Field notes of any observed wildlife

## 7.1.2 Photographs and Locator Marking

Photographs and GPS coordinates will be obtained at all sampling locations and at other areas of interest on the site or sampling area. They will serve to verify information entered in the field logbook. For each photograph taken, the following information will be written in the logbook or recorded in a separate field photography log:

- Time, date, location, and weather conditions
- Description of the subject photographed
- Name of person taking the photograph
- GPS coordinates

## 7.2 Sample Labels

All samples collected will be labeled in a clear and precise way for proper identification in the field and for tracking in the laboratory. A copy of the sample label is included in Figure 7-1. The samples will have identifiable and unique numbers. At a minimum, the sample labels will contain the following information: sample ID number, sample type, time of collection, name of sampler, site name and sample location. The site ID number format for node samples will be: RC- month- day-GR- year-node location # - duplicate # (if necessary). One sample will be taken at each node and labeled accordingly. The site ID number format for hot spot samples will be: RC- month- day- year- HS- sample #- duplicate # (if necessary).
Site ID NO:

| 1 igui c 112.7.1 Sumple Lubel Southwest Sties Consulting |
|----------------------------------------------------------|
|----------------------------------------------------------|

| RC              |                               |            |                      | ( |
|-----------------|-------------------------------|------------|----------------------|---|
| (MO.)           | (DAY) (YEAR)<br>(DUPLICATE #) | (GR or HS) | (NODE # or sample #) |   |
| Sample Type:    |                               |            |                      |   |
| Time Collected: |                               | Site Loc   | ation:               |   |
| Time Collected: |                               | Site Loc   | ation:               |   |
| Sampler:        |                               |            |                      |   |

#### 7.3 Sample Chain-of-Custody Procedures

All sample shipments for analyses will be accompanied by a chain-of-custody record. A copy of the form is found in Figure 7-2. Form(s) will be completed and sent with the samples for each laboratory and each shipment (i.e., each day). If multiple coolers are sent to a single laboratory on a single day, form(s) will be completed and sent with the samples for each cooler. The chain-of-custody form will identify the contents of each shipment and maintain the custodial integrity of the samples. Generally, a sample is considered to be in someone's custody if it is either in someone's physical possession, in someone's view, locked up, or kept in a secured area that is restricted to authorized personnel. Until the samples are shipped, the custody of the samples will be the responsibility of Southwest Sites Consulting. The sampling team leader or designee will sign the chain-of-custody form in the "relinquished by" box and note date and time. A self-adhesive custody seal will be placed across the lid of each sample. The shipping containers in which samples are stored be sealed with self-adhesive custody seals any time they are not in someone's possession or view before shipping. All custody seals will be signed and dated. Figure A2.7.2: Chain of Custody Record

|                                                 | Chain of Custody Record            |              |
|-------------------------------------------------|------------------------------------|--------------|
| Project No.                                     | Project Title                      | Organization |
| Container No.                                   |                                    | Contact      |
| Field Samplers: prin                            | t signature                        | Address      |
| Sample ID                                       |                                    | Remarks      |
|                                                 |                                    |              |
| Relinquished by ( <i>print and signature</i> ): | Received by (print and signature): | Comments     |
|                                                 |                                    |              |
|                                                 |                                    |              |
|                                                 |                                    |              |

## Figure A2.7.2 Chain of Custody Record

#### **8.0 QUALITY CONTROL**

All quality control and quality assurance procedures will be followed as referenced by this SAP and as summarized in the following sections.

#### 8.1 Field Quality Control

When taking samples in the field, the team will have a starting point based off of the land geography acquired from maps and observations once the team arrives on site. Compass and GPS systems will be utilized to ensure the chosen sampling spots are accurate. The team will also take detailed notes that can be referenced throughout the SI and in further analysis.

#### 8.2 Laboratory Analysis Quality Control

The Northern Arizona University Chemical Laboratory analysis QA/QC procedures will be evaluated according to the EPA standards for analysis. Procedures may include but are not limited to: testing duplicates, using blanks, and assessing limits of detection.

#### REFERENCES

- [1] Person, Carl, "Field Sampling Plan and Quality Assurance Project Plan, Red Cloud Mine Tailings," U.S Department of Interior Bureau of Land Management., Yuma., AZ. Feb, 2009.
- [2] National Statistical Service. *Sample Size Calculations*. [Online]. Retrieved from http://www.nss.gov.au/nss/home.nsf/pages/Sample+size+calculator
- [3] Environmental Protection Agency, "Method 6200," in *Test Methods for Evaluating Solid Waste, Physical/Chemical Method*, Alexandria, VA: NTIS, 2007, pp. 6200-1-6200-32
- [4] Environmental Protection Agency. *Method 3050b Acid Digestion of Sediments, Sludges, and Soils.* [Online]. Retrieved November 13, 2015 from: http://www3.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/3050b.pdf
- [5] Environmental Protection Agency. Method 7000B Flame Atomic Absorption Spectrophotometry. [Online]. Retrieved October 3, 2015 from: http://www3.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/7000b.p df
- [6] Environmental Protection Agency. *Method 6010B Inductively Coupled Plasma-Atomic Emission Spectrometry*. [Online]. Retrieved October 3, 2015 from: http://www2.epa.gov/sites/production/files/documents/6010b.pdf

# HEALTH AND SAFETY PLAN

## **1.0 INTRODUCTION**

The Health and Safety Plan will go over safety protocol and procedures for the Red Cloud Mine site inspection. Table 1.1 below indicates the names and contact information of all team members and supervisors that will be performing the site inspection. Table 1.2 shows the address of the nearest hospital to the job site.

| Emergency Contact  |                |                             |              |  |  |
|--------------------|----------------|-----------------------------|--------------|--|--|
| Title              | Name           | Organization                | Phone Number |  |  |
|                    |                | Northern Arizona University |              |  |  |
| Site Supervisor    | Bridget Bero   | Capstone Advisor            | 928-607-2516 |  |  |
|                    |                | Bureau of Land Management   |              |  |  |
| Client Contact     | Eric Zielske   | AZ State Office             | 602-417-9223 |  |  |
| Emergency Response | Police         |                             | 911          |  |  |
|                    |                | Northern Arizona University |              |  |  |
| Student            | Kelsey Hammond | Capstone Team               | 805-256-4735 |  |  |
|                    |                | Northern Arizona University |              |  |  |
| Student            | Dani Halloran  | Capstone Team               | 602-762-1149 |  |  |
|                    |                | Northern Arizona University |              |  |  |
| Student            | Taylor Oster   | Capstone Team               | 928-853-5838 |  |  |
|                    |                | Northern Arizona University |              |  |  |
| Student            | Robert Reny    | Capstone Team               | 626-652-8762 |  |  |
|                    |                | Northern Arizona University |              |  |  |
| Student            | Haley Michael  | Capstone Team               | 602-501-802  |  |  |

| Table A5.1.1: Sile workers names and informatio | <i>Table A3.1.1:</i> | Site | Workers | names | and | information |
|-------------------------------------------------|----------------------|------|---------|-------|-----|-------------|
|-------------------------------------------------|----------------------|------|---------|-------|-----|-------------|

| Table A3.1.2:           | Nearest | Hospital | to        | ioh | site |
|-------------------------|---------|----------|-----------|-----|------|
| <i>1 ubie 115.1.2</i> . | rearesi | Hospitai | $\iota o$ | juu | sue. |

| Emergency Medical Facility   |                                 |                           |  |  |
|------------------------------|---------------------------------|---------------------------|--|--|
| Yuma Regional Medical Center | 2400 S Avenue A, Yuma, AZ 85364 | See Figure 1 for location |  |  |
|                              |                                 | details                   |  |  |

#### 2.0 DIRECTIONS TO HOSPITAL FROM RED CLOUD MINE

The nearest hospital is Yuma Regional Medical Center, 51 miles away in Yuma, AZ. Directions from the sampling site are as follows:

 Head southeast on *Red Cloud Mine Road*. Turn left to stay on *Red Cloud Mine Road*. Continue onto *Wildlife Refuge Road*. Turn left onto *Martinez Lake Road*. Turn right onto US-95S. Turn left onto S. Pacific Ave. Turn Right onto E. 24<sup>th</sup> Street. Turn left onto S. Avenue A. Figure 2.1 shows the directions from the sampling site to the Yuma Regional Medical center explicitly.



Figure A3.2.1: Directions from Red Cloud Mine to Yuma Regional Medical Center.

## **3.0 SITE SUPERVISOR**

As required by 29 *CFR* 1910.120(*b*)(2)(*i*)(*A*), Bridget Bero and Eric Zielske are the Site Supervisors and are responsible for directing all hazardous waste operations. All other site personnel report directly to the Site Supervisor unless otherwise noted. The site supervisor is directly responsible for:

- 3.1.1 Ensuring the pre-entry briefing and/or tailgate-safety meeting held prior to initiating any site activity, and the such other times as necessary to ensure that employs are apprised of site hazards
- 3.1.2 Ensuring that all work activities conducted with this Health And Safety Plan (HASP) and making any modifications as necessary
- 3.1.3 Verifying all Job Hazards Analyses and ensuring that ongoing Hazard Analysis is conducted at this site
- 3.1.4 Overseeing the training program and ensuring that employees are trained for all tasks or operations they are asked to perform
- 3.1.5 Updating the Site Control Program as needed
- 3.1.6 Granting site workers site and zone access approval
- 3.1.7 Registering all site visitors

- 3.1.8 Establishing and maintaining security measures for this site
- 3.1.9 Directing how each work zone is adjusted
- 3.1.10 Notified when any hazardous-substance spill occurs
- 3.1.11 Monitoring site activities as they pertain to health and safety at this site
- 3.1.12 Stopping any unsafe acts that pose an immediate or imminent health and safety hazard to anyone at this site
- 3.1.13 Ensuring that all elements of this HASP are followed and correctly implemented
- 3.1.14 Ensuring all personnel are apprised of their responsibilities and are fulfilling their requirements
- 3.1.15 Updating the Site Health and Safety Supervisor and other applicable personnel as to changes or work progress reports that may pertain to health and safety functions at this site

#### 4.0 HAZARD ANALYSIS

Table 4.1 below outlines the job hazard analysis of the aforementioned Red Cloud Mine Site Inspection. Table 4.2 provides additional information.

|                                                                        | Job Hazard Ana                                                                                                                                                                | alysis                                                                |              |  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|--|--|
| Phase Description                                                      | Site Characterization                                                                                                                                                         | Site Characterization                                                 |              |  |  |
| Task or Operation                                                      | Sampling surface soil                                                                                                                                                         |                                                                       |              |  |  |
|                                                                        | Red Cloud Mine tailings                                                                                                                                                       |                                                                       |              |  |  |
| Specific Location                                                      | Wash, La Paz County, AZ                                                                                                                                                       |                                                                       |              |  |  |
| Task or Operation                                                      |                                                                                                                                                                               | Task or Operation                                                     |              |  |  |
| Start Date                                                             | January 29-31 2016                                                                                                                                                            | Duration                                                              | 3 days       |  |  |
| Job Hazard Analysis                                                    |                                                                                                                                                                               |                                                                       |              |  |  |
| Developed by                                                           | Kelsey Hammond                                                                                                                                                                |                                                                       |              |  |  |
| Job Hazard Analysis                                                    |                                                                                                                                                                               |                                                                       |              |  |  |
| Reviewed by                                                            |                                                                                                                                                                               |                                                                       |              |  |  |
| Potential Hazards During this Operation                                |                                                                                                                                                                               |                                                                       |              |  |  |
| 1                                                                      | Otential Hazarus During                                                                                                                                                       | uns Operation                                                         | -            |  |  |
| Chemical                                                               | Physical                                                                                                                                                                      | Bioloigical                                                           | Radiological |  |  |
| Chemical<br>Lead Contamination                                         | Physical<br>Dehydration                                                                                                                                                       | Bioloigical Insects                                                   | Radiological |  |  |
| Chemical<br>Lead Contamination                                         | Physical       Dehydration       Fatigue                                                                                                                                      | Bioloigical Insects                                                   | Radiological |  |  |
| Chemical<br>Lead Contamination                                         | PhysicalDehydrationFatigueSunburn                                                                                                                                             | Bioloigical Insects                                                   | Radiological |  |  |
| Chemical<br>Lead Contamination                                         | Physical       Dehydration       Fatigue       Sunburn       Scratches                                                                                                        | Bioloigical Insects                                                   | Radiological |  |  |
| Chemical<br>Lead Contamination                                         | PhysicalDehydrationFatigueSunburnScratchesFalls                                                                                                                               | Bioloigical Insects                                                   | Radiological |  |  |
| Chemical<br>Lead Contamination<br>Hazard                               | Physical       Dehydration       Fatigue       Sunburn       Scratches       Falls       Measure Controls Used                                                                | Bioloigical Insects During this Operation                             | Radiological |  |  |
| Chemical<br>Lead Contamination<br>Hazard<br>Administrative             | Physical       Dehydration       Fatigue       Sunburn       Scratches       Falls       Measure Controls Used I       Team safety meeting prior                              | Bioloigical Insects During this Operation or to going in field. The   | Radiological |  |  |
| Chemical<br>Lead Contamination<br>Hazard<br>Administrative<br>Controls | Physical       Dehydration       Fatigue       Sunburn       Scratches       Falls       Measure Controls Used       Team safety meeting price       buddy system will be use | Bioloigical Insects During this Operation or to going in field. The d | Radiological |  |  |

Table A4.1.1: Job Hazard Analysis Worksheet

| PPE Description         | Boots                    |   |  |
|-------------------------|--------------------------|---|--|
|                         | Long Pants, Long Sleeves | 8 |  |
|                         | Gloves, Hats             |   |  |
| <b>Required Permits</b> | None                     |   |  |

# Table A4.1.2: Additional Hazard Analysis

| Item                    | Issues                                                                                                                                                                                                                                        | These Issues<br>Have Been<br>Considered<br>Before Work | What additional<br>Actions are Necessary<br>Before Beginning<br>Work?        |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| Personnel<br>Management |                                                                                                                                                                                                                                               |                                                        |                                                                              |
| 1                       | Has an effort been made to secure at least a<br>two-person team for this fieldwork? If only<br>one person is making the field visit has that<br>decision been approved by the project<br>Principal or Partner?                                | Yes                                                    |                                                                              |
| 2                       | Has someone been designated as the field crew leader to supervise the field activity?                                                                                                                                                         | Yes                                                    |                                                                              |
| 3                       | Does the team have instructions on where to<br>park safely and is the most appropriate<br>location for site entry determined?                                                                                                                 | No                                                     | Parking will be<br>determined upon arrival<br>at site per BLM<br>instruction |
| 4                       | Has Southwest Sites Consulting notified the<br>site that an Southwest Sites representative<br>will be on site so that entry and security<br>issues are addressed and a site map is<br>provided, if available?                                 | Yes                                                    |                                                                              |
| 5                       | Is there a system in place to ensure that<br>Southwest Sites Consulting is informed of<br>any unique hazards of this site, to<br>supplement the types of risks mentioned in<br>Southwest Sites Consulting's Task<br>Hazardous Analysis Sheet? | Yes                                                    |                                                                              |
| Field<br>Communication  |                                                                                                                                                                                                                                               |                                                        |                                                                              |
| 1                       | Do team members have a reliable means of<br>contacting another Southwest Sites<br>Consulting team member in event of an<br>emergency? (such as cell phone, two-way<br>radio)                                                                  | Yes                                                    |                                                                              |

| 2            | Is there a system in place to ensure that the<br>team leader contacts each field team<br>member at least at mid-day and<br>communicate that all team members have<br>safely left the site at the end of the day? | Yes                        |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 3            | Has a plan been developed on how to<br>address or deal with any unauthorized<br>people encountered on or near the site?                                                                                          | Yes                        |  |
| Field Safety |                                                                                                                                                                                                                  |                            |  |
|              | Are the required PPE determined and their use planned? At least:                                                                                                                                                 |                            |  |
|              | -Sturdy Work Boot (Steel toed shoes if crushing or puncture wound potentiall)                                                                                                                                    | Not Required               |  |
|              | -Long pants: (Long sleeves to combat<br>poison or pest bite/sunburn) Required                                                                                                                                    |                            |  |
| 1            | -Safety glasses (if potential for physical<br>damage or windblown particulate)<br>-Chemical resistant gloves if specifically                                                                                     | Required                   |  |
|              | required                                                                                                                                                                                                         |                            |  |
|              | -Hard hat, when working on an industrial<br>site or if any head injury from falling<br>objects or other agents as possible                                                                                       | Nitrile gloves<br>required |  |
|              |                                                                                                                                                                                                                  | Not Required               |  |
| 2            | Is there a process in place to ensure awareness of need for foul weather gear?                                                                                                                                   | Yes                        |  |
| 3            | Have plans been made to have extra water available while on site?                                                                                                                                                | Yes                        |  |
| 4            | Have you considered and addressed the<br>need for a first aid kit? If the site is remote<br>from available medical support, then a first<br>aid kit should be taken in the car or personal<br>backpack.          | Yes                        |  |
| 5            | Is the team aware of any local plants or<br>pests that could cary disease or cause harm?<br>Have applicable repellents, netting,<br>clothing, and other protections<br>been acquired?                            | No                         |  |

In order to avoid getting lost, the buddy system will be used. No student will leave the group unless accompanied by another student. Sunscreen and long sleeved shirts and pants will be

worn to avoid sunburn. If someone falls, the severity of the injury will first be accessed by the site supervisor, who will determine if the wound can be properly cleaned and bandaged with the supplied first aid kit.

## **5.0 TRAINING PROGRAM**

The Training Program is consistent with the requirements of 29 CFR 1910.120(e) and addresses the following site-specific information:

- 3.1.1 Initial HAZWOPER training will be completed by every team member prior to the site visit.
- 3.1.2 Required Supervised Field Experience will be handled by the site supervisor who is skilled in this field of inspection.

## 6.0 CONTAMINATION CONTROL

The soil containing the primary hazardous chemical at this site (lead) will be properly contained in plastic bags. The bags will be wiped and kept in a cooler with the lid closed to ensure no contamination of the vehicle or workers. PPE that can be washed will be kept is a bag after use, all other PPE will be disposed of in a proper manner. PPE will be removed before entering the vehicle and put on before entering the contaminated area. Decontamination of the team members clothing and containers holding the sample will take place before leaving the hazardous area. Fresh clothes will be worn each day. Work boots will be stored in a box to avoid contaminating the vehicle.

## 7.0 EMERGENCY RESPONSE PLAN

None of the team members that are working at this hazardous site have any pre-existing health conditions. No specific emergency response will be necessary. Sufficient amounts of food and water will be brought to the site to ensure no one gets dehydrated or faints. The nearest hospital, Yuma Regional Medical Center, is where anyone who experiences an injury will be taken. A first aid kit will be available on site. Bridget Bero will be immediately contacted if anything goes wrong as she is the Site Supervisor.

For an exposed worker, treatment will take place at the hospital where the doctor will decide the severity of contamination and if treatment is necessary.

## 8.0 REFERENCES

[1] HASP Online "Health and Safety Plan." Agoura Hills, CA From: http://www.hasponline.com/HASP\_Online\_Example.pdf

# APPENDIX B: RAW XRF DATA

|        |             | -    |          | ·· ·  | Pb                               | Pb    |
|--------|-------------|------|----------|-------|----------------------------------|-------|
| SAMPLE | Time        | Туре | Duration | Units |                                  | Error |
| BK1-1  | 42426.59514 | Soil | 90       | ppm   | 85.88                            | 8.96  |
| BK1-2  | 42426.59653 | Soil | 90       | ppm   | 88.01                            | 7.18  |
| BK1-3  | 42426.59792 | Soil | 90       | ppm   | 86.84                            | 7.14  |
| BK1-4  | 42426.59861 | Soil | 0.15     | ppm   | <lod< th=""><th>95.3</th></lod<> | 95.3  |
| BK1-5  | 42426.60278 | Soil | 90       | ppm   | 91.33                            | 7.32  |
| BK1-6  | 42426.60347 | Soil | 90       | ppm   | 86.11                            | 6.94  |
| BK1-7  | 42426.60556 | Soil | 90       | ppm   | 91.44                            | 7.31  |
| BK1-8  | 42426.60694 | Soil | 90       | ppm   | 83.37                            | 7.08  |
| BK1-9  | 42426.60833 | Soil | 90       | ppm   | 105.69                           | 7.79  |
| BK2-1  | 42430.70208 | Soil | 90       | ppm   | 105.13                           | 7.69  |
| BK2-2  | 42430.70347 | Soil | 90       | ppm   | 99.42                            | 7.49  |
| BK2-3  | 42430.70486 | Soil | 90       | ppm   | 95.48                            | 7.32  |
| BK2-4  | 42430.70625 | Soil | 90       | ppm   | 104.76                           | 7.79  |
| BK2-5  | 42430.70764 | Soil | 90       | ppm   | 97.83                            | 7.45  |
| BK2-6  | 42430.70903 | Soil | 90       | ppm   | 101.94                           | 7.53  |
| BK2-7  | 42430.71042 | Soil | 90       | ppm   | 104                              | 7.63  |
| BK2-8  | 42430.71181 | Soil | 90       | ppm   | 107.35                           | 7.86  |
| BK2-9  | 42430.71319 | Soil | 90       | ppm   | 112.78                           | 7.98  |
| BK3-1  | 42430.78194 | Soil | 90       | ppm   | 25.29                            | 4.56  |
| BK3-2  | 42430.78333 | Soil | 90       | ppm   | 33.73                            | 4.97  |
| BK3-3  | 42430.78472 | Soil | 90       | ppm   | 31.15                            | 4.85  |
| BK3-4  | 42430.78611 | Soil | 90       | ppm   | 27.39                            | 4.63  |
| BK3-5  | 42430.78819 | Soil | 90       | ppm   | 26.84                            | 4.56  |
| BK3-6  | 42430.79028 | Soil | 90       | ppm   | 32.85                            | 4.93  |
| BK3-7  | 42430.79167 | Soil | 90       | ppm   | 29.99                            | 4.68  |
| BK3-8  | 42430.79306 | Soil | 90       | ppm   | 30.51                            | 4.81  |
| BK3-9  | 42430.79375 | Soil | 90       | ppm   | 24.77                            | 4.53  |
| DW81-1 | 42431.62986 | Soil | 90       | ppm   | 1516                             | 28.67 |
| DW81-1 | 42431.63125 | Soil | 90       | ppm   | 1443.01                          | 28.26 |
| DW81-2 | 42431.63264 | Soil | 90       | ppm   | 1505.18                          | 28.32 |
| DW81-3 | 42431.63403 | Soil | 90       | ppm   | 1425.95                          | 27.52 |
| DW81-4 | 42431.63542 | Soil | 90       | ppm   | 1694.11                          | 30.33 |
| DW81-5 | 42431.63681 | Soil | 90       | ppm   | 1575.8                           | 29.01 |
| DW81-6 | 42431.63819 | Soil | 90       | ppm   | 1591.79                          | 29.52 |
| DW81-7 | 42431.63958 | Soil | 90       | ppm   | 1574.22                          | 29.13 |
| DW81-8 | 42431.64097 | Soil | 90       | ppm   | 1516.09                          | 28.59 |
| DW81-9 | 42431.64236 | Soil | 90       | ppm   | 1560.93                          | 29.2  |
| DW82-1 | 42425.64653 | Soil | 90       | ppm   | 445.83                           | 15.66 |
| DW82-2 | 42425.64792 | Soil | 90       | ppm   | 362.99                           | 13.56 |
| DW82-3 | 42425.65069 | Soil | 90       | ppm   | 316.88                           | 12.13 |
| DW82-4 | 42425.65208 | Soil | 90       | ppm   | 338.78                           | 13.13 |

Table B1.1: Raw XRF DATA

| DW82-5  | 42425.65347 | Soil | 90 | ppm | 217.11  | 9.95  |
|---------|-------------|------|----|-----|---------|-------|
| DW82-6  | 42425.65417 | Soil | 90 | ppm | 379.95  | 14.27 |
| DW82-7  | 42425.65556 | Soil | 90 | ppm | 412.05  | 14.88 |
| DW82-8  | 42425.65694 | Soil | 90 | ppm | 325.43  | 12.66 |
| DW82-9  | 42425.65833 | Soil | 90 | ppm | 415.11  | 15.09 |
| GR 1-1  | 42424.66528 | Soil | 90 | ppm | 349.67  | 13.18 |
| GR 1-2  | 42424.66736 | Soil | 90 | ppm | 322.65  | 12.28 |
| GR 1-3  | 42424.66875 | Soil | 90 | ppm | 232.77  | 10.18 |
| GR 1-4  | 42424.67153 | Soil | 90 | ppm | 331.72  | 12.75 |
| GR 1-5  | 42424.67361 | Soil | 90 | ppm | 359.13  | 13.51 |
| GR 1-6  | 42424.675   | Soil | 90 | ppm | 313     | 12.29 |
| GR 1-7  | 42424.67708 | Soil | 90 | ppm | 340.29  | 12.93 |
| GR 1-8  | 42424.67917 | Soil | 90 | ppm | 347.42  | 13.14 |
| GR 1-9  | 42424.68056 | Soil | 90 | ppm | 367.66  | 13.52 |
| GR 10-1 | 42427.68681 | Soil | 90 | ppm | 247.69  | 11.06 |
| GR 10-2 | 42427.68819 | Soil | 90 | ppm | 224.08  | 10.7  |
| GR 10-3 | 42427.68889 | Soil | 90 | ppm | 293.63  | 12.3  |
| GR 10-4 | 42427.69028 | Soil | 90 | ppm | 270.22  | 11.74 |
| GR 10-5 | 42427.69167 | Soil | 90 | ppm | 250.49  | 11.24 |
| GR 10-6 | 42427.69306 | Soil | 90 | ppm | 301.25  | 12.49 |
| GR 10-7 | 42427.69444 | Soil | 90 | ppm | 299.14  | 12.29 |
| GR 10-8 | 42427.69514 | Soil | 90 | ppm | 316.3   | 12.82 |
| GR 10-9 | 42427.69653 | Soil | 90 | ppm | 302.37  | 12.17 |
| GR 11-1 | 42430.72847 | Soil | 90 | ppm | 376.03  | 13.46 |
| GR 11-2 | 42430.72986 | Soil | 90 | ppm | 405.01  | 14.14 |
| GR 11-3 | 42430.73125 | Soil | 90 | ppm | 428.03  | 14.52 |
| GR 11-4 | 42430.73264 | Soil | 90 | ppm | 383.79  | 13.88 |
| GR 11-5 | 42430.73403 | Soil | 90 | ppm | 424.4   | 14.41 |
| GR 11-6 | 42430.73542 | Soil | 90 | ppm | 391.76  | 13.9  |
| GR 11-7 | 42430.73681 | Soil | 90 | ppm | 360.78  | 13.24 |
| GR 11-8 | 42430.73819 | Soil | 90 | ppm | 383.98  | 13.73 |
| GR 11-9 | 42430.73958 | Soil | 90 | ppm | 324.08  | 12.27 |
| GR 12-1 | 42429.72361 | Soil | 90 | ppm | 1853.11 | 31.42 |
| GR 12-2 | 42429.72639 | Soil | 90 | ppm | 1817    | 31.35 |
| GR 12-3 | 42429.72847 | Soil | 90 | ppm | 1890.41 | 31.37 |
| GR 12-4 | 42429.73056 | Soil | 90 | ppm | 1926.72 | 32.24 |
| GR 12-5 | 42429.73125 | Soil | 90 | ppm | 1987.58 | 33.14 |
| GR 12-6 | 42429.73542 | Soil | 90 | ppm | 1892.87 | 31.95 |
| GR 12-7 | 42429.73681 | Soil | 90 | ppm | 1902.58 | 32.09 |
| GR 12-8 | 42429.73819 | Soil | 90 | ppm | 1865.26 | 31.75 |
| GR 12-9 | 42429.73958 | Soil | 90 | ppm | 1853.05 | 31.96 |
| GR 13-1 | 42429.89375 | Soil | 90 | ppm | 241.4   | 9.84  |
| GR 13-2 | 42429.89444 | Soil | 90 | ppm | 276.3   | 11.37 |
| GR 13-3 | 42429.89583 | Soil | 90 | ppm | 396.03  | 13.11 |

| GR 13-4 | 42429.89722 | Soil | 90 | ppm | 267.19  | 11.21 |
|---------|-------------|------|----|-----|---------|-------|
| GR 13-5 | 42429.89861 | Soil | 90 | ppm | 291.96  | 11.78 |
| GR 13-6 | 42429.9     | Soil | 90 | ppm | 301.67  | 11.9  |
| GR 13-7 | 42429.90139 | Soil | 90 | ppm | 98.16   | 5.65  |
| GR 13-8 | 42429.90278 | Soil | 90 | ppm | 278.52  | 11.09 |
| GR 13-9 | 42429.90347 | Soil | 90 | ppm | 255.01  | 10.58 |
| GR 14-1 | 42429.88056 | Soil | 90 | ppm | 225.88  | 8.86  |
| GR 14-2 | 42429.88194 | Soil | 90 | ppm | 298.78  | 10.86 |
| GR 14-3 | 42429.88333 | Soil | 90 | ppm | 353.42  | 11.68 |
| GR 14-4 | 42429.88472 | Soil | 90 | ppm | 395.45  | 13.55 |
| GR 14-5 | 42429.88611 | Soil | 90 | ppm | 379.6   | 13.46 |
| GR 14-6 | 42429.8875  | Soil | 90 | ppm | 392.94  | 13.43 |
| GR 14-7 | 42429.88889 | Soil | 90 | ppm | 373.75  | 13.05 |
| GR 14-8 | 42429.89028 | Soil | 90 | ppm | 388.52  | 13.54 |
| GR 14-9 | 42429.89167 | Soil | 90 | ppm | 374.84  | 13.2  |
| GR 15-1 | 42430.48125 | Soil | 90 | ppm | 330.53  | 12.35 |
| GR 15-2 | 42430.48264 | Soil | 90 | ppm | 346.84  | 13.13 |
| GR 15-3 | 42430.48403 | Soil | 90 | ppm | 234.99  | 9.5   |
| GR 15-4 | 42430.48611 | Soil | 90 | ppm | 328.99  | 12.43 |
| GR 15-5 | 42430.48681 | Soil | 90 | ppm | 311.89  | 11.88 |
| GR 15-6 | 42430.48819 | Soil | 90 | ppm | 319.65  | 12.09 |
| GR 15-7 | 42430.48958 | Soil | 90 | ppm | 184.62  | 8.18  |
| GR 15-8 | 42430.49097 | Soil | 90 | ppm | 240.02  | 9.45  |
| GR 15-9 | 42430.49236 | Soil | 90 | ppm | 255.79  | 10.39 |
| GR 16-1 | 42430.81111 | Soil | 90 | ppm | 312.44  | 15.82 |
| GR 16-2 | 42430.81181 | Soil | 90 | ppm | 225.3   | 9.69  |
| GR 16-3 | 42430.81319 | Soil | 90 | ppm | 253.07  | 11.03 |
| GR 16-4 | 42430.81458 | Soil | 90 | ppm | 162.73  | 7.81  |
| GR 16-5 | 42430.81597 | Soil | 90 | ppm | 191.22  | 8.72  |
| GR 16-6 | 42430.81736 | Soil | 90 | ppm | 240.97  | 10.5  |
| GR 16-7 | 42430.81806 | Soil | 90 | ppm | 188.48  | 8.6   |
| GR 16-8 | 42430.81944 | Soil | 90 | ppm | 190.63  | 8.51  |
| GR 16-9 | 42430.82083 | Soil | 90 | ppm | 231.07  | 10.77 |
| GR 17-1 | 42424.72917 | Soil | 90 | ppm | 1392.9  | 26.96 |
| GR 17-2 | 42424.73611 | Soil | 90 | ppm | 1441.05 | 27.83 |
| GR 17-3 | 42424.73819 | Soil | 90 | ppm | 1381.44 | 26.86 |
| GR 17-4 | 42424.73958 | Soil | 90 | ppm | 1376.58 | 26.85 |
| GR 17-5 | 42424.74167 | Soil | 90 | ppm | 1528.12 | 28.02 |
| GR 17-6 | 42424.74306 | Soil | 90 | ppm | 1355.21 | 26.58 |
| GR 17-7 | 42424.74514 | Soil | 90 | ppm | 1453.14 | 27.61 |
| GR 17-8 | 42424.74722 | Soil | 90 | ppm | 1459.66 | 27.69 |
| GR 17-9 | 42424.74861 | Soil | 90 | ppm | 1476.02 | 27.86 |
| GR 18-1 | 42431.83958 | Soil | 90 | ppm | 942.19  | 22.14 |
| GR 18-2 | 42431.88403 | Soil | 90 | ppm | 907.71  | 21.25 |

| GR 18-3 | 42431.88681 | Soil | 90 | ppm | 948.04  | 21.91 |
|---------|-------------|------|----|-----|---------|-------|
| GR 18-4 | 42431.88819 | Soil | 90 | ppm | 805.6   | 19.97 |
| GR 18-5 | 42431.88958 | Soil | 90 | ppm | 910.38  | 21.73 |
| GR 18-5 | 42431.89306 | Soil | 90 | ppm | 860.47  | 20.9  |
| GR 18-6 | 42431.89444 | Soil | 90 | ppm | 869.2   | 20.91 |
| GR 18-7 | 42431.89583 | Soil | 90 | ppm | 874.37  | 21.08 |
| GR 18-8 | 42431.89792 | Soil | 90 | ppm | 820.18  | 20.43 |
| GR 18-9 | 42431.89931 | Soil | 90 | ppm | 993.84  | 22.16 |
| GR 19-1 | 42430.45486 | Soil | 90 | ppm | 1042.39 | 21.32 |
| GR 19-2 | 42430.45625 | Soil | 90 | ppm | 1147.69 | 23.15 |
| GR 19-3 | 42430.45764 | Soil | 90 | ppm | 941.23  | 20.48 |
| GR 19-4 | 42430.45903 | Soil | 90 | ppm | 1149.26 | 23.68 |
| GR 19-5 | 42430.46042 | Soil | 90 | ppm | 1373.85 | 26.83 |
| GR 19-6 | 42430.46181 | Soil | 90 | ppm | 1243.67 | 25.75 |
| GR 19-7 | 42430.46319 | Soil | 90 | ppm | 1278    | 26.49 |
| GR 19-8 | 42430.46458 | Soil | 90 | ppm | 1208.59 | 25.7  |
| GR 19-9 | 42430.46597 | Soil | 90 | ppm | 1128    | 24.32 |
| GR 2-1  | 42427.64653 | Soil | 90 | ppm | 1285.51 | 32.19 |
| GR 2-2  | 42427.64792 | Soil | 90 | ppm | 1316.69 | 28.01 |
| GR 2-3  | 42427.64931 | Soil | 90 | ppm | 1149.01 | 25.26 |
| GR 2-4  | 42427.65069 | Soil | 90 | ppm | 1292.32 | 27.27 |
| GR 2-5  | 42427.65208 | Soil | 90 | ppm | 1310.61 | 27.2  |
| GR 2-6  | 42427.65347 | Soil | 90 | ppm | 1259.15 | 26.83 |
| GR 2-7  | 42427.65486 | Soil | 90 | ppm | 1533.32 | 30.07 |
| GR 2-8  | 42427.65625 | Soil | 90 | ppm | 1552.95 | 30.42 |
| GR 2-9  | 42427.65764 | Soil | 90 | ppm | 1278.91 | 27.23 |
| GR 20-1 | 42430.67153 | Soil | 90 | ppm | 175.17  | 9.5   |
| GR 20-2 | 42430.67431 | Soil | 90 | ppm | 193.51  | 9.97  |
| GR 20-3 | 42430.67569 | Soil | 90 | ppm | 189.75  | 10.16 |
| GR 20-4 | 42430.67708 | Soil | 90 | ppm | 173.6   | 9.48  |
| GR 20-5 | 42430.67847 | Soil | 90 | ppm | 196.29  | 10.03 |
| GR 20-6 | 42430.67986 | Soil | 90 | ppm | 197.58  | 10.11 |
| GR 20-7 | 42430.68125 | Soil | 90 | ppm | 207.87  | 10.41 |
| GR 20-8 | 42430.68264 | Soil | 90 | ppm | 241.8   | 11.41 |
| GR 20-9 | 42430.68403 | Soil | 90 | ppm | 248.6   | 11.53 |
| GR 21-1 | 42425.66042 | Soil | 90 | ppm | 120.97  | 8.2   |
| GR 21-2 | 42425.66181 | Soil | 90 | ppm | 133.55  | 8.4   |
| GR 21-3 | 42425.66319 | Soil | 90 | ppm | 140.51  | 8.7   |
| GR 21-4 | 42425.66458 | Soil | 90 | ppm | 128.6   | 8.39  |
| GR 21-5 | 42425.66528 | Soil | 90 | ppm | 137.19  | 8.65  |
| GR 21-6 | 42425.66736 | Soil | 90 | ppm | 135.34  | 8.45  |
| GR 21-7 | 42425.66806 | Soil | 90 | ppm | 137.75  | 8.5   |
| GR 21-8 | 42425.66944 | Soil | 90 | ppm | 133.06  | 8.39  |
| GR 21-9 | 42425.67083 | Soil | 90 | ppm | 148.06  | 9.05  |

| GR 22-1 | 42431.71736 | Soil | 90 | ppm | 1135.8  | 23.37 |
|---------|-------------|------|----|-----|---------|-------|
| GR 22-2 | 42431.71875 | Soil | 90 | ppm | 985.56  | 21.45 |
| GR 22-3 | 42431.72014 | Soil | 90 | ppm | 1097.88 | 22.85 |
| GR 22-4 | 42431.72153 | Soil | 90 | ppm | 1150.59 | 24.18 |
| GR 22-5 | 42431.72222 | Soil | 90 | ppm | 1025.68 | 21.63 |
| GR 22-6 | 42431.72361 | Soil | 90 | ppm | 1106.74 | 23.16 |
| GR 22-7 | 42431.725   | Soil | 90 | ppm | 1163.25 | 24.36 |
| GR 22-8 | 42431.72639 | Soil | 90 | ppm | 1259.34 | 25.16 |
| GR 22-9 | 42431.72778 | Soil | 90 | ppm | 1158.24 | 24.32 |
| GR 23-1 | 42430.75694 | Soil | 90 | ppm | 1421.58 | 27.18 |
| GR 23-2 | 42430.75833 | Soil | 90 | ppm | 1364.59 | 26.34 |
| GR 23-3 | 42430.75903 | Soil | 90 | ppm | 1402.41 | 26.81 |
| GR 23-4 | 42430.77222 | Soil | 90 | ppm | 1255.54 | 24    |
| GR 23-5 | 42430.77361 | Soil | 90 | ppm | 1410.62 | 26.75 |
| GR 23-6 | 42430.775   | Soil | 90 | ppm | 1356.42 | 25.81 |
| GR 23-7 | 42430.77639 | Soil | 90 | ppm | 1379.81 | 26.05 |
| GR 23-8 | 42430.77778 | Soil | 90 | ppm | 1427.95 | 26.85 |
| GR 23-9 | 42430.77917 | Soil | 90 | ppm | 1410.99 | 27.18 |
| GR 24-1 | 42430.46875 | Soil | 90 | ppm | 92.18   | 7.45  |
| GR 24-2 | 42430.46944 | Soil | 90 | ppm | 94.95   | 7.45  |
| GR 24-3 | 42430.47153 | Soil | 90 | ppm | 102.29  | 7.62  |
| GR 24-4 | 42430.47292 | Soil | 90 | ppm | 97.8    | 7.53  |
| GR 24-5 | 42430.47431 | Soil | 90 | ppm | 96.17   | 7.32  |
| GR 24-6 | 42430.475   | Soil | 90 | ppm | 100.03  | 7.53  |
| GR 24-7 | 42430.47639 | Soil | 90 | ppm | 102.29  | 7.6   |
| GR 24-8 | 42430.47778 | Soil | 90 | ppm | 105.58  | 7.59  |
| GR 24-9 | 42430.47917 | Soil | 90 | ppm | 97.75   | 7.35  |
| GR 25-1 | 42429.76528 | Soil | 90 | ppm | 278.61  | 11.27 |
| GR 25-2 | 42429.76667 | Soil | 90 | ppm | 288.16  | 11.64 |
| GR 25-3 | 42429.76875 | Soil | 90 | ppm | 277.31  | 11.35 |
| GR 25-4 | 42429.76944 | Soil | 90 | ppm | 272.53  | 11.38 |
| GR 25-5 | 42429.77083 | Soil | 90 | ppm | 295.66  | 12.05 |
| GR 25-6 | 42429.77222 | Soil | 90 | ppm | 274.92  | 11.58 |
| GR 25-7 | 42429.77361 | Soil | 90 | ppm | 286.58  | 11.81 |
| GR 25-8 | 42429.775   | Soil | 90 | ppm | 291.96  | 11.85 |
| GR 25-9 | 42429.77639 | Soil | 90 | ppm | 281.65  | 11.54 |
| GR 26-1 | 42430.43958 | Soil | 90 | ppm | 128.27  | 7.69  |
| GR 26-2 | 42430.44097 | Soil | 90 | ppm | 153.41  | 9.05  |
| GR 26-3 | 42430.44236 | Soil | 90 | ppm | 119.78  | 7.43  |
| GR 26-4 | 42430.44444 | Soil | 90 | ppm | 145.68  | 8.31  |
| GR 26-5 | 42430.44583 | Soil | 90 | ppm | 137.34  | 8.05  |
| GR 26-6 | 42430.44722 | Soil | 90 | ppm | 56.96   | 4.57  |
| GR 26-7 | 42430.44931 | Soil | 90 | ppm | 89.68   | 5.95  |
| GR 26-8 | 42430.45139 | Soil | 90 | ppm | 54.04   | 4.48  |

| GR 26-9 | 42430.45278 | Soil | 90 | ppm | 140.67  | 7.96  |
|---------|-------------|------|----|-----|---------|-------|
| GR 27-1 | 42429.74167 | Soil | 90 | ppm | 105.11  | 6.65  |
| GR 27-2 | 42429.74375 | Soil | 90 | ppm | 147.22  | 8.73  |
| GR 27-3 | 42429.74583 | Soil | 90 | ppm | 144.75  | 8.63  |
| GR 27-4 | 42429.75069 | Soil | 90 | ppm | 147.09  | 8.45  |
| GR 27-5 | 42429.75278 | Soil | 90 | ppm | 147.84  | 8.73  |
| GR 27-6 | 42429.75972 | Soil | 90 | ppm | 131.77  | 8.15  |
| GR 27-7 | 42429.76111 | Soil | 90 | ppm | 141.48  | 8.51  |
| GR 27-8 | 42429.7625  | Soil | 90 | ppm | 132.28  | 8.23  |
| GR 27-9 | 42429.76389 | Soil | 90 | ppm | 124.61  | 8.12  |
| GR 28-1 | 42430.49444 | Soil | 90 | ppm | 2869.57 | 39.92 |
| GR 28-2 | 42430.49583 | Soil | 90 | ppm | 2847.51 | 39.38 |
| GR 28-3 | 42430.49653 | Soil | 90 | ppm | 2829.12 | 38.92 |
| GR 28-4 | 42430.49792 | Soil | 90 | ppm | 2892.92 | 39.96 |
| GR 28-5 | 42430.50069 | Soil | 90 | ppm | 2841.28 | 39.63 |
| GR 28-6 | 42430.50208 | Soil | 90 | ppm | 2134.14 | 30.88 |
| GR 28-7 | 42430.50347 | Soil | 90 | ppm | 2936.3  | 40.79 |
| GR 28-8 | 42430.50486 | Soil | 90 | ppm | 2842.04 | 39.61 |
| GR 28-9 | 42430.50694 | Soil | 90 | ppm | 2872.09 | 40.55 |
| GR 29-1 | 42431.90278 | Soil | 90 | ppm | 296.1   | 11.72 |
| GR 29-2 | 42431.90486 | Soil | 90 | ppm | 225.07  | 9.55  |
| GR 29-3 | 42431.90625 | Soil | 90 | ppm | 296.93  | 11.71 |
| GR 29-4 | 42431.90833 | Soil | 90 | ppm | 289.66  | 11.73 |
| GR 29-5 | 42431.90972 | Soil | 90 | ppm | 313.03  | 12.12 |
| GR 29-6 | 42431.91111 | Soil | 90 | ppm | 248.3   | 10.25 |
| GR 29-7 | 42431.9125  | Soil | 90 | ppm | 352.15  | 12.94 |
| GR 29-8 | 42431.91389 | Soil | 90 | ppm | 356.19  | 12.5  |
| GR 29-9 | 42431.91597 | Soil | 90 | ppm | 432.11  | 14.12 |
| GR 3-1  | 42424.68542 | Soil | 90 | ppm | 811.6   | 19.99 |
| GR 3-2  | 42424.6875  | Soil | 90 | ppm | 829.23  | 20.61 |
| GR 3-3  | 42424.68889 | Soil | 90 | ppm | 769.24  | 19.51 |
| GR 3-4  | 42424.69028 | Soil | 90 | ppm | 739.12  | 19.11 |
| GR 3-5  | 42424.69236 | Soil | 90 | ppm | 769.92  | 19.55 |
| GR 3-6  | 42424.69375 | Soil | 90 | ppm | 791.73  | 20.05 |
| GR 3-7  | 42424.69583 | Soil | 90 | ppm | 831.88  | 20.37 |
| GR 3-8  | 42424.69792 | Soil | 90 | ppm | 786.01  | 19.99 |
| GR 3-9  | 42424.69931 | Soil | 90 | ppm | 786.85  | 19.94 |
| GR 30-1 | 42429.85417 | Soil | 90 | ppm | 418.63  | 14.18 |
| GR 30-2 | 42429.85556 | Soil | 90 | ppm | 398.13  | 13.48 |
| GR 30-3 | 42429.85694 | Soil | 90 | ppm | 415.48  | 13.96 |
| GR 30-4 | 42429.85833 | Soil | 90 | ppm | 384.39  | 13.39 |
| GR 30-5 | 42429.85972 | Soil | 90 | ppm | 396.84  | 13.64 |
| GR 30-6 | 42429.86111 | Soil | 90 | ppm | 427.95  | 14.43 |
| GR 30-7 | 42429.86181 | Soil | 90 | ppm | 409.34  | 14.07 |

| GR 30-8 | 42429.86389 | Soil | 90 | ppm | 427.41  | 14.26 |
|---------|-------------|------|----|-----|---------|-------|
| GR 30-9 | 42429.86528 | Soil | 90 | ppm | 376.29  | 12.93 |
| GR 31-1 | 42424.61667 | Soil | 90 | ppm | 137.81  | 8.53  |
| GR 31-2 | 42424.62014 | Soil | 90 | ppm | 123.61  | 8.11  |
| GR 31-3 | 42424.62222 | Soil | 90 | ppm | 133.45  | 8.35  |
| GR 31-4 | 42424.62431 | Soil | 90 | ppm | 123.58  | 8.19  |
| GR 31-5 | 42424.62569 | Soil | 90 | ppm | 119.74  | 8.12  |
| GR 31-6 | 42424.62778 | Soil | 90 | ppm | 128.27  | 8.38  |
| GR 31-7 | 42424.62917 | Soil | 90 | ppm | 122.64  | 8.1   |
| GR 31-8 | 42424.63056 | Soil | 90 | ppm | 117.49  | 8.08  |
| GR 31-9 | 42424.63264 | Soil | 90 | ppm | 130.23  | 8.32  |
| GR 32-1 | 42429.86736 | Soil | 90 | ppm | 598.64  | 16.97 |
| GR 32-2 | 42429.86944 | Soil | 90 | ppm | 615.52  | 17    |
| GR 32-3 | 42429.87083 | Soil | 90 | ppm | 1077.42 | 24.09 |
| GR 32-4 | 42429.87222 | Soil | 90 | ppm | 274.48  | 10.01 |
| GR 32-5 | 42429.87361 | Soil | 90 | ppm | 378.11  | 13.15 |
| GR 32-6 | 42429.875   | Soil | 90 | ppm | 785.92  | 19.31 |
| GR 32-7 | 42429.87639 | Soil | 90 | ppm | 127.36  | 7.52  |
| GR 32-8 | 42429.87708 | Soil | 90 | ppm | 820.33  | 18.49 |
| GR 32-9 | 42429.87847 | Soil | 90 | ppm | 497.95  | 15.51 |
| GR 33-1 | 42429.77917 | Soil | 90 | ppm | 901.01  | 18.87 |
| GR 33-2 | 42429.78125 | Soil | 90 | ppm | 1940.17 | 35.25 |
| GR 33-3 | 42429.78264 | Soil | 90 | ppm | 1461.1  | 28.92 |
| GR 33-4 | 42429.78403 | Soil | 90 | ppm | 752.34  | 18.99 |
| GR 33-5 | 42429.78542 | Soil | 90 | ppm | 679.59  | 17.96 |
| GR 33-6 | 42429.78681 | Soil | 90 | ppm | 1038.34 | 23.32 |
| GR 33-7 | 42429.78819 | Soil | 90 | ppm | 658.61  | 17.52 |
| GR 33-8 | 42429.78889 | Soil | 90 | ppm | 451.12  | 15.23 |
| GR 33-9 | 42429.79028 | Soil | 90 | ppm | 353.91  | 12.67 |
| GR 34-1 | 42430.65694 | Soil | 90 | ppm | 458.75  | 15.59 |
| GR 34-2 | 42430.65972 | Soil | 90 | ppm | 454.48  | 15.25 |
| GR 34-3 | 42430.66111 | Soil | 90 | ppm | 208.06  | 9.79  |
| GR 34-4 | 42430.6625  | Soil | 90 | ppm | 412     | 14.44 |
| GR 34-5 | 42430.66389 | Soil | 90 | ppm | 431.49  | 14.86 |
| GR 34-6 | 42430.66528 | Soil | 90 | ppm | 407.47  | 14.7  |
| GR 34-7 | 42430.66667 | Soil | 90 | ppm | 533.86  | 16.43 |
| GR 34-8 | 42430.66806 | Soil | 90 | ppm | 389.48  | 14.24 |
| GR 34-9 | 42430.66944 | Soil | 90 | ppm | 415.45  | 14.72 |
| GR 35-1 | 42437.80764 | Soil | 90 | ppm | 147.92  | 8.55  |
| GR 35-2 | 42437.80972 | Soil | 90 | ppm | 175.83  | 9.33  |
| GR 35-3 | 42437.81111 | Soil | 90 | ppm | 167.82  | 9.03  |
| GR 35-4 | 42437.8125  | Soil | 90 | ppm | 158.76  | 8.88  |
| GR 35-5 | 42437.81389 | Soil | 90 | ppm | 162.55  | 8.89  |
| GR 35-6 | 42437.81528 | Soil | 90 | ppm | 147.4   | 8.61  |

| GR 35-7 | 42437.81667 | Soil | 90 | ppm | 150.56  | 8.69  |
|---------|-------------|------|----|-----|---------|-------|
| GR 35-8 | 42437.81806 | Soil | 90 | ppm | 163.63  | 8.91  |
| GR 35-9 | 42437.81944 | Soil | 90 | ppm | 160.7   | 9.1   |
| GR 36-1 | 42432.53125 | Soil | 90 | ppm | 106.2   | 7.62  |
| GR 36-2 | 42432.53264 | Soil | 90 | ppm | 118.83  | 7.93  |
| GR 36-3 | 42432.53403 | Soil | 90 | ppm | 109.62  | 7.59  |
| GR 36-4 | 42432.53542 | Soil | 90 | ppm | 96.99   | 6.8   |
| GR 36-5 | 42432.53681 | Soil | 90 | ppm | 111.09  | 7.68  |
| GR 36-6 | 42432.53819 | Soil | 90 | ppm | 107.52  | 7.53  |
| GR 36-7 | 42432.53958 | Soil | 90 | ppm | 112.41  | 7.68  |
| GR 36-8 | 42432.54167 | Soil | 90 | ppm | 93.12   | 6.47  |
| GR 36-9 | 42432.54306 | Soil | 90 | ppm | 98.97   | 6.77  |
| GR 37-1 | 42431.70417 | Soil | 90 | ppm | 1529.76 | 28.24 |
| GR 37-2 | 42431.70556 | Soil | 90 | ppm | 1540.1  | 28.62 |
| GR 37-3 | 42431.70694 | Soil | 90 | ppm | 915.35  | 18.53 |
| GR 37-4 | 42431.70764 | Soil | 90 | ppm | 1522.29 | 28.49 |
| GR 37-5 | 42431.70972 | Soil | 90 | ppm | 1582.45 | 28.75 |
| GR 37-6 | 42431.71111 | Soil | 90 | ppm | 1607.03 | 29.23 |
| GR 37-7 | 42431.7125  | Soil | 90 | ppm | 1639.2  | 29.27 |
| GR 37-8 | 42431.71389 | Soil | 90 | ppm | 1566.13 | 29.02 |
| GR 37-9 | 42431.71528 | Soil | 90 | ppm | 1614.52 | 29.67 |
| GR 38-1 | 42432.49306 | Soil | 90 | ppm | 795.81  | 16.52 |
| GR 38-2 | 42432.49375 | Soil | 90 | ppm | 1566.8  | 28.04 |
| GR 38-3 | 42432.49514 | Soil | 90 | ppm | 1188.54 | 21.93 |
| GR 38-4 | 42432.49653 | Soil | 90 | ppm | 610.98  | 13.86 |
| GR 38-5 | 42432.49792 | Soil | 90 | ppm | 1348.03 | 24.21 |
| GR 38-6 | 42432.49931 | Soil | 90 | ppm | 1213.04 | 22.32 |
| GR 38-7 | 42432.5     | Soil | 90 | ppm | 291.19  | 9.15  |
| GR 38-8 | 42432.50139 | Soil | 90 | ppm | 1561.83 | 28    |
| GR 38-9 | 42432.50278 | Soil | 90 | ppm | 1632.23 | 28.35 |
| GR 39-1 | 42437.69792 | Soil | 90 | ppm | 1184.9  | 24.72 |
| GR 39-2 | 42437.69931 | Soil | 90 | ppm | 1031.83 | 22.17 |
| GR 39-3 | 42437.70069 | Soil | 90 | ppm | 1021.52 | 21.9  |
| GR 39-4 | 42437.70208 | Soil | 90 | ppm | 1152.21 | 24.23 |
| GR 39-5 | 42437.70347 | Soil | 90 | ppm | 1051.6  | 22.53 |
| GR 39-6 | 42437.70486 | Soil | 90 | ppm | 1103.86 | 23.9  |
| GR 39-7 | 42437.70625 | Soil | 90 | ppm | 1068.34 | 23.55 |
| GR 39-8 | 42437.70764 | Soil | 90 | ppm | 1116.17 | 23.7  |
| GR 39-9 | 42437.70903 | Soil | 90 | ppm | 1114.48 | 23.06 |
| GR 4-1  | 42427.66042 | Soil | 90 | ppm | 1432.53 | 27.71 |
| GR 4-2  | 42427.66111 | Soil | 90 | ppm | 1986.16 | 34.96 |
| GR 4-3  | 42427.6625  | Soil | 90 | ppm | 1857.79 | 33.44 |
| GR 4-4  | 42427.66458 | Soil | 90 | ppm | 1241.03 | 25.31 |
| GR 4-5  | 42427.66597 | Soil | 90 | ppm | 2151.63 | 36.58 |
| GR 4-6  | 42427.66736 | Soil | 90 | ppm | 2169.59 | 36.68 |
|---------|-------------|------|----|-----|---------|-------|
| GR 4-7  | 42427.66875 | Soil | 90 | ppm | 2359.22 | 38.41 |
| GR 4-8  | 42427.66944 | Soil | 90 | ppm | 2224.57 | 37.48 |
| GR 4-9  | 42427.67083 | Soil | 90 | ppm | 2241.67 | 36.58 |
| GR 40-1 | 42437.82292 | Soil | 90 | ppm | 96.24   | 6.67  |
| GR 40-2 | 42437.82431 | Soil | 90 | ppm | 75.94   | 5.68  |
| GR 40-3 | 42437.82639 | Soil | 90 | ppm | 53.34   | 4.6   |
| GR 40-4 | 42437.82778 | Soil | 90 | ppm | 121.69  | 7.65  |
| GR 40-5 | 42437.82917 | Soil | 90 | ppm | 106.96  | 7.26  |
| GR 40-6 | 42437.83125 | Soil | 90 | ppm | 86.6    | 5.98  |
| GR 40-7 | 42437.83472 | Soil | 90 | ppm | 129.03  | 8.1   |
| GR 40-8 | 42437.83611 | Soil | 90 | ppm | 113.57  | 7.27  |
| GR 40-9 | 42437.8375  | Soil | 90 | ppm | 93.12   | 6.36  |
| GR 41-1 | 42436.89514 | Soil | 90 | ppm | 1208.46 | 22.62 |
| GR 41-2 | 42436.89653 | Soil | 90 | ppm | 649.76  | 14.51 |
| GR 41-3 | 42436.89792 | Soil | 90 | ppm | 1332.13 | 24.52 |
| GR 41-4 | 42436.89931 | Soil | 90 | ppm | 1450.8  | 26.05 |
| GR 41-5 | 42436.90069 | Soil | 90 | ppm | 1165.99 | 22.09 |
| GR 41-6 | 42436.90139 | Soil | 90 | ppm | 1057.12 | 20.32 |
| GR 41-7 | 42436.90278 | Soil | 90 | ppm | 980.52  | 19.05 |
| GR 41-8 | 42436.90417 | Soil | 90 | ppm | 1008.48 | 19.22 |
| GR 41-9 | 42436.90556 | Soil | 90 | ppm | 1241.45 | 22.85 |
| GR 42-1 | 42436.84653 | Soil | 90 | ppm | 1621.74 | 36.24 |
| GR 42-2 | 42436.84792 | Soil | 90 | ppm | 1542.12 | 27.96 |
| GR 42-3 | 42436.84931 | Soil | 90 | ppm | 1766.72 | 30.07 |
| GR 42-3 | 42436.88403 | Soil | 90 | ppm | 1727.36 | 38.11 |
| GR 42-4 | 42436.88611 | Soil | 90 | ppm | 1606.59 | 29.36 |
| GR 42-5 | 42436.8875  | Soil | 90 | ppm | 1693.25 | 29.27 |
| GR 42-6 | 42436.88819 | Soil | 90 | ppm | 1563.5  | 27.69 |
| GR 42-7 | 42436.88958 | Soil | 90 | ppm | 1711.2  | 29.87 |
| GR 42-8 | 42436.89097 | Soil | 90 | ppm | 1232.23 | 22.84 |
| GR 429  | 42436.89236 | Soil | 90 | ppm | 1707.75 | 29.85 |
| GR 43-1 | 42432.54514 | Soil | 90 | ppm | 1663.48 | 28.93 |
| GR 43-2 | 42432.54653 | Soil | 90 | ppm | 1810.91 | 30.97 |
| GR 43-3 | 42432.54792 | Soil | 90 | ppm | 1692.73 | 29.09 |
| GR 43-4 | 42432.54931 | Soil | 90 | ppm | 481.34  | 12.48 |
| GR 43-5 | 42432.55069 | Soil | 90 | ppm | 958.59  | 19.18 |
| GR 43-6 | 42432.55208 | Soil | 90 | ppm | 1141.55 | 21.08 |
| GR 43-7 | 42432.55347 | Soil | 90 | ppm | 880.95  | 17.83 |
| GR 43-8 | 42432.55486 | Soil | 90 | ppm | 1171.5  | 22.13 |
| GR 43-9 | 42432.55625 | Soil | 90 | ppm | 1146.5  | 21.88 |
| GR 44-1 | 42436.9375  | Soil | 90 | ppm | 2953.51 | 41.44 |
| GR 44-2 | 42436.93889 | Soil | 90 | ppm | 2949.78 | 41.68 |
| GR 44-3 | 42436.94028 | Soil | 90 | ppm | 3016.77 | 41.16 |

| GR 44-4 | 42436.94236 | Soil | 90 | ppm | 2962.22 | 41.78 |
|---------|-------------|------|----|-----|---------|-------|
| GR 44-5 | 42436.94583 | Soil | 90 | ppm | 2757.21 | 39.41 |
| GR 44-6 | 42436.94722 | Soil | 90 | ppm | 2934.9  | 41.18 |
| GR 44-7 | 42436.94861 | Soil | 90 | ppm | 2935.49 | 40.75 |
| GR 44-8 | 42436.95    | Soil | 90 | ppm | 2691.5  | 38.68 |
| GR 44-9 | 42436.95139 | Soil | 90 | ppm | 3016.18 | 41.39 |
| GR 45-1 | 42437.77361 | Soil | 90 | ppm | 90.23   | 7.03  |
| GR 45-2 | 42437.775   | Soil | 90 | ppm | 88.92   | 7     |
| GR 45-3 | 42437.77708 | Soil | 90 | ppm | 84.71   | 6.71  |
| GR 45-4 | 42437.77847 | Soil | 90 | ppm | 87.68   | 6.92  |
| GR 45-5 | 42437.77986 | Soil | 90 | ppm | 91.21   | 6.92  |
| GR 45-6 | 42437.78194 | Soil | 90 | ppm | 91.22   | 7     |
| GR 45-7 | 42437.78264 | Soil | 90 | ppm | 87.94   | 6.85  |
| GR 45-8 | 42437.78472 | Soil | 90 | ppm | 99.4    | 7.36  |
| GR 45-9 | 42437.78681 | Soil | 90 | ppm | 81.77   | 6.78  |
| GR 46-1 | 42432.575   | Soil | 90 | ppm | 68.16   | 6.37  |
| GR 46-2 | 42432.57639 | Soil | 90 | ppm | 70.83   | 6.46  |
| GR 46-3 | 42432.57778 | Soil | 90 | ppm | 68.9    | 6.45  |
| GR 46-4 | 42432.57917 | Soil | 90 | ppm | 66.89   | 6.31  |
| GR 46-5 | 42432.58056 | Soil | 90 | ppm | 69.04   | 6.3   |
| GR 46-6 | 42432.58194 | Soil | 90 | ppm | 71.94   | 6.41  |
| GR 46-7 | 42432.58264 | Soil | 90 | ppm | 73.37   | 6.56  |
| GR 46-8 | 42432.58403 | Soil | 90 | ppm | 70.07   | 6.3   |
| GR 46-9 | 42432.58542 | Soil | 90 | ppm | 68.58   | 6.33  |
| GR 47-1 | 42433.65833 | Soil | 90 | ppm | 286.93  | 11.9  |
| GR 47-2 | 42433.65972 | Soil | 90 | ppm | 277.23  | 11.79 |
| GR 47-3 | 42433.66111 | Soil | 90 | ppm | 286.58  | 11.87 |
| GR 47-4 | 42433.6625  | Soil | 90 | ppm | 296.4   | 12.25 |
| GR 47-5 | 42433.66389 | Soil | 90 | ppm | 276.96  | 11.85 |
| GR 47-6 | 42433.66528 | Soil | 90 | ppm | 299.9   | 12.13 |
| GR 47-7 | 42433.66667 | Soil | 90 | ppm | 260.8   | 11.41 |
| GR 47-8 | 42433.66736 | Soil | 90 | ppm | 280.21  | 11.84 |
| GR 47-9 | 42433.66875 | Soil | 90 | ppm | 283.05  | 11.84 |
| GR 48-1 | 42436.95625 | Soil | 90 | ppm | 116.04  | 8.62  |
| GR 48-2 | 42436.95764 | Soil | 90 | ppm | 124     | 8.05  |
| GR 48-3 | 42436.95903 | Soil | 90 | ppm | 122.22  | 7.83  |
| GR 48-4 | 42436.96111 | Soil | 90 | ppm | 125.31  | 8.07  |
| GR 48-5 | 42436.9625  | Soil | 90 | ppm | 123     | 7.96  |
| GR 48-6 | 42436.96597 | Soil | 90 | ppm | 118.54  | 7.7   |
| GR 48-7 | 42436.96667 | Soil | 90 | ppm | 116.02  | 7.87  |
| GR 48-8 | 42436.96875 | Soil | 90 | ppm | 127.69  | 7.9   |
| GR 48-9 | 42437.69583 | Soil | 90 | ppm | 122.13  | 7.77  |
| GR 49-1 | 42437.72569 | Soil | 90 | ppm | 180.1   | 9.67  |
| GR 49-2 | 42437.72639 | Soil | 90 | ppm | 173.09  | 9.46  |

| GR 49-3 | 42437.72847 | Soil | 90 | ppm | 199.82  | 10.13 |
|---------|-------------|------|----|-----|---------|-------|
| GR 49-4 | 42437.72986 | Soil | 90 | ppm | 180.94  | 9.75  |
| GR 49-5 | 42437.76458 | Soil | 90 | ppm | 152.65  | 8.23  |
| GR 49-6 | 42437.76597 | Soil | 90 | ppm | 181.57  | 9.56  |
| GR 49-7 | 42437.76736 | Soil | 90 | ppm | 193.28  | 10    |
| GR 49-8 | 42437.76806 | Soil | 90 | ppm | 178.57  | 9.15  |
| GR 49-9 | 42437.76944 | Soil | 90 | ppm | 202.78  | 10.15 |
| GR 5-1  | 42427.67292 | Soil | 90 | ppm | 100.87  | 7.76  |
| GR 5-2  | 42427.67431 | Soil | 90 | ppm | 83.84   | 6.94  |
| GR 5-3  | 42427.67569 | Soil | 90 | ppm | 92.26   | 7.23  |
| GR 5-4  | 42427.67708 | Soil | 90 | ppm | 90.73   | 7.36  |
| GR 5-5  | 42427.67847 | Soil | 90 | ppm | 93.25   | 7.38  |
| GR 5-6  | 42427.67986 | Soil | 90 | ppm | 103.19  | 7.65  |
| GR 5-7  | 42427.68125 | Soil | 90 | ppm | 84.45   | 7.16  |
| GR 5-8  | 42427.68264 | Soil | 90 | ppm | 107.3   | 7.9   |
| GR 5-9  | 42427.68403 | Soil | 90 | ppm | 114.21  | 8.09  |
| GR 50-1 | 42436.92292 | Soil | 90 | ppm | 2246.28 | 36.17 |
| GR 50-2 | 42436.92431 | Soil | 90 | ppm | 1912.38 | 32.54 |
| GR 50-3 | 42436.92569 | Soil | 90 | ppm | 1942.08 | 33.55 |
| GR 50-4 | 42436.92708 | Soil | 90 | ppm | 2181.53 | 35.36 |
| GR 50-5 | 42436.92847 | Soil | 90 | ppm | 1773.55 | 30.2  |
| GR 50-6 | 42436.92986 | Soil | 90 | ppm | 1703.45 | 30.21 |
| GR 50-7 | 42436.93125 | Soil | 90 | ppm | 1829.85 | 31.93 |
| GR 50-8 | 42436.93264 | Soil | 90 | ppm | 1942.29 | 32.83 |
| GR 50-9 | 42436.93403 | Soil | 90 | ppm | 1924.31 | 32.41 |
| GR 51-1 | 42432.61597 | Soil | 90 | ppm | 1811.76 | 29.06 |
| GR 51-2 | 42432.61667 | Soil | 90 | ppm | 1305.63 | 22.51 |
| GR 51-3 | 42432.61806 | Soil | 90 | ppm | 1574.24 | 52.9  |
| GR 51-4 | 42432.61944 | Soil | 90 | ppm | 2049.98 | 33.44 |
| GR 51-5 | 42432.62083 | Soil | 90 | ppm | 2092.46 | 34.08 |
| GR 51-6 | 42432.62222 | Soil | 90 | ppm | 1861.03 | 30.86 |
| GR 51-7 | 42432.62361 | Soil | 90 | ppm | 1824.68 | 29.57 |
| GR 51-8 | 42432.62431 | Soil | 90 | ppm | 1864.62 | 30.69 |
| GR 51-9 | 42432.62569 | Soil | 90 | ppm | 1230.66 | 22.03 |
| GR 52-1 | 42437.71181 | Soil | 90 | ppm | 269.96  | 10.69 |
| GR 52-2 | 42437.71389 | Soil | 90 | ppm | 275.17  | 10.97 |
| GR 52-3 | 42437.71458 | Soil | 90 | ppm | 312.56  | 12.01 |
| GR 52-4 | 42437.71597 | Soil | 90 | ppm | 290.27  | 11.53 |
| GR 52-5 | 42437.71736 | Soil | 90 | ppm | 265.77  | 10.69 |
| GR 52-6 | 42437.71875 | Soil | 90 | ppm | 292.95  | 11.43 |
| GR 52-7 | 42437.72014 | Soil | 90 | ppm | 307.13  | 11.68 |
| GR 52-8 | 42437.72153 | Soil | 90 | ppm | 160.19  | 7.46  |
| GR 52-9 | 42437.72292 | Soil | 90 | ppm | 305.16  | 11.3  |
| GR 53-1 | 42430.57569 | Soil | 90 | ppm | 64.03   | 5.65  |

| GR 53-2 | 42430.57708 | Soil | 90 | ppm | 99.33   | 7.16  |
|---------|-------------|------|----|-----|---------|-------|
| GR 53-3 | 42430.57847 | Soil | 90 | ppm | 105.13  | 7.51  |
| GR 53-4 | 42430.58125 | Soil | 90 | ppm | 91.53   | 6.58  |
| GR 53-5 | 42430.58264 | Soil | 90 | ppm | 83.35   | 6.55  |
| GR 53-6 | 42430.58333 | Soil | 90 | ppm | 109.44  | 7.76  |
| GR 53-7 | 42430.58472 | Soil | 90 | ppm | 105.31  | 7.5   |
| GR 53-8 | 42430.58611 | Soil | 90 | ppm | 101.89  | 7.35  |
| GR 53-9 | 42430.5875  | Soil | 90 | ppm | 114.73  | 7.86  |
| GR 54-1 | 42432.74861 | Soil | 90 | ppm | 89.52   | 7     |
| GR 54-2 | 42432.75069 | Soil | 90 | ppm | 92.24   | 7.13  |
| GR 54-3 | 42432.75278 | Soil | 90 | ppm | 94.2    | 7.12  |
| GR 54-4 | 42432.75417 | Soil | 90 | ppm | 77.89   | 6.71  |
| GR 54-5 | 42432.75625 | Soil | 90 | ppm | 89.97   | 7.08  |
| GR 54-6 | 42432.75764 | Soil | 90 | ppm | 99.63   | 7.21  |
| GR 54-7 | 42432.75903 | Soil | 90 | ppm | 97.57   | 7.3   |
| GR 54-8 | 42432.76042 | Soil | 90 | ppm | 91.29   | 7.1   |
| GR 54-9 | 42432.76181 | Soil | 90 | ppm | 97.37   | 7.29  |
| GR 55-1 | 42432.76528 | Soil | 90 | ppm | 1696.5  | 28.09 |
| GR 55-2 | 42432.76667 | Soil | 90 | ppm | 1824    | 30.21 |
| GR 55-3 | 42432.76806 | Soil | 90 | ppm | 1667.87 | 28.46 |
| GR 55-4 | 42432.76944 | Soil | 90 | ppm | 2005.41 | 32.86 |
| GR 55-5 | 42432.77083 | Soil | 90 | ppm | 1984.75 | 32.32 |
| GR 55-6 | 42432.77361 | Soil | 90 | ppm | 1624.03 | 27.37 |
| GR 55-7 | 42432.775   | Soil | 90 | ppm | 2027.88 | 33.11 |
| GR 55-8 | 42432.77639 | Soil | 90 | ppm | 1694.95 | 28.47 |
| GR 55-9 | 42432.77708 | Soil | 90 | ppm | 1108.24 | 20.51 |
| GR 56-1 | 42432.73194 | Soil | 90 | ppm | 1410.86 | 26.47 |
| GR 56-2 | 42432.73333 | Soil | 90 | ppm | 1694.86 | 30.33 |
| GR 56-3 | 42432.73472 | Soil | 90 | ppm | 1390.27 | 25.59 |
| GR 56-4 | 42432.73681 | Soil | 90 | ppm | 1850.96 | 31.86 |
| GR 56-5 | 42432.73819 | Soil | 90 | ppm | 1534.22 | 28.49 |
| GR 56-6 | 42432.74028 | Soil | 90 | ppm | 1613.15 | 29.46 |
| GR 56-7 | 42432.74167 | Soil | 90 | ppm | 1518.66 | 27.08 |
| GR 56-8 | 42432.74375 | Soil | 90 | ppm | 1736.84 | 30.23 |
| GR 56-9 | 42432.74514 | Soil | 90 | ppm | 1670.95 | 30.36 |
| GR 57-1 | 42432.71389 | Soil | 90 | ppm | 871.53  | 17.71 |
| GR 57-2 | 42432.71667 | Soil | 90 | ppm | 1782.83 | 30.81 |
| GR 57-3 | 42432.71806 | Soil | 90 | ppm | 1742.25 | 29.59 |
| GR 57-4 | 42432.72014 | Soil | 90 | ppm | 1848.82 | 31.46 |
| GR 57-5 | 42432.72153 | Soil | 90 | ppm | 1951.09 | 32.01 |
| GR 57-6 | 42432.72292 | Soil | 90 | ppm | 1811.11 | 30.96 |
| GR 57-7 | 42432.725   | Soil | 90 | ppm | 1667.69 | 29.28 |
| GR 57-8 | 42432.72639 | Soil | 90 | ppm | 1769.15 | 30.51 |
| GR 57-9 | 42432.72917 | Soil | 90 | ppm | 1629.24 | 28.59 |

| GR 58-1 | 42432.51667 | Soil | 90 | ppm | 146.29  | 8.22  |
|---------|-------------|------|----|-----|---------|-------|
| GR 58-2 | 42432.51806 | Soil | 90 | ppm | 141.84  | 8.32  |
| GR 58-3 | 42432.51944 | Soil | 90 | ppm | 102.11  | 6.54  |
| GR 58-4 | 42432.52083 | Soil | 90 | ppm | 145.35  | 8.42  |
| GR 58-5 | 42432.52222 | Soil | 90 | ppm | 157.42  | 8.93  |
| GR 58-6 | 42432.52361 | Soil | 90 | ppm | 119.35  | 7.3   |
| GR 58-7 | 42432.525   | Soil | 90 | ppm | 165.02  | 9.1   |
| GR 58-8 | 42432.52639 | Soil | 90 | ppm | 163.05  | 9.09  |
| GR 58-9 | 42432.52778 | Soil | 90 | ppm | 144.98  | 8.66  |
| GR 59-1 | 42432.50486 | Soil | 90 | ppm | 122.65  | 8.18  |
| GR 59-2 | 42432.50625 | Soil | 90 | ppm | 129.89  | 8.25  |
| GR 59-3 | 42432.50764 | Soil | 90 | ppm | 119.59  | 7.87  |
| GR 59-4 | 42432.50833 | Soil | 90 | ppm | 115.99  | 7.85  |
| GR 59-5 | 42432.50972 | Soil | 90 | ppm | 118.72  | 7.93  |
| GR 59-6 | 42432.51111 | Soil | 90 | ppm | 76.43   | 5.89  |
| GR 59-7 | 42432.5125  | Soil | 90 | ppm | 121.44  | 8.1   |
| GR 59-8 | 42432.51389 | Soil | 90 | ppm | 113.31  | 7.9   |
| GR 59-9 | 42432.51528 | Soil | 90 | ppm | 122.64  | 8.19  |
| GR 6-1  | 42426.61181 | Soil | 90 | ppm | 538.78  | 16.29 |
| GR 6-2  | 42426.61319 | Soil | 90 | ppm | 549.05  | 16.44 |
| GR 6-3  | 42426.61458 | Soil | 90 | ppm | 541.06  | 16.37 |
| GR 6-4  | 42426.61597 | Soil | 90 | ppm | 576.12  | 16.66 |
| GR 6-5  | 42426.63194 | Soil | 90 | ppm | 547.44  | 15.83 |
| GR 6-6  | 42426.63333 | Soil | 90 | ppm | 576.37  | 16.98 |
| GR 6-7  | 42426.63542 | Soil | 90 | ppm | 567.41  | 16.76 |
| GR 6-8  | 42426.63681 | Soil | 90 | ppm | 589.45  | 17.15 |
| GR 6-9  | 42426.63819 | Soil | 90 | ppm | 529.24  | 16.29 |
| GR 60-1 | 42436.90833 | Soil | 90 | ppm | 17.4    | 4.1   |
| GR 60-2 | 42436.90972 | Soil | 90 | ppm | 13.22   | 3.83  |
| GR 60-3 | 42436.91111 | Soil | 90 | ppm | 14.56   | 3.83  |
| GR 60-4 | 42436.9125  | Soil | 90 | ppm | 15.47   | 4     |
| GR 60-5 | 42436.91389 | Soil | 90 | ppm | 13.81   | 3.83  |
| GR 60-6 | 42436.91597 | Soil | 90 | ppm | 17.39   | 4.07  |
| GR 60-7 | 42436.91736 | Soil | 90 | ppm | 16.62   | 4.03  |
| GR 60-8 | 42436.91875 | Soil | 90 | ppm | 13.79   | 3.85  |
| GR 60-9 | 42436.92014 | Soil | 90 | ppm | 14.55   | 3.95  |
| GR 61-1 | 42431.95    | Soil | 90 | ppm | 1587.84 | 28.24 |
| GR 61-2 | 42431.95139 | Soil | 90 | ppm | 1827.85 | 32.1  |
| GR 61-3 | 42431.95347 | Soil | 90 | ppm | 1782.04 | 32.15 |
| GR 61-4 | 42431.95486 | Soil | 90 | ppm | 1429.54 | 26.27 |
| GR 61-5 | 42431.95625 | Soil | 90 | ppm | 1865.73 | 32.15 |
| GR 61-6 | 42431.95833 | Soil | 90 | ppm | 898.27  | 18.97 |
| GR 61-7 | 42431.95972 | Soil | 90 | ppm | 815.94  | 17.18 |
| GR 61-8 | 42431.96181 | Soil | 90 | ppm | 1029.91 | 21.26 |

| GR 61-9 | 42431.96319 | Soil | 90 | ppm | 962.96  | 19.13 |
|---------|-------------|------|----|-----|---------|-------|
| GR 62-1 | 42432.78194 | Soil | 90 | ppm | 2302.56 | 34.26 |
| GR 62-2 | 42432.78333 | Soil | 90 | ppm | 2324.92 | 35.72 |
| GR 62-3 | 42432.78472 | Soil | 90 | ppm | 2299.3  | 35.62 |
| GR 62-4 | 42432.78542 | Soil | 90 | ppm | 1895.36 | 29.15 |
| GR 62-5 | 42432.78681 | Soil | 90 | ppm | 2589.24 | 38.42 |
| GR 62-6 | 42432.78819 | Soil | 90 | ppm | 2505.08 | 37.52 |
| GR 62-7 | 42432.78958 | Soil | 90 | ppm | 2452.39 | 36.49 |
| GR 62-8 | 42432.79097 | Soil | 90 | ppm | 2359.95 | 35.42 |
| GR 62-9 | 42432.79236 | Soil | 90 | ppm | 2477.52 | 37.44 |
| GR 63-1 | 42432.62778 | Soil | 90 | ppm | 694.35  | 17.27 |
| GR 63-2 | 42432.62986 | Soil | 90 | ppm | 771.19  | 18.61 |
| GR 63-3 | 42432.63056 | Soil | 90 | ppm | 847.41  | 19.8  |
| GR 63-4 | 42432.63194 | Soil | 90 | ppm | 576.29  | 14.67 |
| GR 63-5 | 42432.63333 | Soil | 90 | ppm | 789.84  | 18.45 |
| GR 63-6 | 42432.63472 | Soil | 90 | ppm | 716.04  | 17.42 |
| GR 63-7 | 42432.63611 | Soil | 90 | ppm | 503.49  | 13.26 |
| GR 63-8 | 42432.6375  | Soil | 90 | ppm | 766.59  | 18.45 |
| GR 63-9 | 42432.63889 | Soil | 90 | ppm | 770.55  | 18.67 |
| GR 64-1 | 42432.69792 | Soil | 90 | ppm | 266.37  | 10.35 |
| GR 64-2 | 42432.7     | Soil | 90 | ppm | 179.71  | 8.02  |
| GR 64-3 | 42432.70139 | Soil | 90 | ppm | 224.05  | 9.83  |
| GR 64-4 | 42432.70347 | Soil | 90 | ppm | 294.71  | 11.31 |
| GR 64-5 | 42432.70486 | Soil | 90 | ppm | 267.47  | 10.6  |
| GR 64-6 | 42432.70625 | Soil | 90 | ppm | 251.36  | 10.2  |
| GR 64-7 | 42432.70903 | Soil | 90 | ppm | 270.14  | 10.62 |
| GR 64-8 | 42432.71042 | Soil | 90 | ppm | 200.49  | 8.41  |
| GR 64-9 | 42432.71111 | Soil | 90 | ppm | 172.67  | 7.86  |
| GR 65-1 | 42432.65069 | Soil | 90 | ppm | 133.63  | 8.28  |
| GR 65-2 | 42432.65208 | Soil | 90 | ppm | 135.91  | 8.31  |
| GR 65-3 | 42432.65347 | Soil | 90 | ppm | 136.47  | 8.31  |
| GR 65-4 | 42432.65486 | Soil | 90 | ppm | 119.7   | 7.37  |
| GR 65-5 | 42432.65625 | Soil | 90 | ppm | 141.98  | 8.49  |
| GR 65-6 | 42432.65694 | Soil | 90 | ppm | 144.72  | 8.66  |
| GR 65-7 | 42432.65833 | Soil | 90 | ppm | 136.89  | 8.35  |
| GR 65-8 | 42432.65972 | Soil | 90 | ppm | 150.53  | 8.81  |
| GR 65-9 | 42432.66111 | Soil | 90 | ppm | 143.87  | 8.47  |
| GR 66-1 | 42432.46597 | Soil | 90 | ppm | 22.8    | 4.36  |
| GR 66-2 | 42432.46667 | Soil | 90 | ppm | 24.28   | 4.4   |
| GR 66-3 | 42432.46806 | Soil | 90 | ppm | 19.25   | 4.09  |
| GR 66-4 | 42432.46944 | Soil | 90 | ppm | 19.69   | 4.19  |
| GR 66-5 | 42432.47083 | Soil | 90 | ppm | 22.62   | 4.39  |
| GR 66-6 | 42432.47292 | Soil | 90 | ppm | 31.95   | 4.47  |
| GR 66-7 | 42432.47431 | Soil | 90 | ppm | 21.55   | 4.12  |

| GR 66-8 | 42432.47569 | Soil | 90 | ppm | 16.97   | 3.94  |
|---------|-------------|------|----|-----|---------|-------|
| GR 66-9 | 42432.47708 | Soil | 90 | ppm | 25.34   | 4.28  |
| GR 67-1 | 42432.43889 | Soil | 90 | ppm | 1429.35 | 25.55 |
| GR 67-2 | 42432.44028 | Soil | 90 | ppm | 1760.83 | 30.57 |
| GR 67-3 | 42432.44167 | Soil | 90 | ppm | 1673.59 | 29.76 |
| GR 67-4 | 42432.44306 | Soil | 90 | ppm | 1502.24 | 26.4  |
| GR 67-5 | 42432.44375 | Soil | 90 | ppm | 1686.03 | 30.18 |
| GR 67-6 | 42432.44514 | Soil | 90 | ppm | 1665.82 | 29.49 |
| GR 67-7 | 42432.44653 | Soil | 90 | ppm | 57.91   | 4.26  |
| GR 67-8 | 42432.44792 | Soil | 90 | ppm | 1444.72 | 27.12 |
| GR 67-9 | 42432.44931 | Soil | 90 | ppm | 1058.33 | 19.96 |
| GR 68-1 | 42433.64306 | Soil | 90 | ppm | 188.28  | 9.5   |
| GR 68-2 | 42433.64444 | Soil | 90 | ppm | 191.43  | 9.77  |
| GR 68-3 | 42433.64583 | Soil | 90 | ppm | 183.59  | 9.45  |
| GR 68-4 | 42433.64931 | Soil | 90 | ppm | 187.31  | 9.45  |
| GR 68-5 | 42433.65069 | Soil | 90 | ppm | 171.53  | 9.24  |
| GR 68-6 | 42433.65208 | Soil | 90 | ppm | 197.99  | 9.79  |
| GR 68-7 | 42433.65347 | Soil | 90 | ppm | 178.24  | 9.34  |
| GR 68-8 | 42433.65486 | Soil | 90 | ppm | 177.51  | 9.29  |
| GR 68-9 | 42433.65625 | Soil | 90 | ppm | 202.94  | 9.96  |
| GR 69-1 | 42437.78958 | Soil | 90 | ppm | 410.31  | 14.07 |
| GR 69-2 | 42437.79097 | Soil | 90 | ppm | 385.35  | 13.65 |
| GR 69-3 | 42437.79236 | Soil | 90 | ppm | 395.31  | 13.84 |
| GR 69-4 | 42437.79444 | Soil | 90 | ppm | 404.04  | 13.9  |
| GR 69-5 | 42437.79861 | Soil | 90 | ppm | 346.36  | 12.27 |
| GR 69-6 | 42437.8     | Soil | 90 | ppm | 380.65  | 13.58 |
| GR 69-7 | 42437.80069 | Soil | 90 | ppm | 394.85  | 13.59 |
| GR 69-8 | 42437.80208 | Soil | 90 | ppm | 384.7   | 13.3  |
| GR 69-9 | 42437.80347 | Soil | 90 | ppm | 378.31  | 13.23 |
| GR 7-1  | 42424.70694 | Soil | 90 | ppm | 2549.6  | 40.64 |
| GR 7-2  | 42424.71042 | Soil | 90 | ppm | 2626.37 | 41.48 |
| GR 7-3  | 42424.7125  | Soil | 90 | ppm | 2053.74 | 35.31 |
| GR 7-4  | 42424.71597 | Soil | 90 | ppm | 2535.91 | 40.85 |
| GR 7-5  | 42424.71736 | Soil | 90 | ppm | 2482.24 | 40.01 |
| GR 7-6  | 42424.72014 | Soil | 90 | ppm | 2208.16 | 37.87 |
| GR 7-7  | 42424.72222 | Soil | 90 | ppm | 2338.35 | 38.43 |
| GR 7-8  | 42424.72431 | Soil | 90 | ppm | 2240.04 | 37.81 |
| GR 7-9  | 42424.72569 | Soil | 90 | ppm | 2497.67 | 40.29 |
| GR 70-1 | 42430.71528 | Soil | 90 | ppm | 88.48   | 7.14  |
| GR 70-2 | 42430.71667 | Soil | 90 | ppm | 94.39   | 7.24  |
| GR 70-3 | 42430.71806 | Soil | 90 | ppm | 88.38   | 6.96  |
| GR 70-4 | 42430.71944 | Soil | 90 | ppm | 90.35   | 7.19  |
| GR 70-5 | 42430.72083 | Soil | 90 | ppm | 93.8    | 7.19  |
| GR 70-6 | 42430.72222 | Soil | 90 | ppm | 86.47   | 7.05  |

| GR 70-7 | 42430.72361 | Soil | 90 | ppm | 89     | 7.1   |
|---------|-------------|------|----|-----|--------|-------|
| GR 70-8 | 42430.725   | Soil | 90 | ppm | 82.4   | 6.86  |
| GR 70-9 | 42430.72639 | Soil | 90 | ppm | 90.45  | 7.15  |
| GR 71-1 | 42431.76806 | Soil | 90 | ppm | 51.36  | 5.76  |
| GR 71-2 | 42431.76944 | Soil | 90 | ppm | 45.18  | 5.49  |
| GR 71-3 | 42431.77153 | Soil | 90 | ppm | 48.89  | 5.59  |
| GR 71-4 | 42431.77292 | Soil | 90 | ppm | 50.61  | 5.71  |
| GR 71-5 | 42431.77431 | Soil | 90 | ppm | 47.35  | 5.52  |
| GR 71-6 | 42431.77569 | Soil | 90 | ppm | 45.54  | 5.53  |
| GR 71-7 | 42431.77708 | Soil | 90 | ppm | 45.94  | 5.54  |
| GR 71-8 | 42431.77917 | Soil | 90 | ppm | 47.93  | 5.52  |
| GR 71-9 | 42431.78056 | Soil | 90 | ppm | 53.07  | 5.53  |
| GR 72-1 | 42431.67431 | Soil | 90 | ppm | 224.92 | 10.45 |
| GR 72-2 | 42431.675   | Soil | 90 | ppm | 238.45 | 10.75 |
| GR 72-3 | 42431.67639 | Soil | 90 | ppm | 225.08 | 10.52 |
| GR 72-4 | 42431.67778 | Soil | 90 | ppm | 252.57 | 11.02 |
| GR 72-5 | 42431.67917 | Soil | 90 | ppm | 246    | 10.9  |
| GR 72-6 | 42431.68056 | Soil | 90 | ppm | 239.72 | 10.91 |
| GR 72-7 | 42431.68194 | Soil | 90 | ppm | 220.65 | 10.46 |
| GR 72-8 | 42431.68333 | Soil | 90 | ppm | 231.99 | 10.58 |
| GR 72-9 | 42431.68472 | Soil | 90 | ppm | 261.8  | 11.19 |
| GR 73-1 | 42431.68958 | Soil | 90 | ppm | 771.32 | 19.18 |
| GR 73-2 | 42431.69097 | Soil | 90 | ppm | 737.64 | 18.65 |
| GR 73-3 | 42431.69236 | Soil | 90 | ppm | 726.91 | 18.21 |
| GR 73-4 | 42431.69375 | Soil | 90 | ppm | 761.41 | 19.04 |
| GR 73-5 | 42431.69514 | Soil | 90 | ppm | 708.56 | 17.85 |
| GR 73-6 | 42431.69583 | Soil | 90 | ppm | 747.7  | 18.85 |
| GR 73-7 | 42431.69722 | Soil | 90 | ppm | 783.7  | 19.27 |
| GR 73-8 | 42431.69931 | Soil | 90 | ppm | 748.36 | 18.91 |
| GR 73-9 | 42431.70069 | Soil | 90 | ppm | 746.33 | 19.22 |
| GR 74-1 | 42431.60069 | Soil | 90 | ppm | 218.58 | 10.49 |
| GR 74-2 | 42431.60208 | Soil | 90 | ppm | 192.6  | 9.94  |
| GR 74-3 | 42431.60347 | Soil | 90 | ppm | 189.39 | 9.85  |
| GR 74-4 | 42431.60486 | Soil | 90 | ppm | 199.23 | 10.09 |
| GR 74-5 | 42431.60625 | Soil | 90 | ppm | 224.95 | 10.69 |
| GR 74-6 | 42431.60764 | Soil | 90 | ppm | 204.19 | 10.14 |
| GR 74-7 | 42431.60903 | Soil | 90 | ppm | 214.63 | 10.45 |
| GR 74-8 | 42431.61042 | Soil | 90 | ppm | 197.59 | 10.03 |
| GR 74-9 | 42431.61181 | Soil | 90 | ppm | 200.13 | 10.15 |
| GR 75-1 | 42432.45069 | Soil | 90 | ppm | 91.08  | 6.89  |
| GR 75-2 | 42432.45208 | Soil | 90 | ppm | 99.42  | 7.36  |
| GR 75-3 | 42432.45347 | Soil | 90 | ppm | 89.63  | 6.69  |
| GR 75-4 | 42432.45556 | Soil | 90 | ppm | 101.42 | 7.34  |
| GR 75-5 | 42432.45694 | Soil | 90 | ppm | 99.83  | 7.49  |

| GR 75-6 | 42432.45833 | Soil | 90    | ppm | 98.45   | 7.3   |
|---------|-------------|------|-------|-----|---------|-------|
| GR 75-7 | 42432.46042 | Soil | 90    | ppm | 105.97  | 7.63  |
| GR 75-8 | 42432.46181 | Soil | 90    | ppm | 102.85  | 7.61  |
| GR 75-9 | 42432.46389 | Soil | 90    | ppm | 101.21  | 7.53  |
| GR 76-1 | 42432.47917 | Soil | 90    | ppm | 41.91   | 5.09  |
| GR 76-2 | 42432.48056 | Soil | 90    | ppm | 38.41   | 5.24  |
| GR 76-3 | 42432.48194 | Soil | 90    | ppm | 30.12   | 4.51  |
| GR 76-4 | 42432.48472 | Soil | 90    | ppm | 28.61   | 4.38  |
| GR 76-5 | 42432.48611 | Soil | 90    | ppm | 46.81   | 5.58  |
| GR 76-6 | 42432.4875  | Soil | 90    | ppm | 36.75   | 5.06  |
| GR 76-7 | 42432.48889 | Soil | 90    | ppm | 35.28   | 5.07  |
| GR 76-8 | 42432.48958 | Soil | 90    | ppm | 33.83   | 4.94  |
| GR 76-9 | 42432.49097 | Soil | 90    | ppm | 29.77   | 4.69  |
| GR 77-1 | 42432.68056 | Soil | 90    | ppm | 408.37  | 13.7  |
| GR 77-2 | 42432.68333 | Soil | 90    | ppm | 316.38  | 11.31 |
| GR 77-3 | 42432.68472 | Soil | 90    | ppm | 355.35  | 12.33 |
| GR 77-4 | 42432.68681 | Soil | 90    | ppm | 336.07  | 11.93 |
| GR 77-5 | 42432.68819 | Soil | 90    | ppm | 426.77  | 13.79 |
| GR 77-6 | 42432.68958 | Soil | 90    | ppm | 468.66  | 14.67 |
| GR 77-7 | 42432.69097 | Soil | 90    | ppm | 438.66  | 14.08 |
| GR 77-8 | 42432.69236 | Soil | 90    | ppm | 416.27  | 13.78 |
| GR 77-9 | 42432.69375 | Soil | 90    | ppm | 413.28  | 13.66 |
| GR 78-1 | 42431.73056 | Soil | 90    | ppm | 2226.11 | 34.95 |
| GR 78-2 | 42431.73125 | Soil | 90    | ppm | 1971.49 | 31.52 |
| GR 78-3 | 42431.73264 | Soil | 90    | ppm | 2049.68 | 32.28 |
| GR 78-4 | 42431.73403 | Soil | 90    | ppm | 2358.55 | 36.32 |
| GR 78-5 | 42431.73542 | Soil | 90    | ppm | 1658.5  | 27.06 |
| GR 78-6 | 42431.73681 | Soil | 90    | ppm | 2383.02 | 36.07 |
| GR 78-7 | 42431.73819 | Soil | 90    | ppm | 2396.58 | 36.38 |
| GR 78-8 | 42431.73958 | Soil | 90    | ppm | 2337.18 | 36.46 |
| GR 78-9 | 42431.74097 | Soil | 90    | ppm | 2411.21 | 36.23 |
| GR 79-1 | 42430.79722 | Soil | 90    | ppm | 953.86  | 21.31 |
| GR 79-2 | 42430.79861 | Soil | 90    | ppm | 845.17  | 19.2  |
| GR 79-3 | 42430.8     | Soil | 90    | ppm | 891.92  | 20.07 |
| GR 79-4 | 42430.80139 | Soil | 90    | ppm | 1045.88 | 23.17 |
| GR 79-5 | 42430.80278 | Soil | 90    | ppm | 996.9   | 22.33 |
| GR 79-6 | 42430.80417 | Soil | 90    | ppm | 1057.37 | 23.5  |
| GR 79-7 | 42430.80486 | Soil | 60.97 | ppm | 1087.93 | 23.61 |
| GR 79-8 | 42430.80694 | Soil | 90    | ppm | 1175.49 | 24.64 |
| GR 79-9 | 42430.80833 | Soil | 90    | ppm | 982.2   | 22.59 |
| GR 8-1  | 42430.68958 | Soil | 90    | ppm | 1754.18 | 31.59 |
| GR 8-2  | 42430.69097 | Soil | 90    | ppm | 2033.89 | 34.37 |
| GR 8-3  | 42430.69236 | Soil | 90    | ppm | 1653.69 | 30.2  |
| GR 8-4  | 42430.69375 | Soil | 90    | ppm | 2039.99 | 34.58 |

| GR 8-5  | 42430.69444 | Soil | 90 | ppm | 2070.25 | 34.41 |
|---------|-------------|------|----|-----|---------|-------|
| GR 8-6  | 42430.69583 | Soil | 90 | ppm | 2034.5  | 34.09 |
| GR 8-7  | 42430.69722 | Soil | 90 | ppm | 1827.03 | 31.82 |
| GR 8-8  | 42430.69861 | Soil | 90 | ppm | 1967.78 | 33.44 |
| GR 8-9  | 42430.7     | Soil | 90 | ppm | 1894.57 | 33.11 |
| GR 80-1 | 42431.75347 | Soil | 90 | ppm | 117.05  | 7.27  |
| GR 80-2 | 42431.75486 | Soil | 90 | ppm | 134.52  | 7.74  |
| GR 80-3 | 42431.75694 | Soil | 90 | ppm | 125.75  | 7.57  |
| GR 80-4 | 42431.75833 | Soil | 90 | ppm | 148.3   | 8.55  |
| GR 80-5 | 42431.76042 | Soil | 90 | ppm | 148.45  | 8.49  |
| GR 80-6 | 42431.76181 | Soil | 90 | ppm | 151.82  | 8.81  |
| GR 80-7 | 42431.76319 | Soil | 90 | ppm | 152.24  | 8.83  |
| GR 80-8 | 42431.76458 | Soil | 90 | ppm | 146.47  | 8.34  |
| GR 80-9 | 42431.76597 | Soil | 90 | ppm | 148.4   | 8.68  |
| GR 9-1  | 42425.62917 | Soil | 90 | ppm | 1928.44 | 34.06 |
| GR 9-2  | 42425.63125 | Soil | 90 | ppm | 1940.57 | 33.53 |
| GR 9-3  | 42425.63264 | Soil | 90 | ppm | 2247.51 | 37.38 |
| GR 9-4  | 42425.63403 | Soil | 90 | ppm | 2399.63 | 38.81 |
| GR 9-5  | 42425.63611 | Soil | 90 | ppm | 1825.74 | 33.18 |
| GR 9-6  | 42425.6375  | Soil | 90 | ppm | 2089.47 | 35.38 |
| GR 9-7  | 42425.63958 | Soil | 90 | ppm | 2029.31 | 34.57 |
| GR 9-8  | 42425.64097 | Soil | 90 | ppm | 1993.28 | 34.18 |
| GR 9-9  | 42425.64306 | Soil | 90 | ppm | 2361.4  | 37.05 |
| HS03-1  | 42437.84097 | Soil | 90 | ppm | 448.21  | 15.37 |
| HS03-2  | 42437.84236 | Soil | 90 | ppm | 424.75  | 14.98 |
| HS03-3  | 42437.84375 | Soil | 90 | ppm | 557.02  | 16.52 |
| HS03-4  | 42437.84514 | Soil | 90 | ppm | 375.05  | 13.82 |
| HS03-5  | 42437.84653 | Soil | 90 | ppm | 591.97  | 17.32 |
| HS03-6  | 42437.84792 | Soil | 90 | ppm | 1289.99 | 28.76 |
| HS03-7  | 42437.84931 | Soil | 90 | ppm | 573.29  | 17.39 |
| HS03-8  | 42437.85069 | Soil | 90 | ppm | 1067.55 | 25.64 |
| HS03-9  | 42437.85208 | Soil | 90 | ppm | 901.17  | 22.86 |
| HS04-1  | 42431.92222 | Soil | 90 | ppm | 1177.04 | 24.29 |
| HS04-2  | 42431.92431 | Soil | 90 | ppm | 1190.83 | 24.65 |
| HS04-3  | 42431.92639 | Soil | 90 | ppm | 1332.81 | 25.94 |
| HS04-4  | 42431.93542 | Soil | 90 | ppm | 1247.79 | 25.09 |
| HS04-5  | 42431.93681 | Soil | 90 | ppm | 1205.53 | 24.49 |
| HS04-6  | 42431.93819 | Soil | 90 | ppm | 1153.52 | 24.02 |
| HS04-7  | 42431.94028 | Soil | 90 | ppm | 1178.09 | 24.43 |
| HS04-8  | 42431.94167 | Soil | 90 | ppm | 1261.66 | 25.11 |
| HS04-9  | 42431.94653 | Soil | 90 | ppm | 1228.62 | 32.19 |
| HS05-1  | 42437.87014 | Soil | 90 | ppm | 459.98  | 15.28 |
| HS05-2  | 42437.87222 | Soil | 90 | ppm | 177.25  | 9.81  |
| HS05-3  | 42437.87361 | Soil | 90 | ppm | 290.81  | 12    |

| HS05-4  | 42437.875   | Soil   | 90 | ppm | 211.77   | 10.46  |
|---------|-------------|--------|----|-----|----------|--------|
| HS05-5  | 42437.87639 | Soil   | 90 | ppm | 256.74   | 11.59  |
| HS05-6  | 42437.87778 | Soil   | 90 | ppm | 265.48   | 11.93  |
| HS05-7  | 42437.87917 | Soil   | 90 | ppm | 315.77   | 12.87  |
| HS05-8  | 42437.88056 | Soil   | 90 | ppm | 165.16   | 9.48   |
| HS05-9  | 42437.88194 | Soil   | 90 | ppm | 217.14   | 10.78  |
| HS1-1   | 42431.58472 | Soil   | 90 | ppm | 2117.96  | 34.16  |
| HS1-2   | 42431.58681 | Soil   | 90 | ppm | 2145.45  | 34.33  |
| HS1-3   | 42431.58819 | Soil   | 90 | ppm | 2066.97  | 33.83  |
| HS1-4   | 42431.58958 | Soil   | 90 | ppm | 2160.79  | 34.53  |
| HS1-5   | 42431.59097 | Soil   | 90 | ppm | 2172.37  | 35.11  |
| HS1-6   | 42431.59236 | Soil   | 90 | ppm | 2053.06  | 33.88  |
| HS1-7   | 42431.59375 | Soil   | 90 | ppm | 2235.67  | 35.37  |
| HS1-8   | 42431.59514 | Soil   | 90 | ppm | 1876.19  | 31.94  |
| HS1-9   | 42431.59583 | Soil   | 90 | ppm | 2063.69  | 33.65  |
| HS10-1  | 42431.96667 | Soil   | 90 | ppm | 7153.69  | 66.34  |
| HS10-1  | 42431.96944 | Mining | 90 | ppm | 7260.08  | 81.32  |
| HS10-2  | 42431.97222 | Mining | 90 | ppm | 12663.84 | 153.55 |
| HS10-3  | 42431.97431 | Mining | 90 | ppm | 8728.34  | 97.16  |
| HS10-4  | 42431.97569 | Mining | 90 | ppm | 10688.88 | 124.24 |
| HS10-5  | 42431.97847 | Mining | 90 | ppm | 14372.71 | 175.73 |
| HS10-6  | 42431.98194 | Mining | 90 | ppm | 14699.58 | 181.26 |
| HS10-7  | 42431.98403 | Mining | 90 | ppm | 12692.84 | 155.62 |
| HS10-8  | 42431.98542 | Mining | 90 | ppm | 13115.97 | 160.81 |
| HS10-9  | 42431.98681 | Mining | 90 | ppm | 5687.63  | 62.4   |
| HS11-1  | 42431.61458 | Soil   | 90 | ppm | 17264.36 | 146.31 |
| HS11-2  | 42431.61667 | Soil   | 90 | ppm | 16711.29 | 141.66 |
| HS11-3  | 42431.61806 | Soil   | 90 | ppm | 14871.61 | 132.11 |
| HS11-4  | 42431.61944 | Soil   | 90 | ppm | 16183.33 | 138.08 |
| HS11-5  | 42431.62083 | Soil   | 90 | ppm | 16435.17 | 139.75 |
| HS11-6  | 42431.62222 | Soil   | 90 | ppm | 15230.99 | 133.53 |
| HS11-7  | 42431.62361 | Soil   | 90 | ppm | 15757.99 | 133.58 |
| HS11-8  | 42431.625   | Soil   | 90 | ppm | 18027.12 | 148.02 |
| HS11-9  | 42431.62639 | Soil   | 90 | ppm | 15748.15 | 134.36 |
| HS11-M1 | 42431.64722 | Mining | 90 | ppm | 14738.97 | 197.71 |
| HS11-M2 | 42431.64931 | Mining | 90 | ppm | 12885.22 | 168.82 |
| HS11-M3 | 42431.65069 | Mining | 90 | ppm | 13506.19 | 178.21 |
| HS11-M4 | 42431.65208 | Mining | 90 | ppm | 14663.09 | 196.18 |
| HS11-M5 | 42431.65347 | Mining | 90 | ppm | 15307.09 | 204.68 |
| HS11-M6 | 42431.65486 | Mining | 90 | ppm | 14393.59 | 190.89 |
| HS11-M7 | 42431.65625 | Mining | 90 | ppm | 14818.26 | 195.95 |
| HS11-M8 | 42431.65764 | Mining | 90 | ppm | 15209.21 | 201.14 |
| HS11-M9 | 42431.65903 | Mining | 90 | ppm | 14295.58 | 187.49 |
| HS2-1   | 42432.56111 | Soil   | 90 | ppm | 1762.67  | 31.37  |

| HS2-2 | 42432.5625  | Soil   | 90 | ppm | 1965.99 | 33.14 |
|-------|-------------|--------|----|-----|---------|-------|
| HS2-3 | 42432.56389 | Soil   | 90 | ppm | 1096.83 | 21.88 |
| HS2-4 | 42432.56528 | Soil   | 90 | ppm | 1165.41 | 21.56 |
| HS2-5 | 42432.56667 | Soil   | 90 | ppm | 1965.58 | 32.8  |
| HS2-6 | 42432.56806 | Soil   | 90 | ppm | 1295.11 | 24.79 |
| HS2-7 | 42432.56944 | Soil   | 90 | ppm | 1101.02 | 21.08 |
| HS2-8 | 42432.57083 | Soil   | 90 | ppm | 1117.89 | 22.12 |
| HS2-9 | 42432.57222 | Soil   | 90 | ppm | 1566.12 | 27.95 |
| HS6-1 | 42430.58958 | Soil   | 90 | ppm | 506.52  | 16.23 |
| HS6-2 | 42430.59097 | Soil   | 90 | ppm | 608.01  | 18.1  |
| HS6-3 | 42430.59236 | Soil   | 90 | ppm | 826.35  | 21.06 |
| HS6-4 | 42430.63958 | Soil   | 90 | ppm | 561.57  | 16.4  |
| HS6-5 | 42430.64097 | Soil   | 90 | ppm | 506.64  | 15.03 |
| HS6-6 | 42430.64236 | Soil   | 90 | ppm | 568.28  | 15.71 |
| HS6-7 | 42430.64375 | Soil   | 90 | ppm | 737.27  | 19.03 |
| HS6-8 | 42430.64444 | Soil   | 90 | ppm | 538.91  | 16.17 |
| HS6-9 | 42430.64583 | Soil   | 90 | ppm | 447.71  | 13.72 |
| HS7-1 | 42431.66111 | Soil   | 90 | ppm | 2832.85 | 40.7  |
| HS7-2 | 42431.6625  | Soil   | 90 | ppm | 2986.4  | 41.69 |
| HS7-3 | 42431.66389 | Soil   | 90 | ppm | 2985.54 | 42.19 |
| HS7-4 | 42431.66528 | Soil   | 90 | ppm | 2929.08 | 41.23 |
| HS7-5 | 42431.66667 | Soil   | 90 | ppm | 3027.8  | 41.94 |
| HS7-6 | 42431.66806 | Soil   | 90 | ppm | 3035.88 | 42.21 |
| HS7-7 | 42431.66944 | Soil   | 90 | ppm | 2970.65 | 41.42 |
| HS7-8 | 42431.67083 | Soil   | 90 | ppm | 3164.38 | 43.5  |
| HS7-9 | 42431.67222 | Soil   | 90 | ppm | 3041.47 | 42.39 |
| HS8-1 | 42431.78403 | Soil   | 90 | ppm | 325.51  | 12.6  |
| HS8-2 | 42431.82847 | Soil   | 90 | ppm | 373.22  | 13.18 |
| HS8-3 | 42431.82986 | Soil   | 90 | ppm | 5.18    | 2.19  |
| HS8-4 | 42431.83125 | Soil   | 90 | ppm | 329.93  | 12.39 |
| HS8-5 | 42431.83194 | Soil   | 90 | ppm | 347.05  | 12.58 |
| HS8-6 | 42431.83333 | Soil   | 90 | ppm | 224.05  | 9.75  |
| HS8-7 | 42431.83542 | Soil   | 90 | ppm | 365.95  | 13.22 |
| HS8-8 | 42431.83611 | Soil   | 90 | ppm | 285.28  | 11.37 |
| HS8-9 | 42431.8375  | Soil   | 90 | ppm | 287.33  | 10.97 |
| HS9-1 | 42424.63542 | Soil   | 90 | ppm | 6202.4  | 68.36 |
| HS9-2 | 42424.64444 | Mining | 90 | ppm | 5762.39 | 75.36 |
| HS9-3 | 42424.64653 | Mining | 90 | ppm | 5907.42 | 76.63 |
| HS9-4 | 42424.64792 | Mining | 90 | ppm | 6279    | 82.42 |
| HS9-5 | 42424.65    | Mining | 90 | ppm | 5368.34 | 70.84 |
| HS9-6 | 42424.65208 | Mining | 90 | ppm | 5990.17 | 76.81 |
| HS9-7 | 42424.65347 | Mining | 90 | ppm | 5623.86 | 71.54 |
| HS9-8 | 42424.65556 | Mining | 90 | ppm | 5857.06 | 75.91 |
| HS9-9 | 42424.65764 | Mining | 90 | ppm | 5327.9  | 68.24 |

| Table B1.2: XRF vs | AA | DATA |
|--------------------|----|------|
|--------------------|----|------|

| Sample ID | AA data  | XRF      |
|-----------|----------|----------|
| BK2       | 84.96221 | 102.92   |
| ВКЗ       | 16.76913 | 29.15    |
| DW81      | 1705.76  | 1535.38  |
| GR6       | 517.928  | 556.6    |
| GR8       | 2170.25  | 1935.99  |
| GR10      | 326.9103 | 280.68   |
| GR12      | 2361.483 | 1883.43  |
| GR30      | 397.0971 | 407.17   |
| GR32      | 702.9891 | 567.28   |
| GR34      | 583.4995 | 424.16   |
| GR55      | 2097.329 | 1785.36  |
| GR62      | 1560.728 | 2388.82  |
| GR67      | 2199.247 | 1494.3   |
| GR73      | 945.5227 | 748.52   |
| GR70      | 84.14031 | 89.56    |
| GR77      | 529.516  | 399.25   |
| HS2       | 2941.355 | 1424.83  |
| HS5       | 1279.64  | 247.85   |
| HS7       | 3536.676 | 2996.69  |
| HS11      | 13353.81 | 14517.84 |

APPENDIX C: FIELD NOTES AND PHOTO LOG

Figure C1.1: Field Notes 1/28/16 Red Cloud Sampling Amival- 140 pm Departures : 00pm Amival- 1:40 pm Departure Dani- Sampled (until 430)/notes Robert-Bero- sampled/ Wandered Haley- GPS/coordinates (Until 4 00)/sample, Robert- GPS/find Coordinates Taylor - notes (until 4 30)/sampled Weather-sunny, partly cloudy temp: high of 74 GPS #05 Garmin Oregon 550 PPE-gloves, full length ports, steeves, saghorn cactus, grazzes, shows rabbit lizaro dejert big how sheep + baby coyotes

[#2] should be under the tree (sooth 1-13 all Wash Mash-large nocks removed Abide of wash more sity not a lot of veg. Wild burroz-feces / tracks on top of hoge pretty vocicy inwosh inwash 19 in wash 20) Big pile of Maxs, on hilbide of wash - super rocky (tay) 21) on top of Ridge - next to Read (2) In wash 23) in wasn warker (24) in wash 25) to the side - in a side Wash

16) ON thop of hillside-eacry (2) on hillside Labeling HS-Hotspot BK-back GR-GRID Ame eve 1/29/16 Day 2 815 330 30,35,40,45 Soil is slightly all on Mill side of wash 7 Haltery & Robert -> Finishing soid Kulsey -> note taking and pictures Tang & Dani -> bugging samples BEND -7 bagging samples, identifying hotspats 2) Middle of Wash, More organis 3-twn z trees

2) onhillside, Rocky middle of wash, Mar BUND SCOT. under a knel, sidewash 300 davash, 357 in a side wathage, small Rocks 32) side of wash, indrainage spot 2) middle of wash in side dramage into wash middleish of wash, small rocks Under tree, damp suil, middle of wash 1) side of hill, nonly,

side of wash under thee next to him 55 in middle of wash bush a littlewest - shiphtly pocky 28 nwash 20 rocky, top of hill by road an LOW bank VOC inwash 110 ) { in wash 02 benind dead tree - Sitty lly on barr towards top. 100 inwash 0 Inwash on bank.

On @ base of ditt Rours 1507 falling of 2) in the wash. under a bush (Ipm R) in thewask. (1pm Dr.B) sitty OTO TOTOTOSOS Next to road, covered in YOCKS creazy on ledge - soil/water coming of middle of work very rocky \* wash comes straight down from tailings. (1-44) and then curves to lookers (attorling Right Banks back left - then straig @ UO. tallings B

| HK I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 33 5.772           | W 114 20       | al 7                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|------------------------|
| KAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in the wash          | lose to co     | ince. Water may pal    |
| HS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 5.783'             | W              | 35.932'                |
| Doni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mille of             | stream by      | e bond.                |
| HS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 5.791              | W              | 35.915                 |
| Hey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5794                 | 1./            | 25919                  |
| Tayle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C 1:30               | v              | ,,,,,                  |
| HSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 5805               | W              | .919                   |
| Don' C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Raky), Eliffs on d   | 1 sides, norro | 1 toward gop of wash   |
| HS 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 5812               | W              | ,924                   |
| Kels,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | further up the       | hone Way       | by the pilings         |
| HS 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 5.800              | De de u        | 35,897                 |
| IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10(e)10(5) 501       | Turner up      | R98                    |
| 17281<br>Dubi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | two primery dro      | ins from t     | sillios pile in corner |
| HS 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J 152                | W.B            | 5.3                    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Very dos to tallings |                |                        |
| HS 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N .33°5.869          | W 114          | ° 35.839               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                | 4070000                |
| HS 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N 3305.90            |                | He objash.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | composite or m       | M              |                        |
| HS 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                    |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                | , L                    |
| - de la composition de la comp |                      | 11             | 1                      |

Figure C1.2: Photo Log Black Rock Wash PA/SI Photo log - Grid Samples Location: Black Rock Wash, AZ (GR)

Camera: Canon PowerShot

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016 Photographer: Haley Michael



Southwest Sites Consulting

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016

Photographer: Haley Michael



#### Southwest Sites Consulting

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016

Photographer: Haley Michael



GR 11

GR 12

#### **Southwest Sites Consulting**

Location: Black Rock Wash, AZ Date Photos Taken: Jan Photographer: 30, 2016 Haley Michael



# Black Rock Wash PA/SI Photo log - Grid Samples Southwest Sites Consulting (GR)

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, Photographer: Haley 2016 Michael



#### Southwest Sites Consulting

Camera: Canon PowerShot

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016

Photographer: Haley Michael



#### Southwest Sites Consulting

Location: Black Rock Wash, AZ Date Photos Taken: Jan Photographer: Haley 30, 2016 Michael



# Black Rock Wash PA/SI Photo log - Southwest Sites Consulting Grid Samples (GR)

Location: Black Rock Wash, AZ Date Photos Photographer: Taken: Jan 30, Haley Michael 2016



Location: Black Rock Wash, AZ

Location: Black Rock Camera: Canon PowerShot Wash, AZ Photographer: Haley Date Photos Taken: Jan 30, 2016 Michael GR 33 GR 34 GR 35 GR 36

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, Photographer: Haley 2016 Michael



Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan Photographer: 30, 2016 Haley Michael



Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016

Photographer: Haley Michael





Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016

Photographer: Haley Michael Location: Black Rock Wash, AZ



Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan Photographer: Haley 30, 2016 Michael


Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan Photographer: Haley 30, 2016 Michael



Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, Photographer: Haley 2016 Michael



Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan Photo 30, 2016 Micha

Photographer: Haley Michael



Location: Black Rock Wash, AZ



| Black F | Rock ' | Wash | PA/SI | Photo | log - | Grid S | Samples |
|---------|--------|------|-------|-------|-------|--------|---------|
| (GR)    |        |      |       |       | -     |        | -       |

Location: Black Rock Wash, AZ

Camera: Canon PowerShot

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016

Photographer: Haley Michael



Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, Photographer: Haley 2016 Michael



## Black Rock Wash PA/SI Photo log -Hot Spot Samples (HS)

Location: Black Rock Wash, AZ



## Black Rock Wash PA/SI Photo log -Hot Spot Samples (HS)

Location: Black Rock Wash, AZ

Camera: Canon PowerShot

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016 Photographer: Haley Michael

HS 6 HS 5 N/A HS 7 HS 8

# Black Rock Wash PA/SI Photo log -Hot Spot Location: Black Rock Wash, AZ Samples (HS)

Location: Black Rock Wash, AZ Date Photos Taken: Jan Photographer: 30, 2016 Haley Michael



### Black Rock Wash PA/SI Photo log -Down Wash Samples (DW)

Location: Black Rock Wash, AZ

Location: Black Rock Wash, AZ Date Photos Taken: Jan 30, 2016

Photographer: Robert Reny Camera: Iphone





# **APPENDIX D: LEAD MODEL DATA**

|              |           | NHANES 1999-2004               |           | NHANES III Phase 1      |
|--------------|-----------|--------------------------------|-----------|-------------------------|
|              |           |                                |           | and 2                   |
| Scenario     | PbB       | <b>Probability that fetal</b>  | PbB       | <b>Probability that</b> |
|              | geometric | <b>PbB &gt; PbBt, assuming</b> | geometric | fetal PbB > PbBt,       |
|              | mean      | lognormal distribution         | mean      | assuming lognormal      |
|              | (ug/dL)   |                                | (ug/dL)   | distribution            |
| Adult        |           |                                |           |                         |
| Worker       |           |                                |           |                         |
| Roger (330   |           |                                |           |                         |
| days)        | 5.4       | 11.000/                        | 5.0       | 20.000/                 |
| 95% (2048    | 5.4       | 11.20%                         | 5.9       | 20.00%                  |
| ppm)         | 1.0       | 10.000/                        | 2.4       | 1.000/                  |
| 50% (401     | 1.9       | 10.00%                         | 2.4       | 1.90%                   |
| Other (150)  |           |                                |           |                         |
| Other (150)  |           |                                |           |                         |
| 95% (2048    | 1.4       | 0.00%                          | 1.9       | 90.00%                  |
| ppm)         |           |                                |           |                         |
| 50% (401     | 1.6       | 0.90%                          | 1.6       | 0.90%                   |
| ppm)         |           |                                |           |                         |
| Adult        |           |                                |           |                         |
| Recreationa  |           |                                |           |                         |
| High use (20 |           |                                |           |                         |
| days)        |           |                                |           |                         |
| 95% (2048    | 1.3       | 0.00%                          | 1.8       | 70.00%                  |
| ppm)         |           |                                |           |                         |
| 50% (401     | 1.1       | 0.00%                          | 1.6       | 40.00%                  |
| ppm)         |           |                                |           |                         |
| Average Use  |           |                                |           |                         |
| (6 days)     |           |                                |           |                         |
| 95% (2048    | 1.1       | 0.00%                          | 1.6       | 40.00%                  |
| ppm)         |           |                                |           |                         |
| 50% (401     | 1         | 0.00%                          | 1.5       | 0.40%                   |
| ppm)         |           |                                |           |                         |
| Child Data   |           |                                |           |                         |
| from         |           |                                |           |                         |
| IEUBK        |           |                                |           |                         |
| model        |           |                                |           |                         |
| High use (20 |           |                                |           |                         |
| days)        |           |                                |           |                         |
| 95% (2048    |           |                                |           |                         |
| ppm)         | 11        |                                |           |                         |
| .5-1 year    | 11        |                                |           |                         |

# Table D1.1: Grid and Downwash Model Data

| 1-2 year    | 3    |  |  |
|-------------|------|--|--|
|             | 7.1  |  |  |
| 2-3 year    | 7.1  |  |  |
| 3-4 year    | 8.1  |  |  |
| 4-5 year    | 3.6  |  |  |
| 5-6 year    | 1.7  |  |  |
| 6-7 year    | 1.4  |  |  |
| 50% (401    |      |  |  |
| ppm)        |      |  |  |
| .5-1 year   | 1.1  |  |  |
| 1-2 year    | 1.2  |  |  |
| 2-3 year    | 1.1  |  |  |
| 3-4 year    | 1    |  |  |
| 4-5 year    | 0.8  |  |  |
| 5-6 year    | 0.8  |  |  |
|             |      |  |  |
|             |      |  |  |
| 6-7 year    | 0.8  |  |  |
| Average Use |      |  |  |
| (7 days)    |      |  |  |
| 95% (2048   | 1.3  |  |  |
| ppm)        |      |  |  |
| .5-1 year   | 1.4  |  |  |
| 1-2 year    | 1.5  |  |  |
| 2-3 year    | 1.4  |  |  |
| 3-4 year    | 1.3  |  |  |
| 4-5 year    | 1.1  |  |  |
| 5-6 year    | 1    |  |  |
| 6-7 year    | 1    |  |  |
| 50% (401    | 1.25 |  |  |
| ppm)        |      |  |  |
| .5-1 year   | 0.9  |  |  |
| 1-2 year    | 1    |  |  |
| 2-3 year    | 0.9  |  |  |
| 3-4 year    | 0.9  |  |  |
| 4-5 year    | 0.8  |  |  |
| 5-6 year    | 0.8  |  |  |
| 6-7 year    | 0.7  |  |  |
| L           |      |  |  |

|                            |                                      | NHANES                                                            |                                      | NHANES                                                            |  |
|----------------------------|--------------------------------------|-------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|--|
|                            |                                      | 1999                                                              |                                      | Phase III                                                         |  |
| Scenario                   | PbB<br>geometri<br>c mean<br>(ug/dL) | Probability<br>that fetal<br>PbB > PbBt,<br>assuming<br>lognormal | PbB<br>geometri<br>c mean<br>(ug/dL) | Probability<br>that fetal PbB<br>> PbBt,<br>assuming<br>lognormal |  |
| Adult<br>Worker            |                                      |                                                                   |                                      |                                                                   |  |
| Roger                      |                                      |                                                                   |                                      |                                                                   |  |
| 95%                        | 26.5                                 | 93.00%                                                            | 27                                   | 88.40%                                                            |  |
| 50%                        | 2                                    | 20.00%                                                            | 2.5                                  | 2.20%                                                             |  |
| Other (150)                |                                      |                                                                   |                                      |                                                                   |  |
| 95%                        | 12.6                                 | 58.40%                                                            | 13.1                                 | 58.70%                                                            |  |
| 50%                        | 2.7                                  | 0.70%                                                             | 3.2                                  | 4.50%                                                             |  |
| Adult<br>Recreation<br>al  |                                      |                                                                   |                                      |                                                                   |  |
| High use<br>(20 days)      |                                      |                                                                   |                                      |                                                                   |  |
| 95%                        | 2.5                                  | 0.60%                                                             | 3                                    | 4.10%                                                             |  |
| 50%                        | 1.2                                  | 0.00%                                                             | 1.7                                  | 0.60%                                                             |  |
| Average<br>Use (6 days)    |                                      |                                                                   |                                      |                                                                   |  |
| 95%                        | 1.5                                  | 0.00%                                                             | 2                                    | 1.00%                                                             |  |
| 50%                        | 1.1                                  | 0.00%                                                             | 1.6                                  | 0.40%                                                             |  |
| Child Data fi<br>IEUBK mod | rom<br>el                            |                                                                   |                                      |                                                                   |  |
| High use<br>(20 days)      |                                      |                                                                   |                                      |                                                                   |  |
| 95%                        |                                      |                                                                   |                                      |                                                                   |  |
| .5-1 year                  | 7.4                                  |                                                                   |                                      |                                                                   |  |
| 1-2 year                   | 8.6                                  |                                                                   |                                      |                                                                   |  |
| 2-3 year                   | 8.1                                  |                                                                   |                                      |                                                                   |  |

| 3-4 year     | 7.7  |  |  |  |
|--------------|------|--|--|--|
| 4-5 year     | 6.4  |  |  |  |
| 5-6 year     | 5.2  |  |  |  |
| 6-7 year     | 4.5  |  |  |  |
| 50%          |      |  |  |  |
| 5-1 year     | 19   |  |  |  |
| 1 2 year     | 2.1  |  |  |  |
|              | 2.1  |  |  |  |
| 2-3 year     | 2    |  |  |  |
| 3-4 year     | 1.9  |  |  |  |
| 4-5 year     | 1.6  |  |  |  |
| 5-6 year     | 1.4  |  |  |  |
|              |      |  |  |  |
|              |      |  |  |  |
| 6-7 year     | 1.3  |  |  |  |
| Average      |      |  |  |  |
| Use (7 days) |      |  |  |  |
| 93%          |      |  |  |  |
| .5-1 year    | 1.3  |  |  |  |
| 1-2 year     | 1.3  |  |  |  |
| 2-3 year     | 1.3  |  |  |  |
| 3-4 year     | 1.2  |  |  |  |
| 4-5 year     | 1    |  |  |  |
| 5-6 year     | 0.9  |  |  |  |
| 6-7 year     | 0.9  |  |  |  |
| 50%          |      |  |  |  |
| .5-1 year    | 3.7  |  |  |  |
| 1-2 year     | 4.1  |  |  |  |
| 2-3 year     | 14.4 |  |  |  |
| 3-4 year     | 7.1  |  |  |  |
| 4-5 year     | 3    |  |  |  |
| 5-6 year     | 2.5  |  |  |  |
| 6-7 year     | 2.3  |  |  |  |

| Scenario        | PbB          | Probability that | PbB       | Probability that fet |          |
|-----------------|--------------|------------------|-----------|----------------------|----------|
|                 | geometric    | fetal PbB >      | geometric | PbB > PbBt, as       | suming   |
|                 | mean (ug/dL) | PbBt, assuming   | mean      | lognormal distr      | ribution |
|                 |              | lognormal        | (ug/dL)   |                      |          |
|                 |              | distribution     |           |                      |          |
| Adult<br>Worker |              |                  |           |                      |          |
| <b>WORKER</b>   |              |                  |           |                      |          |
| days)           |              |                  |           |                      |          |
| 95%             | 10.5         | 45.90%           | 11        | 49.20%               |          |
| 50%             | 2.2          | 1.90%            | 2.2       | 1.90%                |          |
| Other (150)     |              |                  |           |                      |          |
| 95%             | 5.3          | 10.40%           | 4.05      | 10.20%               |          |
| 50%             | 1.4          | 0.00%            | 5.8       | 19.00%               |          |
| Adult           |              |                  |           |                      |          |
| Recreational    |              |                  |           |                      |          |
| High use (20    |              |                  |           |                      |          |
| days)           |              |                  |           |                      |          |
| 95%             | 1.6          | 0.00%            | 2.1       | 1.20%                |          |
| 50%             | 1.1          | 0.00%            | 1.6       | 0.40%                |          |
| Average Use     |              |                  |           |                      |          |
| (6 days)        |              |                  |           |                      |          |
| 95%             | 1.2          | 0.00%            | 1.7       | 0.50%                |          |
| 50%             | 1            | 0.00%            | 1.6       | 0.40%                |          |
| Child Data      |              |                  |           |                      |          |
| from            |              |                  |           |                      |          |
| IEUBK           |              |                  |           |                      |          |
| model           |              |                  |           |                      |          |
| High use (20    |              |                  |           |                      |          |
| days)           |              |                  |           |                      |          |
| 95%             |              |                  |           |                      |          |
| .5-1 year       | 3.5          |                  |           |                      |          |
| 1-2 year        | 4.1          |                  |           |                      |          |
| 2-3 year        | 3.8          |                  |           |                      |          |
| 3-4 year        | 3.6          |                  |           |                      |          |
| 4-5 year        | 3            |                  |           |                      |          |

Table D1.3: All Model Data

| 5-6 year    | 2.4 |  |  |
|-------------|-----|--|--|
| 6-7 year    | 2.2 |  |  |
| 50%         |     |  |  |
| .5-1 year   | 1.2 |  |  |
| 1-2 year    | 1.2 |  |  |
| 2-3 year    | 1.1 |  |  |
| 3-4 year    | 1   |  |  |
| 4-5 year    | 0.8 |  |  |
| 5-6 year    | 0.8 |  |  |
|             |     |  |  |
| 6-7 year    | 0.8 |  |  |
| 0-7 year    | 0.0 |  |  |
| Average Use |     |  |  |
| (7 days)    |     |  |  |
| 95%         |     |  |  |
| .5-1 year   | 2   |  |  |
| 1-2 year    | 2.1 |  |  |
| 2-3 year    | 2   |  |  |
| 3-4 year    | 1.9 |  |  |
| 4-5 year    | 1.5 |  |  |
| 5-6 year    | 1.4 |  |  |
| 6-7 year    | 1.3 |  |  |
| 50%         |     |  |  |
| .5-1 year   | 1   |  |  |
| 1-2 year    | 1   |  |  |
| 2-3 year    | 0.9 |  |  |
| 3-4 year    | 0.9 |  |  |
| 4-5 year    | 0.8 |  |  |
| 5-6 year    | 0.8 |  |  |
| 6-7 year    | 0.7 |  |  |

|                                                                                                                                                                                                                                  | Beginne                                                                                | er Wizar    | d           |                |            |               |       |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------|-------------|----------------|------------|---------------|-------|---------------|
|                                                                                                                                                                                                                                  | Soil/Dust Ingestion Weighting I                                                        | Factor (per | cent soil): | 45             |            |               |       | <u>0</u> K    |
| Enter outdoor soil lead concentration in the                                                                                                                                                                                     | Outdoor Soil Lead Concentration (µg/g) Indoor Dust Lead Concentration (µg/g)           |             |             | <u>C</u> ancel |            |               |       |               |
| highlighted window. A site-specific soil<br>lead concentration must be entered to                                                                                                                                                | Constant Value 402                                                                     |             |             | 🔘 Constan      | it Value   | 200           |       | <u>R</u> eset |
| calculate risk using the IEUBK.                                                                                                                                                                                                  |                                                                                        |             |             | 🔿 Variable     | Values     |               |       | Help?         |
| Arithmetic mean soil lead concentration is typically used.                                                                                                                                                                       | ○ Variable Values                                                                      |             |             | Multiple       | Source An  | alysis        | Set   | L             |
| Constant value option is used unless the                                                                                                                                                                                         |                                                                                        |             |             | Multiple       | Source Avg | 292.1         |       |               |
| exposure point concentration differs for a<br>specific age range.<br>Ingestion rates are not typically changed<br>unless site-specific information is available.<br>Consult the IEUBK guidance for more<br>detailed information. | Soil/Indoor Dust Concentration (µg/g)                                                  |             |             |                |            |               |       |               |
|                                                                                                                                                                                                                                  |                                                                                        | 0.1         | 1.2         | 22             | ac (rears) | 4-5           | 5-6   | 6-7           |
|                                                                                                                                                                                                                                  | Outdoor Soil Lead Levels:                                                              | 403         | 403         | 403            | 403        | 403           | 403   | 403           |
|                                                                                                                                                                                                                                  | Indoor Dust Lead Levels:                                                               | 292.1       | 292.1       | 292.1          | 292.1      | 292.1         | 292.1 | 292.1         |
|                                                                                                                                                                                                                                  | Amount of Soil/Dust Ingested Daily (g/dav)                                             |             |             |                |            |               |       |               |
|                                                                                                                                                                                                                                  | 2                                                                                      | ,0          | AGE (Years) |                |            |               |       |               |
|                                                                                                                                                                                                                                  | T. I.D. J. C. 11. J.                                                                   | 0-1         | 1-2         | 2-3            | 3-4        | 4-5           | 5-6   | 6-7           |
|                                                                                                                                                                                                                                  | l otal Dust + Soil Intake:                                                             | 0.085       | 0.135       | 0.135          | 0.135      | 0.100         | 0.090 | 0.085         |
|                                                                                                                                                                                                                                  | GI Values/Bioavailability TRW Homepage                                                 |             |             |                |            |               |       |               |
|                                                                                                                                                                                                                                  | GI / Bio Change Values http://www.epa.gov/superfund/health/contaminants/lead/index.htm |             |             |                |            |               |       |               |
|                                                                                                                                                                                                                                  |                                                                                        |             |             |                |            |               |       |               |
| -                                                                                                                                                                                                                                |                                                                                        |             |             |                |            |               |       |               |
|                                                                                                                                                                                                                                  | < Back Nevt >                                                                          |             |             | Capce          |            | Recet All     | 1     |               |
|                                                                                                                                                                                                                                  | NOAL >                                                                                 |             |             | Carles         |            | , to soc Hill | 2     |               |

# Figure D1.1: Child Lead Model

|                                           |                                                                          |                     | GSDi and PbBo from<br>Analysis of NHANES | GSDi and PbBo from<br>Analysis of NHANES |
|-------------------------------------------|--------------------------------------------------------------------------|---------------------|------------------------------------------|------------------------------------------|
| Variable                                  | Description of Variable                                                  | Units               | 1999-2004                                | III (Phases 1&2)                         |
| РъS                                       | Soil lead concentration                                                  | ug/g or ppm         | 407                                      | 407                                      |
| R <sub>fad/massed</sub>                   | Fetal/maternal PbB ratio                                                 |                     | 0.9                                      | 0.9                                      |
| BKSF                                      | Biokinetic Slope Factor                                                  | ug/dL per<br>ug/day | 0.4                                      | 0.4                                      |
| GSD,                                      | Geometric standard deviation PbB                                         |                     | 1.8                                      | 2.1                                      |
| РъВо                                      | Baseline PbB                                                             | ug/dL               | 1.0                                      | 1.5                                      |
| IRs                                       | Soil ingestion rate (including soil-derived indoor dust)                 | g/day               | 0.050                                    | 0.050                                    |
| IR <sub>s.D</sub>                         | Total ingestion rate of outdoor soil and indoor dust                     | g/day               |                                          |                                          |
| Ws                                        | Weighting factor; fraction of IR <sub>5.0</sub> ingested as outdoor soil |                     |                                          |                                          |
| K <sub>sd</sub>                           | Mass fraction of soil in dust                                            |                     |                                          |                                          |
| AF <sub>s, d</sub>                        | Absorption fraction (same for soil and dust)                             |                     | 0.12                                     | 0.12                                     |
| EF <sub>s, D</sub>                        | Exposure frequency (same for soil and dust)                              | days/yr             | 150                                      | 330                                      |
| $AT_{s, D}$                               | Averaging time (same for soil and dust)                                  | days/yr             | 365                                      | 365                                      |
| PbB <sub>adatt</sub>                      | PbB of adult worker, geometric mean                                      | ug/dL               | 1.4                                      | 2.4                                      |
| PbB <sub>frad, 0.95</sub>                 | 95th percentile PbB among fetuses of adult workers                       | ug/dL               | 3.3                                      | 7.3                                      |
| PbB,                                      | Target PbB level of concern (e.g., 10 ug/dL)                             | ug/dL               | 10.0                                     | 10.0                                     |
| P(PbB <sub>tot</sub> > PbB <sub>c</sub> ) | Probability that fetal PbB > PbB1, assuming lognormal distribution       | ~                   | 0.0%                                     | 1 9 %                                    |

## **APPENDIX E: LEAD CONCENTRATION FREQUENCY CHART**



Figure E1.1: Lead Concentrations Frequency Lead Model

| Grid Samples            | Geometric mean        | 401 ppm         |
|-------------------------|-----------------------|-----------------|
| Z score                 | Standard deviation    | 777.6 ppm       |
| x=zs+u                  | x=                    | 1680.234024 ppm |
| z=1.645 for 95%         | Where x=(777.65*1.645 | )+401           |
|                         | 95th percentile=      | 1680.234024 ppm |
|                         |                       |                 |
| Grid and                |                       |                 |
| <b>Downwash Samples</b> | Geometric mean        | 407.50 ppm      |
|                         | Standard Deviation    | 773.9787584 ppm |
|                         | x=                    | 1680.695058 ppm |
|                         | 95th percentile       | 1680.695058 ppm |
|                         |                       |                 |
| Hot Spot Samples        | Geometric Mean        | 1679.60 ppm     |
|                         | Standard Deviation    | 4867.21632 ppm  |
|                         | x=                    | 9686.170846 ppm |
|                         | 95th percentile       | 11751.80721 ppm |
|                         |                       |                 |
| ALL                     | Geometric Mean        | 452.40 ppm      |
|                         | Standard Deviation    | 1984.678615 ppm |
|                         | x=                    | 3717.196321 ppm |
|                         | 95th percentile       | 4358.406692 ppm |

# APPENDIX F: LEAD 50<sup>TH</sup> AND 95<sup>TH</sup> CONCENTRATIONS

Figure F1.1: Lead 50<sup>th</sup> and 95<sup>th</sup> Concentrations